// BSP mapping functions #include "BSP.h" #include "I2C_Wrapper.hpp" #include "IRQ.h" #include "Pins.h" #include "Setup.h" #include "TipThermoModel.h" #include "USBPD.h" #include "Utils.h" #include "configuration.h" #include "crc32.h" #include "history.hpp" #include "main.hpp" // These control the period's of time used for the PWM const uint16_t powerPWM = 255; const uint8_t holdoffTicks = 25; // This is the tick delay before temp measure starts (i.e. time for op-amp recovery) const uint8_t tempMeasureTicks = 25; uint16_t totalPWM = 255; // Total length of the cycle's ticks void resetWatchdog() { // #TODO } #ifdef TEMP_NTC // Lookup table for the NTC // Stored as ADCReading,Temp in degC static const int32_t NTCHandleLookup[] = { // ADC Reading , Temp in C x10 3221, -400, // 4144, -350, // 5271, -300, // 6622, -250, // 8219, -200, // 10075, -150, // 12190, -100, // 14554, -50, // 17151, 0, // 19937, 50, // 22867, 100, // 25886, 150, // 28944, 200, // 29546, 210, // 30159, 220, // 30769, 230, // 31373, 240, // 31969, 250, // 32566, 260, // 33159, 270, // 33749, 280, // 34334, 290, // 34916, 300, // 35491, 310, // 36062, 320, // 36628, 330, // 37186, 340, // 37739, 350, // 38286, 360, // 38825, 370, // 39358, 380, // 39884, 390, // 40400, 400, // 42879, 450, // 45160, 500, // 47235, 550, // 49111, 600, // 50792, 650, // 52292, 700, // 53621, 750, // 54797, 800, // 55836, 850, // 56748, 900, // 57550, 950, // 58257, 1000, // }; #endif uint16_t getHandleTemperature(uint8_t sample) { int32_t result = getADCHandleTemp(sample); // Tip is wired up with an NTC thermistor // 10K NTC balanced with a 10K pulldown // NTCG163JF103FTDS return Utils::InterpolateLookupTable(NTCHandleLookup, sizeof(NTCHandleLookup) / (2 * sizeof(int32_t)), result); } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { uint32_t res = getADCVin(sample); res *= 4; res /= divisor; return res; } void unstick_I2C() { /* configure SDA/SCL for GPIO */ // GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin; // gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); // for (int i = 0; i < 8; i++) { // asm("nop"); // asm("nop"); // asm("nop"); // asm("nop"); // asm("nop"); // GPIO_BOP(GPIOB) |= SCL_Pin; // asm("nop"); // asm("nop"); // asm("nop"); // asm("nop"); // asm("nop"); // GPIO_BOP(GPIOB) &= SCL_Pin; // } // /* connect PB6 to I2C0_SCL */ // /* connect PB7 to I2C0_SDA */ // gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); } uint8_t getButtonA() { uint8_t val = gpio_read(KEY_A_Pin); return val; } uint8_t getButtonB() { uint8_t val = gpio_read(KEY_B_Pin); return val; } void reboot() { hal_system_reset(); } void delay_ms(uint16_t count) { // delay_1ms(count); BL702_Delay_MS(count); } uint32_t __get_IPSR(void) { return 0; // To shut-up CMSIS } bool isTipDisconnected() { uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; uint32_t tipTemp = TipThermoModel::getTipInC(); return tipTemp > tipDisconnectedThres; } void setStatusLED(const enum StatusLED state) { // Dont have one } void setBuzzer(bool on) {} uint8_t lastTipResistance = 0; // default to unknown const uint8_t numTipResistanceReadings = 3; uint32_t tipResistanceReadings[3] = {0, 0, 0}; uint8_t tipResistanceReadingSlot = 0; uint8_t getTipResistanceX10() { // Return tip resistance in x10 ohms // We can measure this using the op-amp return lastTipResistance; } uint8_t getTipThermalMass() { if (lastTipResistance >= 80) { return TIP_THERMAL_MASS; } return 45; } uint8_t getTipInertia() { if (lastTipResistance >= 80) { return TIP_THERMAL_MASS; } return 10; } // We want to calculate lastTipResistance // If tip is connected, and the tip is cold and the tip is not being heated // We can use the GPIO to inject a small current into the tip and measure this // The gpio is 5.1k -> diode -> tip -> gnd // Source is 3.3V-0.5V // Which is around 0.54mA this will induce: // 6 ohm tip -> 3.24mV (Real world ~= 3320) // 8 ohm tip -> 4.32mV (Real world ~= 4500) // Which is definitely measureable // Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips // These are reported as 60 and 75 respectively void performTipResistanceSampleReading() { // 0 = read then turn on pullup, 1 = read then turn off pullup, 2 = read then turn on pullup, 3 = final read + turn off pullup tipResistanceReadings[tipResistanceReadingSlot] = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0)); gpio_write(TIP_RESISTANCE_SENSE, tipResistanceReadingSlot == 0); tipResistanceReadingSlot++; } void FinishMeasureTipResistance() { // Otherwise we now have the 4 samples; // _^_ order, 2 delta's, combine these int32_t calculatedSkew = tipResistanceReadings[0] - tipResistanceReadings[2]; // If positive tip is cooling calculatedSkew /= 2; // divide by two to get offset per time constant int32_t reading = (((tipResistanceReadings[1] - tipResistanceReadings[0]) + calculatedSkew) // jump 1 - skew + // + ((tipResistanceReadings[1] - tipResistanceReadings[2]) + calculatedSkew) // jump 2 - skew ) // / 2; // Take average // lastTipResistance = reading / 100; // // As we are only detecting two resistances; we can split the difference for now uint8_t newRes = 0; if (reading > 8000) { // return; // Change nothing as probably disconnected tip } else if (reading < 4000) { newRes = 62; } else { newRes = 80; } lastTipResistance = newRes; } volatile bool tipMeasurementOccuring = true; volatile TickType_t nextTipMeasurement = 100; void performTipMeasurementStep() { // Wait 100ms for settle time if (xTaskGetTickCount() < (nextTipMeasurement)) { return; } nextTipMeasurement = xTaskGetTickCount() + TICKS_100MS; if (tipResistanceReadingSlot < numTipResistanceReadings) { performTipResistanceSampleReading(); return; } // We are sensing the resistance FinishMeasureTipResistance(); tipMeasurementOccuring = false; } uint8_t preStartChecks() { performTipMeasurementStep(); return preStartChecksDone(); } uint8_t preStartChecksDone() { return (lastTipResistance == 0 || tipResistanceReadingSlot < numTipResistanceReadings || tipMeasurementOccuring) ? 0 : 1; } // Return hardware unique ID if possible uint64_t getDeviceID() { // uint32_t tmp = 0; // uint32_t tmp2 = 0; // EF_Ctrl_Read_Sw_Usage(0, &tmp); // EF_Ctrl_Read_Sw_Usage(1, &tmp2); // return tmp | (((uint64_t)tmp2) << 32); uint64_t tmp = 0; EF_Ctrl_Read_Chip_ID((uint8_t *)&tmp); return __builtin_bswap64(tmp); } auto crc32Table = CRC32Table<>(); uint32_t gethash() { static uint32_t computedHash = 0; if (computedHash != 0) { return computedHash; } uint32_t deviceKey = EF_Ctrl_Get_Key_Slot_w0(); const uint32_t crcInitialVector = 0xCAFEF00D; uint8_t crcPayload[] = {(uint8_t)(deviceKey), (uint8_t)(deviceKey >> 8), (uint8_t)(deviceKey >> 16), (uint8_t)(deviceKey >> 24), 0, 0, 0, 0, 0, 0, 0, 0}; EF_Ctrl_Read_Chip_ID(crcPayload + sizeof(deviceKey)); // Load device key into second half computedHash = crc32Table.computeCRC32(crcInitialVector, crcPayload, sizeof(crcPayload)); return computedHash; } uint32_t getDeviceValidation() { // 4 byte user data burned in at factory return EF_Ctrl_Get_Key_Slot_w1(); } uint8_t getDeviceValidationStatus() { uint32_t programmedHash = EF_Ctrl_Get_Key_Slot_w1(); uint32_t computedHash = gethash(); return programmedHash == computedHash ? 0 : 1; }