1
0
forked from me/IronOS
Files
IronOS/source/Core/BSP/Pinecilv2/BSP.cpp
Ben V. Brown e7bcf920ba Refactor PinecilV2 Tuning
Closes #1688
2023-06-04 12:13:26 +10:00

281 lines
8.3 KiB
C++

// BSP mapping functions
#include "BSP.h"
#include "I2C_Wrapper.hpp"
#include "IRQ.h"
#include "Pins.h"
#include "Setup.h"
#include "TipThermoModel.h"
#include "USBPD.h"
#include "Utils.h"
#include "configuration.h"
#include "crc32.h"
#include "history.hpp"
#include "main.hpp"
// These control the period's of time used for the PWM
const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 25; // This is the tick delay before temp measure starts (i.e. time for op-amp recovery)
const uint8_t tempMeasureTicks = 25;
uint16_t totalPWM = 255; // Total length of the cycle's ticks
void resetWatchdog() {
// #TODO
}
#ifdef TEMP_NTC
// Lookup table for the NTC
// Stored as ADCReading,Temp in degC
static const int32_t NTCHandleLookup[] = {
// ADC Reading , Temp in C x10
3221, -400, //
4144, -350, //
5271, -300, //
6622, -250, //
8219, -200, //
10075, -150, //
12190, -100, //
14554, -50, //
17151, 0, //
19937, 50, //
22867, 100, //
25886, 150, //
28944, 200, //
29546, 210, //
30159, 220, //
30769, 230, //
31373, 240, //
31969, 250, //
32566, 260, //
33159, 270, //
33749, 280, //
34334, 290, //
34916, 300, //
35491, 310, //
36062, 320, //
36628, 330, //
37186, 340, //
37739, 350, //
38286, 360, //
38825, 370, //
39358, 380, //
39884, 390, //
40400, 400, //
42879, 450, //
45160, 500, //
47235, 550, //
49111, 600, //
50792, 650, //
52292, 700, //
53621, 750, //
54797, 800, //
55836, 850, //
56748, 900, //
57550, 950, //
58257, 1000, //
};
#endif
uint16_t getHandleTemperature(uint8_t sample) {
int32_t result = getADCHandleTemp(sample);
// Tip is wired up with an NTC thermistor
// 10K NTC balanced with a 10K pulldown
// NTCG163JF103FTDS
return Utils::InterpolateLookupTable(NTCHandleLookup, sizeof(NTCHandleLookup) / (2 * sizeof(int32_t)), result);
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
uint32_t res = getADCVin(sample);
res *= 4;
res /= divisor;
return res;
}
void unstick_I2C() {
/* configure SDA/SCL for GPIO */
// GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
// gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
// for (int i = 0; i < 8; i++) {
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// GPIO_BOP(GPIOB) |= SCL_Pin;
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// GPIO_BOP(GPIOB) &= SCL_Pin;
// }
// /* connect PB6 to I2C0_SCL */
// /* connect PB7 to I2C0_SDA */
// gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
}
uint8_t getButtonA() {
uint8_t val = gpio_read(KEY_A_Pin);
return val;
}
uint8_t getButtonB() {
uint8_t val = gpio_read(KEY_B_Pin);
return val;
}
void reboot() { hal_system_reset(); }
void delay_ms(uint16_t count) {
// delay_1ms(count);
BL702_Delay_MS(count);
}
uint32_t __get_IPSR(void) {
return 0; // To shut-up CMSIS
}
bool isTipDisconnected() {
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
uint32_t tipTemp = TipThermoModel::getTipInC();
return tipTemp > tipDisconnectedThres;
}
void setStatusLED(const enum StatusLED state) {
// Dont have one
}
void setBuzzer(bool on) {}
uint8_t lastTipResistance = 0; // default to unknown
const uint8_t numTipResistanceReadings = 3;
uint32_t tipResistanceReadings[3] = {0, 0, 0};
uint8_t tipResistanceReadingSlot = 0;
uint8_t getTipResistanceX10() {
// Return tip resistance in x10 ohms
// We can measure this using the op-amp
return lastTipResistance;
}
uint8_t getTipThermalMass() {
if (lastTipResistance >= 80) {
return TIP_THERMAL_MASS;
}
return 45;
}
uint8_t getTipInertia() {
if (lastTipResistance >= 80) {
return TIP_THERMAL_MASS;
}
return 10;
}
// We want to calculate lastTipResistance
// If tip is connected, and the tip is cold and the tip is not being heated
// We can use the GPIO to inject a small current into the tip and measure this
// The gpio is 5.1k -> diode -> tip -> gnd
// Source is 3.3V-0.5V
// Which is around 0.54mA this will induce:
// 6 ohm tip -> 3.24mV (Real world ~= 3320)
// 8 ohm tip -> 4.32mV (Real world ~= 4500)
// Which is definitely measureable
// Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips
// These are reported as 60 and 75 respectively
void performTipResistanceSampleReading() {
// 0 = read then turn on pullup, 1 = read then turn off pullup, 2 = read then turn on pullup, 3 = final read + turn off pullup
tipResistanceReadings[tipResistanceReadingSlot] = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0));
gpio_write(TIP_RESISTANCE_SENSE, tipResistanceReadingSlot == 0);
tipResistanceReadingSlot++;
}
void FinishMeasureTipResistance() {
// Otherwise we now have the 4 samples;
// _^_ order, 2 delta's, combine these
int32_t calculatedSkew = tipResistanceReadings[0] - tipResistanceReadings[2]; // If positive tip is cooling
calculatedSkew /= 2; // divide by two to get offset per time constant
int32_t reading = (((tipResistanceReadings[1] - tipResistanceReadings[0]) + calculatedSkew) // jump 1 - skew
+ // +
((tipResistanceReadings[1] - tipResistanceReadings[2]) + calculatedSkew) // jump 2 - skew
) //
/ 2; // Take average
// lastTipResistance = reading / 100;
// // As we are only detecting two resistances; we can split the difference for now
uint8_t newRes = 0;
if (reading > 8000) {
// return; // Change nothing as probably disconnected tip
} else if (reading < 4000) {
newRes = 62;
} else {
newRes = 80;
}
lastTipResistance = newRes;
}
volatile bool tipMeasurementOccuring = true;
volatile TickType_t nextTipMeasurement = 100;
void performTipMeasurementStep() {
// Wait 100ms for settle time
if (xTaskGetTickCount() < (nextTipMeasurement)) {
return;
}
nextTipMeasurement = xTaskGetTickCount() + TICKS_100MS;
if (tipResistanceReadingSlot < numTipResistanceReadings) {
performTipResistanceSampleReading();
return;
}
// We are sensing the resistance
FinishMeasureTipResistance();
tipMeasurementOccuring = false;
}
uint8_t preStartChecks() {
performTipMeasurementStep();
return preStartChecksDone();
}
uint8_t preStartChecksDone() { return (lastTipResistance == 0 || tipResistanceReadingSlot < numTipResistanceReadings || tipMeasurementOccuring) ? 0 : 1; }
// Return hardware unique ID if possible
uint64_t getDeviceID() {
// uint32_t tmp = 0;
// uint32_t tmp2 = 0;
// EF_Ctrl_Read_Sw_Usage(0, &tmp);
// EF_Ctrl_Read_Sw_Usage(1, &tmp2);
// return tmp | (((uint64_t)tmp2) << 32);
uint64_t tmp = 0;
EF_Ctrl_Read_Chip_ID((uint8_t *)&tmp);
return __builtin_bswap64(tmp);
}
auto crc32Table = CRC32Table<>();
uint32_t gethash() {
static uint32_t computedHash = 0;
if (computedHash != 0) {
return computedHash;
}
uint32_t deviceKey = EF_Ctrl_Get_Key_Slot_w0();
const uint32_t crcInitialVector = 0xCAFEF00D;
uint8_t crcPayload[] = {(uint8_t)(deviceKey), (uint8_t)(deviceKey >> 8), (uint8_t)(deviceKey >> 16), (uint8_t)(deviceKey >> 24), 0, 0, 0, 0, 0, 0, 0, 0};
EF_Ctrl_Read_Chip_ID(crcPayload + sizeof(deviceKey)); // Load device key into second half
computedHash = crc32Table.computeCRC32(crcInitialVector, crcPayload, sizeof(crcPayload));
return computedHash;
}
uint32_t getDeviceValidation() {
// 4 byte user data burned in at factory
return EF_Ctrl_Get_Key_Slot_w1();
}
uint8_t getDeviceValidationStatus() {
uint32_t programmedHash = EF_Ctrl_Get_Key_Slot_w1();
uint32_t computedHash = gethash();
return programmedHash == computedHash ? 0 : 1;
}