Basic OLED working
* OLED * Buttons
This commit is contained in:
@@ -9,148 +9,110 @@
|
|||||||
#include "main.hpp"
|
#include "main.hpp"
|
||||||
#include <IRQ.h>
|
#include <IRQ.h>
|
||||||
volatile uint16_t PWMSafetyTimer = 0;
|
volatile uint16_t PWMSafetyTimer = 0;
|
||||||
volatile uint8_t pendingPWM = 0;
|
volatile uint8_t pendingPWM = 0;
|
||||||
|
uint16_t totalPWM = 255;
|
||||||
|
const uint16_t powerPWM = 255;
|
||||||
|
|
||||||
const uint16_t powerPWM = 255;
|
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
|
||||||
static const uint8_t holdoffTicks = 14; // delay of 8 ms
|
void resetWatchdog() {
|
||||||
static const uint8_t tempMeasureTicks = 14;
|
HAL_IWDG_Refresh(&hiwdg);
|
||||||
|
}
|
||||||
|
|
||||||
uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
|
|
||||||
|
|
||||||
static bool fastPWM;
|
|
||||||
|
|
||||||
// 2 second filter (ADC is PID_TIM_HZ Hz)
|
|
||||||
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
|
|
||||||
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
|
||||||
#ifdef TEMP_NTC
|
#ifdef TEMP_NTC
|
||||||
// Lookup table for the NTC
|
// Lookup table for the NTC
|
||||||
// Stored as ADCReading,Temp in degC
|
// Stored as ADCReading,Temp in degC
|
||||||
static const uint16_t NTCHandleLookup[] = {
|
static const uint16_t NTCHandleLookup[] = {
|
||||||
// ADC Reading , Temp in C
|
// ADC Reading , Temp in C
|
||||||
29189, 0, //
|
29189, 0, //
|
||||||
29014, 1, //
|
29014, 1, //
|
||||||
28832, 2, //
|
28832, 2, //
|
||||||
28644, 3, //
|
28644, 3, //
|
||||||
28450, 4, //
|
28450, 4, //
|
||||||
28249, 5, //
|
28249, 5, //
|
||||||
28042, 6, //
|
28042, 6, //
|
||||||
27828, 7, //
|
27828, 7, //
|
||||||
27607, 8, //
|
27607, 8, //
|
||||||
27380, 9, //
|
27380, 9, //
|
||||||
27146, 10, //
|
27146, 10, //
|
||||||
26906, 11, //
|
26906, 11, //
|
||||||
26660, 12, //
|
26660, 12, //
|
||||||
26407, 13, //
|
26407, 13, //
|
||||||
26147, 14, //
|
26147, 14, //
|
||||||
25882, 15, //
|
25882, 15, //
|
||||||
25610, 16, //
|
25610, 16, //
|
||||||
25332, 17, //
|
25332, 17, //
|
||||||
25049, 18, //
|
25049, 18, //
|
||||||
24759, 19, //
|
24759, 19, //
|
||||||
24465, 20, //
|
24465, 20, //
|
||||||
24164, 21, //
|
24164, 21, //
|
||||||
23859, 22, //
|
23859, 22, //
|
||||||
23549, 23, //
|
23549, 23, //
|
||||||
23234, 24, //
|
23234, 24, //
|
||||||
22915, 25, //
|
22915, 25, //
|
||||||
22591, 26, //
|
22591, 26, //
|
||||||
22264, 27, //
|
22264, 27, //
|
||||||
21933, 28, //
|
21933, 28, //
|
||||||
21599, 29, //
|
21599, 29, //
|
||||||
21261, 30, //
|
21261, 30, //
|
||||||
20921, 31, //
|
20921, 31, //
|
||||||
20579, 32, //
|
20579, 32, //
|
||||||
20234, 33, //
|
20234, 33, //
|
||||||
19888, 34, //
|
19888, 34, //
|
||||||
19541, 35, //
|
19541, 35, //
|
||||||
19192, 36, //
|
19192, 36, //
|
||||||
18843, 37, //
|
18843, 37, //
|
||||||
18493, 38, //
|
18493, 38, //
|
||||||
18143, 39, //
|
18143, 39, //
|
||||||
17793, 40, //
|
17793, 40, //
|
||||||
17444, 41, //
|
17444, 41, //
|
||||||
17096, 42, //
|
17096, 42, //
|
||||||
16750, 43, //
|
16750, 43, //
|
||||||
16404, 44, //
|
16404, 44, //
|
||||||
16061, 45, //
|
16061, 45, //
|
||||||
// 15719, 46, //
|
// 15719, 46, //
|
||||||
// 15380, 47, //
|
// 15380, 47, //
|
||||||
// 15044, 48, //
|
// 15044, 48, //
|
||||||
// 14710, 49, //
|
// 14710, 49, //
|
||||||
// 14380, 50, //
|
// 14380, 50, //
|
||||||
// 14053, 51, //
|
// 14053, 51, //
|
||||||
// 13729, 52, //
|
// 13729, 52, //
|
||||||
// 13410, 53, //
|
// 13410, 53, //
|
||||||
// 13094, 54, //
|
// 13094, 54, //
|
||||||
// 12782, 55, //
|
// 12782, 55, //
|
||||||
// 12475, 56, //
|
// 12475, 56, //
|
||||||
// 12172, 57, //
|
// 12172, 57, //
|
||||||
// 11874, 58, //
|
// 11874, 58, //
|
||||||
// 11580, 59, //
|
// 11580, 59, //
|
||||||
// 11292, 60, //
|
// 11292, 60, //
|
||||||
};
|
};
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// These are called by the HAL after the corresponding events from the system
|
||||||
|
// timers.
|
||||||
|
|
||||||
|
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
||||||
|
// Period has elapsed
|
||||||
|
if (htim->Instance == TIM1) {
|
||||||
|
// STM uses this for internal functions as a counter for timeouts
|
||||||
|
HAL_IncTick();
|
||||||
|
}
|
||||||
|
}
|
||||||
uint16_t getHandleTemperature() {
|
uint16_t getHandleTemperature() {
|
||||||
#ifdef TEMP_NTC
|
return 250; //TODO
|
||||||
// TS80P uses 100k NTC resistors instead
|
|
||||||
// NTCG104EF104FT1X from TDK
|
|
||||||
// For now not doing interpolation
|
|
||||||
int32_t result = getADC(0);
|
|
||||||
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
|
|
||||||
if (result > NTCHandleLookup[(i * 2) + 0]) {
|
|
||||||
return NTCHandleLookup[(i * 2) + 1] * 10;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return 45 * 10;
|
|
||||||
#endif
|
|
||||||
#ifdef TEMP_TMP36
|
|
||||||
// We return the current handle temperature in X10 C
|
|
||||||
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
|
|
||||||
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
|
|
||||||
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
|
|
||||||
// mV per count So we need to subtract an offset of 0.5V to center on 0C
|
|
||||||
// (4964.8 counts)
|
|
||||||
//
|
|
||||||
int32_t result = getADC(0);
|
|
||||||
result -= 4965; // remove 0.5V offset
|
|
||||||
// 10mV per C
|
|
||||||
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
|
|
||||||
result *= 100;
|
|
||||||
result /= 994;
|
|
||||||
return result;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint16_t getTipInstantTemperature() {
|
uint16_t getTipInstantTemperature() {
|
||||||
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
|
return 0; //TODO
|
||||||
uint16_t readings[8];
|
|
||||||
// Looking to reject the highest outlier readings.
|
|
||||||
// As on some hardware these samples can run into the op-amp recovery time
|
|
||||||
// Once this time is up the signal stabilises quickly, so no need to reject minimums
|
|
||||||
readings[0] = hadc1.Instance->JDR1;
|
|
||||||
readings[1] = hadc1.Instance->JDR2;
|
|
||||||
readings[2] = hadc1.Instance->JDR3;
|
|
||||||
readings[3] = hadc1.Instance->JDR4;
|
|
||||||
readings[4] = hadc2.Instance->JDR1;
|
|
||||||
readings[5] = hadc2.Instance->JDR2;
|
|
||||||
readings[6] = hadc2.Instance->JDR3;
|
|
||||||
readings[7] = hadc2.Instance->JDR4;
|
|
||||||
|
|
||||||
for (int i = 0; i < 8; i++) {
|
|
||||||
sum += readings[i];
|
|
||||||
}
|
|
||||||
return sum; // 8x over sample
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint16_t getTipRawTemp(uint8_t refresh) {
|
uint16_t getTipRawTemp(uint8_t refresh) {
|
||||||
if (refresh) {
|
if (refresh) {
|
||||||
uint16_t lastSample = getTipInstantTemperature();
|
uint16_t lastSample = getTipInstantTemperature();
|
||||||
rawTempFilter.update(lastSample);
|
rawTempFilter.update(lastSample);
|
||||||
return lastSample;
|
return lastSample;
|
||||||
} else {
|
} else {
|
||||||
return rawTempFilter.average();
|
return rawTempFilter.average();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
||||||
@@ -158,177 +120,123 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
|||||||
// Therefore we can divide down from there
|
// Therefore we can divide down from there
|
||||||
// Multiplying ADC max by 4 for additional calibration options,
|
// Multiplying ADC max by 4 for additional calibration options,
|
||||||
// ideal term is 467
|
// ideal term is 467
|
||||||
static uint8_t preFillneeded = 10;
|
static uint8_t preFillneeded = 10;
|
||||||
static uint32_t samples[BATTFILTERDEPTH];
|
static uint32_t samples[BATTFILTERDEPTH];
|
||||||
static uint8_t index = 0;
|
static uint8_t index = 0;
|
||||||
if (preFillneeded) {
|
if (preFillneeded) {
|
||||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||||
samples[i] = getADC(1);
|
samples[i] = getADC(1);
|
||||||
preFillneeded--;
|
preFillneeded--;
|
||||||
}
|
}
|
||||||
if (sample) {
|
if (sample) {
|
||||||
samples[index] = getADC(1);
|
samples[index] = getADC(1);
|
||||||
index = (index + 1) % BATTFILTERDEPTH;
|
index = (index + 1) % BATTFILTERDEPTH;
|
||||||
}
|
}
|
||||||
uint32_t sum = 0;
|
uint32_t sum = 0;
|
||||||
|
|
||||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||||
sum += samples[i];
|
sum += samples[i];
|
||||||
|
|
||||||
sum /= BATTFILTERDEPTH;
|
sum /= BATTFILTERDEPTH;
|
||||||
if (divisor == 0) {
|
if (divisor == 0) {
|
||||||
divisor = 1;
|
divisor = 1;
|
||||||
}
|
}
|
||||||
return sum * 4 / divisor;
|
return sum * 4 / divisor;
|
||||||
}
|
}
|
||||||
|
|
||||||
void setTipPWM(uint8_t pulse) {
|
|
||||||
PWMSafetyTimer = 10; // This is decremented in the handler for PWM so that the tip pwm is
|
|
||||||
// disabled if the PID task is not scheduled often enough.
|
|
||||||
|
|
||||||
pendingPWM = pulse;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void switchToFastPWM(void) {
|
|
||||||
fastPWM = true;
|
|
||||||
totalPWM = powerPWM + tempMeasureTicks * 2 + holdoffTicks;
|
|
||||||
htim2.Instance->ARR = totalPWM;
|
|
||||||
// ~3.5 Hz rate
|
|
||||||
htim2.Instance->CCR1 = powerPWM + holdoffTicks * 2;
|
|
||||||
// 2 MHz timer clock/2000 = 1 kHz tick rate
|
|
||||||
htim2.Instance->PSC = 2000;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void switchToSlowPWM(void) {
|
|
||||||
fastPWM = false;
|
|
||||||
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
|
|
||||||
htim2.Instance->ARR = totalPWM;
|
|
||||||
// ~1.84 Hz rate
|
|
||||||
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
|
|
||||||
// 2 MHz timer clock/4000 = 500 Hz tick rate
|
|
||||||
htim2.Instance->PSC = 4000;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool tryBetterPWM(uint8_t pwm) {
|
bool tryBetterPWM(uint8_t pwm) {
|
||||||
if (fastPWM && pwm == powerPWM) {
|
//We dont need this for the MHP30
|
||||||
// maximum power for fast PWM reached, need to go slower to get more
|
return false;
|
||||||
switchToSlowPWM();
|
}
|
||||||
return true;
|
void setTipPWM(uint8_t pulse) {
|
||||||
} else if (!fastPWM && pwm < 230) {
|
//We can just set the timer directly
|
||||||
// 254 in fast PWM mode gives the same power as 239 in slow
|
htim3.Instance->CCR1 = pulse;
|
||||||
// allow for some reasonable hysteresis by switching only when it goes
|
|
||||||
// below 230 (equivalent to 245 in fast mode)
|
|
||||||
switchToFastPWM();
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// These are called by the HAL after the corresponding events from the system
|
|
||||||
// timers.
|
|
||||||
|
|
||||||
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
||||||
// Period has elapsed
|
|
||||||
if (htim->Instance == TIM2) {
|
|
||||||
// we want to turn on the output again
|
|
||||||
PWMSafetyTimer--;
|
|
||||||
// We decrement this safety value so that lockups in the
|
|
||||||
// scheduler will not cause the PWM to become locked in an
|
|
||||||
// active driving state.
|
|
||||||
// While we could assume this could never happen, its a small price for
|
|
||||||
// increased safety
|
|
||||||
htim2.Instance->CCR4 = pendingPWM;
|
|
||||||
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
|
|
||||||
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
|
|
||||||
} else {
|
|
||||||
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
|
|
||||||
}
|
|
||||||
} else if (htim->Instance == TIM1) {
|
|
||||||
// STM uses this for internal functions as a counter for timeouts
|
|
||||||
HAL_IncTick();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
|
||||||
// This was a when the PWM for the output has timed out
|
|
||||||
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
|
||||||
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void unstick_I2C() {
|
void unstick_I2C() {
|
||||||
GPIO_InitTypeDef GPIO_InitStruct;
|
GPIO_InitTypeDef GPIO_InitStruct;
|
||||||
int timeout = 100;
|
int timeout = 100;
|
||||||
int timeout_cnt = 0;
|
int timeout_cnt = 0;
|
||||||
|
|
||||||
// 1. Clear PE bit.
|
// 1. Clear PE bit.
|
||||||
hi2c1.Instance->CR1 &= ~(0x0001);
|
hi2c1.Instance->CR1 &= ~(0x0001);
|
||||||
/**I2C1 GPIO Configuration
|
/**I2C1 GPIO Configuration
|
||||||
PB6 ------> I2C1_SCL
|
PB6 ------> I2C1_SCL
|
||||||
PB7 ------> I2C1_SDA
|
PB7 ------> I2C1_SDA
|
||||||
*/
|
*/
|
||||||
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
||||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
||||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||||
|
|
||||||
GPIO_InitStruct.Pin = SCL_Pin;
|
GPIO_InitStruct.Pin = SCL_Pin;
|
||||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||||
|
|
||||||
GPIO_InitStruct.Pin = SDA_Pin;
|
GPIO_InitStruct.Pin = SDA_Pin;
|
||||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||||
|
|
||||||
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
||||||
// Move clock to release I2C
|
// Move clock to release I2C
|
||||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
||||||
asm("nop");
|
asm("nop");
|
||||||
asm("nop");
|
asm("nop");
|
||||||
asm("nop");
|
asm("nop");
|
||||||
asm("nop");
|
asm("nop");
|
||||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||||
|
|
||||||
timeout_cnt++;
|
timeout_cnt++;
|
||||||
if (timeout_cnt > timeout)
|
if (timeout_cnt > timeout)
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
||||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
||||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||||
|
|
||||||
GPIO_InitStruct.Pin = SCL_Pin;
|
GPIO_InitStruct.Pin = SCL_Pin;
|
||||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||||
|
|
||||||
GPIO_InitStruct.Pin = SDA_Pin;
|
GPIO_InitStruct.Pin = SDA_Pin;
|
||||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||||
|
|
||||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||||
|
|
||||||
// 13. Set SWRST bit in I2Cx_CR1 register.
|
// 13. Set SWRST bit in I2Cx_CR1 register.
|
||||||
hi2c1.Instance->CR1 |= 0x8000;
|
hi2c1.Instance->CR1 |= 0x8000;
|
||||||
|
|
||||||
asm("nop");
|
asm("nop");
|
||||||
|
|
||||||
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
||||||
hi2c1.Instance->CR1 &= ~0x8000;
|
hi2c1.Instance->CR1 &= ~0x8000;
|
||||||
|
|
||||||
asm("nop");
|
asm("nop");
|
||||||
|
|
||||||
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
||||||
hi2c1.Instance->CR1 |= 0x0001;
|
hi2c1.Instance->CR1 |= 0x0001;
|
||||||
|
|
||||||
// Call initialization function.
|
// Call initialization function.
|
||||||
HAL_I2C_Init(&hi2c1);
|
HAL_I2C_Init(&hi2c1);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
uint8_t getButtonA() {
|
||||||
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
|
||||||
|
1 : 0;
|
||||||
|
}
|
||||||
|
uint8_t getButtonB() {
|
||||||
|
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
|
||||||
|
1 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
void BSPInit(void) { switchToFastPWM(); }
|
void BSPInit(void) {
|
||||||
|
}
|
||||||
|
|
||||||
void reboot() { NVIC_SystemReset(); }
|
void reboot() {
|
||||||
|
NVIC_SystemReset();
|
||||||
|
}
|
||||||
|
|
||||||
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
void delay_ms(uint16_t count) {
|
||||||
|
HAL_Delay(count);
|
||||||
|
}
|
||||||
|
|||||||
@@ -23,8 +23,8 @@
|
|||||||
#define TEMP_NTC
|
#define TEMP_NTC
|
||||||
#define I2C_SOFT
|
#define I2C_SOFT
|
||||||
#define LIS_ORI_FLIP
|
#define LIS_ORI_FLIP
|
||||||
#define OLED_FLIP
|
|
||||||
#define BATTFILTERDEPTH 8
|
#define BATTFILTERDEPTH 8
|
||||||
|
#define OLED_I2CBB
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#endif /* BSP_MINIWARE_MODEL_CONFIG_H_ */
|
#endif /* BSP_MINIWARE_MODEL_CONFIG_H_ */
|
||||||
|
|||||||
@@ -300,14 +300,14 @@ static void MX_TIM2_Init(void) {
|
|||||||
TIM_OC_InitTypeDef sConfigOC;
|
TIM_OC_InitTypeDef sConfigOC;
|
||||||
|
|
||||||
htim2.Instance = TIM2;
|
htim2.Instance = TIM2;
|
||||||
htim2.Init.Prescaler = 2000; // 2 MHz timer clock/2000 = 1 kHz tick rate
|
htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate
|
||||||
|
|
||||||
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
|
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
|
||||||
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
|
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
|
||||||
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
|
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||||
// dummy value, will be reconfigured by BSPInit()
|
// dummy value, will be reconfigured by BSPInit()
|
||||||
htim2.Init.Period = 10;
|
htim2.Init.Period = 10;
|
||||||
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 8 MHz (x2 APB1) before divide
|
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide
|
||||||
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||||
htim2.Init.RepetitionCounter = 0;
|
htim2.Init.RepetitionCounter = 0;
|
||||||
HAL_TIM_Base_Init(&htim2);
|
HAL_TIM_Base_Init(&htim2);
|
||||||
@@ -324,13 +324,12 @@ static void MX_TIM2_Init(void) {
|
|||||||
|
|
||||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||||
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp
|
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp
|
||||||
sConfigOC.Pulse = 5; // 13 -> Delay of 7 ms
|
sConfigOC.Pulse = 5;
|
||||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||||
sConfigOC.Pulse = 0; // default to entirely off
|
sConfigOC.Pulse = 0; // default to entirely off
|
||||||
HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
|
HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
|
||||||
|
|
||||||
HAL_TIM_Base_Start_IT(&htim2);
|
|
||||||
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
|
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -13,29 +13,37 @@
|
|||||||
static uint16_t settings_page[512] __attribute__((section(".settings_page")));
|
static uint16_t settings_page[512] __attribute__((section(".settings_page")));
|
||||||
|
|
||||||
uint8_t flash_save_buffer(const uint8_t *buffer, const uint16_t length) {
|
uint8_t flash_save_buffer(const uint8_t *buffer, const uint16_t length) {
|
||||||
FLASH_EraseInitTypeDef pEraseInit;
|
return; //TODO
|
||||||
pEraseInit.TypeErase = FLASH_TYPEERASE_PAGES;
|
FLASH_EraseInitTypeDef pEraseInit;
|
||||||
pEraseInit.Banks = FLASH_BANK_1;
|
pEraseInit.TypeErase = FLASH_TYPEERASE_PAGES;
|
||||||
pEraseInit.NbPages = 1;
|
pEraseInit.Banks = FLASH_BANK_1;
|
||||||
pEraseInit.PageAddress = (uint32_t)settings_page;
|
pEraseInit.NbPages = 1;
|
||||||
uint32_t failingAddress = 0;
|
pEraseInit.PageAddress = (uint32_t) settings_page;
|
||||||
resetWatchdog();
|
uint32_t failingAddress = 0;
|
||||||
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY);
|
resetWatchdog();
|
||||||
HAL_FLASH_Unlock();
|
__HAL_FLASH_CLEAR_FLAG(
|
||||||
HAL_Delay(1);
|
FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY);
|
||||||
resetWatchdog();
|
HAL_FLASH_Unlock();
|
||||||
HAL_FLASHEx_Erase(&pEraseInit, &failingAddress);
|
HAL_Delay(1);
|
||||||
//^ Erase the page of flash (1024 bytes on this stm32)
|
resetWatchdog();
|
||||||
// erased the chunk
|
HAL_FLASHEx_Erase(&pEraseInit, &failingAddress);
|
||||||
// now we program it
|
//^ Erase the page of flash (1024 bytes on this stm32)
|
||||||
uint16_t *data = (uint16_t *)buffer;
|
// erased the chunk
|
||||||
HAL_FLASH_Unlock();
|
// now we program it
|
||||||
for (uint16_t i = 0; i < (length / 2); i++) {
|
uint16_t *data = (uint16_t*) buffer;
|
||||||
resetWatchdog();
|
HAL_FLASH_Unlock();
|
||||||
HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, (uint32_t)&settings_page[i], data[i]);
|
for (uint16_t i = 0; i < (length / 2); i++) {
|
||||||
}
|
resetWatchdog();
|
||||||
HAL_FLASH_Lock();
|
HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD,
|
||||||
return 1;
|
(uint32_t) &settings_page[i], data[i]);
|
||||||
|
}
|
||||||
|
HAL_FLASH_Lock();
|
||||||
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
void flash_read_buffer(uint8_t *buffer, const uint16_t length) { memcpy(buffer, settings_page, length); }
|
void flash_read_buffer(uint8_t *buffer, const uint16_t length) {
|
||||||
|
memset(buffer, 0, length);
|
||||||
|
return; // TODO
|
||||||
|
|
||||||
|
memcpy(buffer, settings_page, length);
|
||||||
|
}
|
||||||
|
|||||||
@@ -5,6 +5,7 @@
|
|||||||
#include "Setup.h"
|
#include "Setup.h"
|
||||||
#include "fusb302b.h"
|
#include "fusb302b.h"
|
||||||
#include "fusb_user.h"
|
#include "fusb_user.h"
|
||||||
|
#include "Pins.h"
|
||||||
/*
|
/*
|
||||||
* Read a single byte from the FUSB302B
|
* Read a single byte from the FUSB302B
|
||||||
*
|
*
|
||||||
@@ -53,7 +54,7 @@ bool fusb_write_byte(uint8_t addr, uint8_t byte) {
|
|||||||
* buf: The buffer to write
|
* buf: The buffer to write
|
||||||
*/
|
*/
|
||||||
bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf) {
|
bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf) {
|
||||||
return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, buf, size);
|
return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, (uint8_t*)buf, size);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t fusb302_detect() {
|
uint8_t fusb302_detect() {
|
||||||
|
|||||||
@@ -13,12 +13,13 @@
|
|||||||
#include "fusbpd.h"
|
#include "fusbpd.h"
|
||||||
#include <I2C_Wrapper.hpp>
|
#include <I2C_Wrapper.hpp>
|
||||||
void preRToSInit() {
|
void preRToSInit() {
|
||||||
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
|
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
|
||||||
*/
|
*/
|
||||||
HAL_Init();
|
SCB->VTOR = FLASH_BASE; //Set vector table offset
|
||||||
Setup_HAL(); // Setup all the HAL objects
|
HAL_Init();
|
||||||
BSPInit();
|
Setup_HAL(); // Setup all the HAL objects
|
||||||
I2CBB::init();
|
BSPInit();
|
||||||
/* Init the IPC objects */
|
I2CBB::init();
|
||||||
FRToSI2C::FRToSInit();
|
/* Init the IPC objects */
|
||||||
|
FRToSI2C::FRToSInit();
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -44,11 +44,7 @@ void ADC1_2_IRQHandler(void) { HAL_ADC_IRQHandler(&hadc1); }
|
|||||||
|
|
||||||
// Timer 1 has overflowed, used for HAL ticks
|
// Timer 1 has overflowed, used for HAL ticks
|
||||||
void TIM1_UP_IRQHandler(void) { HAL_TIM_IRQHandler(&htim1); }
|
void TIM1_UP_IRQHandler(void) { HAL_TIM_IRQHandler(&htim1); }
|
||||||
// Timer 3 is used for the PWM output to the tip
|
|
||||||
void TIM3_IRQHandler(void) { HAL_TIM_IRQHandler(&htim3); }
|
|
||||||
|
|
||||||
// Timer 2 is used for co-ordination of PWM & ADC
|
|
||||||
void TIM2_IRQHandler(void) { HAL_TIM_IRQHandler(&htim2); }
|
|
||||||
|
|
||||||
void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); }
|
void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); }
|
||||||
void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); }
|
void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); }
|
||||||
|
|||||||
@@ -10,281 +10,308 @@
|
|||||||
#include <I2CBB.hpp>
|
#include <I2CBB.hpp>
|
||||||
SemaphoreHandle_t I2CBB::I2CSemaphore = NULL;
|
SemaphoreHandle_t I2CBB::I2CSemaphore = NULL;
|
||||||
StaticSemaphore_t I2CBB::xSemaphoreBuffer;
|
StaticSemaphore_t I2CBB::xSemaphoreBuffer;
|
||||||
void I2CBB::init() {
|
void I2CBB::init() {
|
||||||
// Set GPIO's to output open drain
|
// Set GPIO's to output open drain
|
||||||
GPIO_InitTypeDef GPIO_InitStruct;
|
GPIO_InitTypeDef GPIO_InitStruct;
|
||||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
|
||||||
GPIO_InitStruct.Pin = SDA2_Pin;
|
GPIO_InitStruct.Pin = SDA2_Pin;
|
||||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
||||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||||
HAL_GPIO_Init(SDA2_GPIO_Port, &GPIO_InitStruct);
|
HAL_GPIO_Init(SDA2_GPIO_Port, &GPIO_InitStruct);
|
||||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
|
||||||
GPIO_InitStruct.Pin = SCL2_Pin;
|
GPIO_InitStruct.Pin = SCL2_Pin;
|
||||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
||||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||||
HAL_GPIO_Init(SCL2_GPIO_Port, &GPIO_InitStruct);
|
HAL_GPIO_Init(SCL2_GPIO_Port, &GPIO_InitStruct);
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
SOFT_SCL_HIGH();
|
SOFT_SCL_HIGH();
|
||||||
I2CSemaphore = xSemaphoreCreateMutexStatic(&xSemaphoreBuffer);
|
I2CSemaphore = xSemaphoreCreateMutexStatic(&xSemaphoreBuffer);
|
||||||
unlock();
|
unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
bool I2CBB::probe(uint8_t address) {
|
bool I2CBB::probe(uint8_t address) {
|
||||||
if (!lock())
|
if (!lock())
|
||||||
return false;
|
return false;
|
||||||
start();
|
start();
|
||||||
bool ack = send(address);
|
bool ack = send(address);
|
||||||
stop();
|
stop();
|
||||||
unlock();
|
unlock();
|
||||||
return ack;
|
return ack;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool I2CBB::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size) {
|
bool I2CBB::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData,
|
||||||
if (!lock())
|
uint16_t Size) {
|
||||||
return false;
|
if (!lock())
|
||||||
start();
|
return false;
|
||||||
bool ack = send(DevAddress);
|
start();
|
||||||
if (!ack) {
|
bool ack = send(DevAddress);
|
||||||
stop();
|
if (!ack) {
|
||||||
unlock();
|
stop();
|
||||||
return false;
|
unlock();
|
||||||
}
|
return false;
|
||||||
ack = send(MemAddress);
|
}
|
||||||
if (!ack) {
|
ack = send(MemAddress);
|
||||||
stop();
|
if (!ack) {
|
||||||
unlock();
|
stop();
|
||||||
return false;
|
unlock();
|
||||||
}
|
return false;
|
||||||
SOFT_SCL_LOW();
|
}
|
||||||
SOFT_I2C_DELAY();
|
SOFT_SCL_LOW();
|
||||||
// stop();
|
SOFT_I2C_DELAY();
|
||||||
start();
|
// stop();
|
||||||
ack = send(DevAddress | 1);
|
start();
|
||||||
if (!ack) {
|
ack = send(DevAddress | 1);
|
||||||
stop();
|
if (!ack) {
|
||||||
unlock();
|
stop();
|
||||||
return false;
|
unlock();
|
||||||
}
|
return false;
|
||||||
while (Size) {
|
}
|
||||||
pData[0] = read(Size > 1);
|
while (Size) {
|
||||||
pData++;
|
pData[0] = read(Size > 1);
|
||||||
Size--;
|
pData++;
|
||||||
}
|
Size--;
|
||||||
stop();
|
}
|
||||||
unlock();
|
stop();
|
||||||
return true;
|
unlock();
|
||||||
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool I2CBB::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size) {
|
bool I2CBB::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
|
||||||
if (!lock())
|
const uint8_t *pData, uint16_t Size) {
|
||||||
return false;
|
if (!lock())
|
||||||
start();
|
return false;
|
||||||
bool ack = send(DevAddress);
|
start();
|
||||||
if (!ack) {
|
bool ack = send(DevAddress);
|
||||||
stop();
|
if (!ack) {
|
||||||
asm("bkpt");
|
stop();
|
||||||
unlock();
|
asm("bkpt");
|
||||||
return false;
|
unlock();
|
||||||
}
|
return false;
|
||||||
ack = send(MemAddress);
|
}
|
||||||
if (!ack) {
|
ack = send(MemAddress);
|
||||||
stop();
|
if (!ack) {
|
||||||
asm("bkpt");
|
stop();
|
||||||
unlock();
|
asm("bkpt");
|
||||||
return false;
|
unlock();
|
||||||
}
|
return false;
|
||||||
while (Size) {
|
}
|
||||||
resetWatchdog();
|
while (Size) {
|
||||||
ack = send(pData[0]);
|
resetWatchdog();
|
||||||
if (!ack) {
|
ack = send(pData[0]);
|
||||||
stop();
|
if (!ack) {
|
||||||
asm("bkpt");
|
stop();
|
||||||
unlock();
|
asm("bkpt");
|
||||||
return false;
|
unlock();
|
||||||
}
|
return false;
|
||||||
pData++;
|
}
|
||||||
Size--;
|
pData++;
|
||||||
}
|
Size--;
|
||||||
stop();
|
}
|
||||||
unlock();
|
stop();
|
||||||
return true;
|
unlock();
|
||||||
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void I2CBB::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
|
void I2CBB::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
|
||||||
if (!lock())
|
if (!lock())
|
||||||
return;
|
return;
|
||||||
start();
|
start();
|
||||||
bool ack = send(DevAddress);
|
bool ack = send(DevAddress);
|
||||||
if (!ack) {
|
if (!ack) {
|
||||||
stop();
|
stop();
|
||||||
unlock();
|
unlock();
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
while (Size) {
|
while (Size) {
|
||||||
ack = send(pData[0]);
|
ack = send(pData[0]);
|
||||||
if (!ack) {
|
if (!ack) {
|
||||||
stop();
|
stop();
|
||||||
unlock();
|
unlock();
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
pData++;
|
pData++;
|
||||||
Size--;
|
Size--;
|
||||||
}
|
}
|
||||||
stop();
|
stop();
|
||||||
unlock();
|
unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
void I2CBB::Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
|
void I2CBB::Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
|
||||||
if (!lock())
|
if (!lock())
|
||||||
return;
|
return;
|
||||||
start();
|
start();
|
||||||
bool ack = send(DevAddress | 1);
|
bool ack = send(DevAddress | 1);
|
||||||
if (!ack) {
|
if (!ack) {
|
||||||
stop();
|
stop();
|
||||||
unlock();
|
unlock();
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
while (Size) {
|
while (Size) {
|
||||||
pData[0] = read(Size > 1);
|
pData[0] = read(Size > 1);
|
||||||
pData++;
|
pData++;
|
||||||
Size--;
|
Size--;
|
||||||
}
|
}
|
||||||
stop();
|
stop();
|
||||||
unlock();
|
unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
void I2CBB::TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx) {
|
void I2CBB::TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx,
|
||||||
if (Size_tx == 0 && Size_rx == 0)
|
uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx) {
|
||||||
return;
|
if (Size_tx == 0 && Size_rx == 0)
|
||||||
if (lock() == false)
|
return;
|
||||||
return;
|
if (lock() == false)
|
||||||
if (Size_tx) {
|
return;
|
||||||
start();
|
if (Size_tx) {
|
||||||
bool ack = send(DevAddress);
|
start();
|
||||||
if (!ack) {
|
bool ack = send(DevAddress);
|
||||||
stop();
|
if (!ack) {
|
||||||
unlock();
|
stop();
|
||||||
return;
|
unlock();
|
||||||
}
|
return;
|
||||||
while (Size_tx) {
|
}
|
||||||
ack = send(pData_tx[0]);
|
while (Size_tx) {
|
||||||
if (!ack) {
|
ack = send(pData_tx[0]);
|
||||||
stop();
|
if (!ack) {
|
||||||
unlock();
|
stop();
|
||||||
return;
|
unlock();
|
||||||
}
|
return;
|
||||||
pData_tx++;
|
}
|
||||||
Size_tx--;
|
pData_tx++;
|
||||||
}
|
Size_tx--;
|
||||||
}
|
}
|
||||||
if (Size_rx) {
|
}
|
||||||
start();
|
if (Size_rx) {
|
||||||
bool ack = send(DevAddress | 1);
|
start();
|
||||||
if (!ack) {
|
bool ack = send(DevAddress | 1);
|
||||||
stop();
|
if (!ack) {
|
||||||
unlock();
|
stop();
|
||||||
return;
|
unlock();
|
||||||
}
|
return;
|
||||||
while (Size_rx) {
|
}
|
||||||
pData_rx[0] = read(Size_rx > 1);
|
while (Size_rx) {
|
||||||
pData_rx++;
|
pData_rx[0] = read(Size_rx > 1);
|
||||||
Size_rx--;
|
pData_rx++;
|
||||||
}
|
Size_rx--;
|
||||||
}
|
}
|
||||||
stop();
|
}
|
||||||
unlock();
|
stop();
|
||||||
|
unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
void I2CBB::start() {
|
void I2CBB::start() {
|
||||||
/* I2C Start condition, data line goes low when clock is high */
|
/* I2C Start condition, data line goes low when clock is high */
|
||||||
SOFT_SCL_HIGH();
|
SOFT_SCL_HIGH();
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SDA_LOW();
|
SOFT_SDA_LOW();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SCL_LOW();
|
SOFT_SCL_LOW();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
}
|
}
|
||||||
|
|
||||||
void I2CBB::stop() {
|
void I2CBB::stop() {
|
||||||
/* I2C Stop condition, clock goes high when data is low */
|
/* I2C Stop condition, clock goes high when data is low */
|
||||||
SOFT_SDA_LOW();
|
SOFT_SDA_LOW();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SCL_HIGH();
|
SOFT_SCL_HIGH();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
}
|
}
|
||||||
|
|
||||||
bool I2CBB::send(uint8_t value) {
|
bool I2CBB::send(uint8_t value) {
|
||||||
|
|
||||||
for (uint8_t i = 0; i < 8; i++) {
|
for (uint8_t i = 0; i < 8; i++) {
|
||||||
write_bit(value & 0x80); // write the most-significant bit
|
write_bit(value & 0x80); // write the most-significant bit
|
||||||
value <<= 1;
|
value <<= 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
bool ack = (read_bit() == 0);
|
bool ack = (read_bit() == 0);
|
||||||
return ack;
|
return ack;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t I2CBB::read(bool ack) {
|
uint8_t I2CBB::read(bool ack) {
|
||||||
uint8_t B = 0;
|
uint8_t B = 0;
|
||||||
|
|
||||||
uint8_t i;
|
uint8_t i;
|
||||||
for (i = 0; i < 8; i++) {
|
for (i = 0; i < 8; i++) {
|
||||||
B <<= 1;
|
B <<= 1;
|
||||||
B |= read_bit();
|
B |= read_bit();
|
||||||
}
|
}
|
||||||
|
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
if (ack)
|
if (ack)
|
||||||
write_bit(0);
|
write_bit(0);
|
||||||
else
|
else
|
||||||
write_bit(1);
|
write_bit(1);
|
||||||
return B;
|
return B;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t I2CBB::read_bit() {
|
uint8_t I2CBB::read_bit() {
|
||||||
uint8_t b;
|
uint8_t b;
|
||||||
|
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SCL_HIGH();
|
SOFT_SCL_HIGH();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
|
|
||||||
if (SOFT_SDA_READ())
|
if (SOFT_SDA_READ())
|
||||||
b = 1;
|
b = 1;
|
||||||
else
|
else
|
||||||
b = 0;
|
b = 0;
|
||||||
|
|
||||||
SOFT_SCL_LOW();
|
SOFT_SCL_LOW();
|
||||||
return b;
|
return b;
|
||||||
}
|
}
|
||||||
|
|
||||||
void I2CBB::unlock() { xSemaphoreGive(I2CSemaphore); }
|
void I2CBB::unlock() {
|
||||||
|
xSemaphoreGive(I2CSemaphore);
|
||||||
|
}
|
||||||
|
|
||||||
bool I2CBB::lock() {
|
bool I2CBB::lock() {
|
||||||
if (I2CSemaphore == NULL) {
|
if (I2CSemaphore == NULL) {
|
||||||
asm("bkpt");
|
asm("bkpt");
|
||||||
}
|
}
|
||||||
bool a = xSemaphoreTake(I2CSemaphore, (TickType_t)100) == pdTRUE;
|
bool a = xSemaphoreTake(I2CSemaphore, (TickType_t)100) == pdTRUE;
|
||||||
return a;
|
return a;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool I2CBB::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) {
|
||||||
|
return Mem_Write(address, reg, &data, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t I2CBB::I2C_RegisterRead(uint8_t address, uint8_t reg) {
|
||||||
|
uint8_t temp = 0;
|
||||||
|
Mem_Read(address, reg, &temp, 1);
|
||||||
|
return temp;
|
||||||
}
|
}
|
||||||
|
|
||||||
void I2CBB::write_bit(uint8_t val) {
|
void I2CBB::write_bit(uint8_t val) {
|
||||||
if (val) {
|
if (val) {
|
||||||
SOFT_SDA_HIGH();
|
SOFT_SDA_HIGH();
|
||||||
} else {
|
} else {
|
||||||
SOFT_SDA_LOW();
|
SOFT_SDA_LOW();
|
||||||
}
|
}
|
||||||
|
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SCL_HIGH();
|
SOFT_SCL_HIGH();
|
||||||
SOFT_I2C_DELAY();
|
SOFT_I2C_DELAY();
|
||||||
SOFT_SCL_LOW();
|
SOFT_SCL_LOW();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool I2CBB::writeRegistersBulk(const uint8_t address, const I2C_REG *registers,
|
||||||
|
const uint8_t registersLength) {
|
||||||
|
for (int index = 0; index < registersLength; index++) {
|
||||||
|
if (!I2C_RegisterWrite(address, registers[index].reg,
|
||||||
|
registers[index].val)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (registers[index].pause_ms)
|
||||||
|
delay_ms(registers[index].pause_ms);
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -18,28 +18,39 @@
|
|||||||
|
|
||||||
class I2CBB {
|
class I2CBB {
|
||||||
public:
|
public:
|
||||||
static void init();
|
static void init();
|
||||||
// Probe if device ACK's address or not
|
// Probe if device ACK's address or not
|
||||||
static bool probe(uint8_t address);
|
static bool probe(uint8_t address);
|
||||||
// Issues a complete 8bit register read
|
// Issues a complete 8bit register read
|
||||||
static bool Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size);
|
static bool Mem_Read(uint16_t DevAddress, uint16_t MemAddress,
|
||||||
// Implements a register write
|
uint8_t *pData, uint16_t Size);
|
||||||
static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size);
|
// Implements a register write
|
||||||
static void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
|
static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
|
||||||
static void Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
|
const uint8_t *pData, uint16_t Size);
|
||||||
static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx);
|
static void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
|
||||||
|
static void Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
|
||||||
|
static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx,
|
||||||
|
uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx);
|
||||||
|
static bool I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data);
|
||||||
|
static uint8_t I2C_RegisterRead(uint8_t address, uint8_t reg);
|
||||||
|
typedef struct {
|
||||||
|
const uint8_t reg; // The register to write to
|
||||||
|
uint8_t val; // The value to write to this register
|
||||||
|
const uint8_t pause_ms; // How many ms to pause _after_ writing this reg
|
||||||
|
} I2C_REG;
|
||||||
|
static bool writeRegistersBulk(const uint8_t address,
|
||||||
|
const I2C_REG *registers, const uint8_t registersLength);
|
||||||
private:
|
private:
|
||||||
static SemaphoreHandle_t I2CSemaphore;
|
static SemaphoreHandle_t I2CSemaphore;
|
||||||
static StaticSemaphore_t xSemaphoreBuffer;
|
static StaticSemaphore_t xSemaphoreBuffer;
|
||||||
static void unlock();
|
static void unlock();
|
||||||
static bool lock();
|
static bool lock();
|
||||||
static void start();
|
static void start();
|
||||||
static void stop();
|
static void stop();
|
||||||
static bool send(uint8_t value);
|
static bool send(uint8_t value);
|
||||||
static uint8_t read(bool ack);
|
static uint8_t read(bool ack);
|
||||||
static uint8_t read_bit();
|
static uint8_t read_bit();
|
||||||
static void write_bit(uint8_t val);
|
static void write_bit(uint8_t val);
|
||||||
};
|
};
|
||||||
#endif
|
#endif
|
||||||
#endif /* BSP_MINIWARE_I2CBB_HPP_ */
|
#endif /* BSP_MINIWARE_I2CBB_HPP_ */
|
||||||
|
|||||||
@@ -29,7 +29,7 @@ uint8_t OLED::secondFrameBuffer[OLED_WIDTH * 2];
|
|||||||
/*http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf*/
|
/*http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf*/
|
||||||
/*All commands are prefixed with 0x80*/
|
/*All commands are prefixed with 0x80*/
|
||||||
/*Data packets are prefixed with 0x40*/
|
/*Data packets are prefixed with 0x40*/
|
||||||
FRToSI2C::I2C_REG OLED_Setup_Array[] = {
|
I2C_CLASS::I2C_REG OLED_Setup_Array[] = {
|
||||||
/**/
|
/**/
|
||||||
{0x80, 0xAE, 0}, /*Display off*/
|
{0x80, 0xAE, 0}, /*Display off*/
|
||||||
{0x80, 0xD5, 0}, /*Set display clock divide ratio / osc freq*/
|
{0x80, 0xD5, 0}, /*Set display clock divide ratio / osc freq*/
|
||||||
@@ -89,7 +89,7 @@ void OLED::initialize() {
|
|||||||
// initialisation data to the OLED.
|
// initialisation data to the OLED.
|
||||||
|
|
||||||
for (int tries = 0; tries < 10; tries++) {
|
for (int tries = 0; tries < 10; tries++) {
|
||||||
if (FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) {
|
if (I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -238,7 +238,7 @@ void OLED::setRotation(bool leftHanded) {
|
|||||||
OLED_Setup_Array[5].val = 0xC0;
|
OLED_Setup_Array[5].val = 0xC0;
|
||||||
OLED_Setup_Array[9].val = 0xA0;
|
OLED_Setup_Array[9].val = 0xA0;
|
||||||
}
|
}
|
||||||
FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]));
|
I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]));
|
||||||
|
|
||||||
inLeftHandedMode = leftHanded;
|
inLeftHandedMode = leftHanded;
|
||||||
|
|
||||||
|
|||||||
@@ -10,8 +10,8 @@
|
|||||||
#ifndef OLED_HPP_
|
#ifndef OLED_HPP_
|
||||||
#define OLED_HPP_
|
#define OLED_HPP_
|
||||||
#include "Font.h"
|
#include "Font.h"
|
||||||
#include "I2C_Wrapper.hpp"
|
|
||||||
#include <BSP.h>
|
#include <BSP.h>
|
||||||
|
#include "Model_Config.h"
|
||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
@@ -21,6 +21,16 @@ extern "C" {
|
|||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef OLED_I2CBB
|
||||||
|
#include "I2CBB.hpp"
|
||||||
|
#define I2C_CLASS I2CBB
|
||||||
|
#else
|
||||||
|
#define I2C_CLASS FRToSI2C
|
||||||
|
#include "I2C_Wrapper.hpp"
|
||||||
|
#endif
|
||||||
|
|
||||||
#define DEVICEADDR_OLED (0x3c << 1)
|
#define DEVICEADDR_OLED (0x3c << 1)
|
||||||
#define OLED_WIDTH 96
|
#define OLED_WIDTH 96
|
||||||
#define OLED_HEIGHT 16
|
#define OLED_HEIGHT 16
|
||||||
@@ -40,7 +50,7 @@ public:
|
|||||||
static bool isInitDone();
|
static bool isInitDone();
|
||||||
// Draw the buffer out to the LCD using the DMA Channel
|
// Draw the buffer out to the LCD using the DMA Channel
|
||||||
static void refresh() {
|
static void refresh() {
|
||||||
FRToSI2C::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2));
|
I2C_CLASS::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2));
|
||||||
// DMA tx time is ~ 20mS Ensure after calling this you delay for at least 25ms
|
// DMA tx time is ~ 20mS Ensure after calling this you delay for at least 25ms
|
||||||
// or we need to goto double buffering
|
// or we need to goto double buffering
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user