1
0
forked from me/IronOS
Files
IronOS/Documentation/Development.md
2022-04-19 12:45:44 +02:00

105 lines
3.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Development
Building this software can be performed two ways: using the STM32CubeIDE or using command line tools.
## STM32CubeIDE
The easiest way to start working with the STM32CubeIDE is to create a new project for the STM32F103RCTx.
Once this is created, remove the auto-generated source code.
Next, drag the contents of the `source` folder into the project and choose to link to files.
You will need to update the build settings for include paths and point to the new `.ld` linker file.
## Command line tools and building a release
In the `source` folder there is a `Makefile` that can be used to build the repository using command line tools.
When running the `make` command, specify which model of the device and the language(s) you would like to use.
### macOS
Use the following steps to set up a build environment for IronOS on the command line (in Terminal).
1. [Follow steps 1 3 here to install the toolchain](https://github.com/glegrain/STM32-with-macOS#0---installing-the-toolchain) needed to compile for STM32 microcontrollers.
2. Install `python`:
```
brew install python
```
3. (Optional) Update `pip` so it doesn't warn you about being out-of-date:
```
python3 -m pip install --upgrade pip
```
4. Change to the `source` directory:
```
cd source
```
5. Create a Python virtual environment for IronOS named `ironos-venv` to keep your Python installation clean:
```
python3 -m venv ironos-venv
```
6. Activate the Python virtual environment:
```
source ironos-venv/bin/activate
```
7. Install the dependencies required to run `make-translation.py`:
```
pip install bdflib
```
8. All done! See some examples below for how you can build your own IronOS.
### Examples
To build a single language Simplified Chinese firmware for the TS80P with 8 simultaneous jobs:
```
make -j8 model=TS80P firmware-ZH_CN
```
To build a European multi-language firmware for the Pinecil with as many simultaneous jobs as there are logical processors on Linux:
```
make -j$(nproc) model=Pinecil firmware-multi_European
```
To build a Cyrillic compressed multi-language firmware for the Pinecil with as many simultaneous jobs as there are logical processors on macOS:
```
make -j$(sysctl -n hw.logicalcpu) model=Pinecil firmware-multi_compressed_Bulgarian+Russian+Serbian+Ukrainian
```
To build a custom multi-language firmware including English and Simplified Chinese for the TS80:
```
make -j8 model=TS80 custom_multi_langs="EN ZH_CN" firmware-multi_Custom
```
To build a custom compressed multi-language firmware including German, Spanish, and French for the TS100 (note if `model` is unspecified, it will default to `TS100`):
```
make -j8 custom_multi_langs="DE ES FR" firmware-multi_compressed_Custom
```
To build a release instead, run the `build.sh` script. This will update translations and also build every language for all device models. For macOS users, replace `make -j$(nproc)` in the script with `make -j$(sysctl -n hw.logicalcpu)` before running.
## Updating languages
To update the language translation files and their associated font maps, execute the `make_translation.py` code from the `Translations` directory.
If you edit the translation definitions or the English translation, please also run `gen_menu_docs.py` to update the settings menu documentation automatically.
## Building Pinecil
I highly recommend using the command line tools and using Docker to run the compiler.
It's a bit fussier on setup than the STM tooling, and this is by far the easiest way.
If you _need_ an IDE I have used [Nuclei's IDE](https://nucleisys.com/download.php).
Follow the same idea as the STM Cube IDE notes above.