From e84717765a52469908652d88f4ed2f7fad188271 Mon Sep 17 00:00:00 2001 From: "Ben V. Brown" Date: Mon, 26 Apr 2021 22:22:32 +1000 Subject: [PATCH] Basic OLED working * OLED * Buttons --- source/Core/BSP/MHP30/BSP.cpp | 456 ++++++++++--------------- source/Core/BSP/MHP30/Model_Config.h | 2 +- source/Core/BSP/MHP30/Setup.c | 7 +- source/Core/BSP/MHP30/flash.c | 56 +-- source/Core/BSP/MHP30/fusb_user.cpp | 3 +- source/Core/BSP/MHP30/preRTOS.cpp | 17 +- source/Core/BSP/MHP30/stm32f1xx_it.c | 4 - source/Core/Drivers/I2CBB.cpp | 487 ++++++++++++++------------- source/Core/Drivers/I2CBB.hpp | 53 +-- source/Core/Drivers/OLED.cpp | 6 +- source/Core/Drivers/OLED.hpp | 14 +- 11 files changed, 533 insertions(+), 572 deletions(-) diff --git a/source/Core/BSP/MHP30/BSP.cpp b/source/Core/BSP/MHP30/BSP.cpp index 8da3b099..8eb575f6 100644 --- a/source/Core/BSP/MHP30/BSP.cpp +++ b/source/Core/BSP/MHP30/BSP.cpp @@ -9,148 +9,110 @@ #include "main.hpp" #include volatile uint16_t PWMSafetyTimer = 0; -volatile uint8_t pendingPWM = 0; +volatile uint8_t pendingPWM = 0; +uint16_t totalPWM = 255; +const uint16_t powerPWM = 255; -const uint16_t powerPWM = 255; -static const uint8_t holdoffTicks = 14; // delay of 8 ms -static const uint8_t tempMeasureTicks = 14; +history rawTempFilter = { { 0 }, 0, 0 }; +void resetWatchdog() { + HAL_IWDG_Refresh(&hiwdg); +} -uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle - -static bool fastPWM; - -// 2 second filter (ADC is PID_TIM_HZ Hz) -history rawTempFilter = {{0}, 0, 0}; -void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } #ifdef TEMP_NTC // Lookup table for the NTC // Stored as ADCReading,Temp in degC static const uint16_t NTCHandleLookup[] = { - // ADC Reading , Temp in C - 29189, 0, // - 29014, 1, // - 28832, 2, // - 28644, 3, // - 28450, 4, // - 28249, 5, // - 28042, 6, // - 27828, 7, // - 27607, 8, // - 27380, 9, // - 27146, 10, // - 26906, 11, // - 26660, 12, // - 26407, 13, // - 26147, 14, // - 25882, 15, // - 25610, 16, // - 25332, 17, // - 25049, 18, // - 24759, 19, // - 24465, 20, // - 24164, 21, // - 23859, 22, // - 23549, 23, // - 23234, 24, // - 22915, 25, // - 22591, 26, // - 22264, 27, // - 21933, 28, // - 21599, 29, // - 21261, 30, // - 20921, 31, // - 20579, 32, // - 20234, 33, // - 19888, 34, // - 19541, 35, // - 19192, 36, // - 18843, 37, // - 18493, 38, // - 18143, 39, // - 17793, 40, // - 17444, 41, // - 17096, 42, // - 16750, 43, // - 16404, 44, // - 16061, 45, // - // 15719, 46, // - // 15380, 47, // - // 15044, 48, // - // 14710, 49, // - // 14380, 50, // - // 14053, 51, // - // 13729, 52, // - // 13410, 53, // - // 13094, 54, // - // 12782, 55, // - // 12475, 56, // - // 12172, 57, // - // 11874, 58, // - // 11580, 59, // - // 11292, 60, // -}; +// ADC Reading , Temp in C + 29189, 0, // + 29014, 1, // + 28832, 2, // + 28644, 3, // + 28450, 4, // + 28249, 5, // + 28042, 6, // + 27828, 7, // + 27607, 8, // + 27380, 9, // + 27146, 10, // + 26906, 11, // + 26660, 12, // + 26407, 13, // + 26147, 14, // + 25882, 15, // + 25610, 16, // + 25332, 17, // + 25049, 18, // + 24759, 19, // + 24465, 20, // + 24164, 21, // + 23859, 22, // + 23549, 23, // + 23234, 24, // + 22915, 25, // + 22591, 26, // + 22264, 27, // + 21933, 28, // + 21599, 29, // + 21261, 30, // + 20921, 31, // + 20579, 32, // + 20234, 33, // + 19888, 34, // + 19541, 35, // + 19192, 36, // + 18843, 37, // + 18493, 38, // + 18143, 39, // + 17793, 40, // + 17444, 41, // + 17096, 42, // + 16750, 43, // + 16404, 44, // + 16061, 45, // + // 15719, 46, // + // 15380, 47, // + // 15044, 48, // + // 14710, 49, // + // 14380, 50, // + // 14053, 51, // + // 13729, 52, // + // 13410, 53, // + // 13094, 54, // + // 12782, 55, // + // 12475, 56, // + // 12172, 57, // + // 11874, 58, // + // 11580, 59, // + // 11292, 60, // + }; #endif +// These are called by the HAL after the corresponding events from the system +// timers. + +void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { + // Period has elapsed + if (htim->Instance == TIM1) { + // STM uses this for internal functions as a counter for timeouts + HAL_IncTick(); + } +} uint16_t getHandleTemperature() { -#ifdef TEMP_NTC - // TS80P uses 100k NTC resistors instead - // NTCG104EF104FT1X from TDK - // For now not doing interpolation - int32_t result = getADC(0); - for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) { - if (result > NTCHandleLookup[(i * 2) + 0]) { - return NTCHandleLookup[(i * 2) + 1] * 10; - } - } - return 45 * 10; -#endif -#ifdef TEMP_TMP36 - // We return the current handle temperature in X10 C - // TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for - // example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) = - // 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125 - // mV per count So we need to subtract an offset of 0.5V to center on 0C - // (4964.8 counts) - // - int32_t result = getADC(0); - result -= 4965; // remove 0.5V offset - // 10mV per C - // 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units - result *= 100; - result /= 994; - return result; -#endif + return 250; //TODO } uint16_t getTipInstantTemperature() { - uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits - uint16_t readings[8]; - // Looking to reject the highest outlier readings. - // As on some hardware these samples can run into the op-amp recovery time - // Once this time is up the signal stabilises quickly, so no need to reject minimums - readings[0] = hadc1.Instance->JDR1; - readings[1] = hadc1.Instance->JDR2; - readings[2] = hadc1.Instance->JDR3; - readings[3] = hadc1.Instance->JDR4; - readings[4] = hadc2.Instance->JDR1; - readings[5] = hadc2.Instance->JDR2; - readings[6] = hadc2.Instance->JDR3; - readings[7] = hadc2.Instance->JDR4; - - for (int i = 0; i < 8; i++) { - sum += readings[i]; - } - return sum; // 8x over sample + return 0; //TODO } uint16_t getTipRawTemp(uint8_t refresh) { - if (refresh) { - uint16_t lastSample = getTipInstantTemperature(); - rawTempFilter.update(lastSample); - return lastSample; - } else { - return rawTempFilter.average(); - } + if (refresh) { + uint16_t lastSample = getTipInstantTemperature(); + rawTempFilter.update(lastSample); + return lastSample; + } else { + return rawTempFilter.average(); + } } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { @@ -158,177 +120,123 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { // Therefore we can divide down from there // Multiplying ADC max by 4 for additional calibration options, // ideal term is 467 - static uint8_t preFillneeded = 10; - static uint32_t samples[BATTFILTERDEPTH]; - static uint8_t index = 0; - if (preFillneeded) { - for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) - samples[i] = getADC(1); - preFillneeded--; - } - if (sample) { - samples[index] = getADC(1); - index = (index + 1) % BATTFILTERDEPTH; - } - uint32_t sum = 0; + static uint8_t preFillneeded = 10; + static uint32_t samples[BATTFILTERDEPTH]; + static uint8_t index = 0; + if (preFillneeded) { + for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) + samples[i] = getADC(1); + preFillneeded--; + } + if (sample) { + samples[index] = getADC(1); + index = (index + 1) % BATTFILTERDEPTH; + } + uint32_t sum = 0; - for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) - sum += samples[i]; + for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) + sum += samples[i]; - sum /= BATTFILTERDEPTH; - if (divisor == 0) { - divisor = 1; - } - return sum * 4 / divisor; + sum /= BATTFILTERDEPTH; + if (divisor == 0) { + divisor = 1; + } + return sum * 4 / divisor; } - -void setTipPWM(uint8_t pulse) { - PWMSafetyTimer = 10; // This is decremented in the handler for PWM so that the tip pwm is - // disabled if the PID task is not scheduled often enough. - - pendingPWM = pulse; -} - -static void switchToFastPWM(void) { - fastPWM = true; - totalPWM = powerPWM + tempMeasureTicks * 2 + holdoffTicks; - htim2.Instance->ARR = totalPWM; - // ~3.5 Hz rate - htim2.Instance->CCR1 = powerPWM + holdoffTicks * 2; - // 2 MHz timer clock/2000 = 1 kHz tick rate - htim2.Instance->PSC = 2000; -} - -static void switchToSlowPWM(void) { - fastPWM = false; - totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; - htim2.Instance->ARR = totalPWM; - // ~1.84 Hz rate - htim2.Instance->CCR1 = powerPWM + holdoffTicks; - // 2 MHz timer clock/4000 = 500 Hz tick rate - htim2.Instance->PSC = 4000; -} - bool tryBetterPWM(uint8_t pwm) { - if (fastPWM && pwm == powerPWM) { - // maximum power for fast PWM reached, need to go slower to get more - switchToSlowPWM(); - return true; - } else if (!fastPWM && pwm < 230) { - // 254 in fast PWM mode gives the same power as 239 in slow - // allow for some reasonable hysteresis by switching only when it goes - // below 230 (equivalent to 245 in fast mode) - switchToFastPWM(); - return true; - } - return false; + //We dont need this for the MHP30 + return false; +} +void setTipPWM(uint8_t pulse) { + //We can just set the timer directly + htim3.Instance->CCR1 = pulse; } -// These are called by the HAL after the corresponding events from the system -// timers. - -void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { - // Period has elapsed - if (htim->Instance == TIM2) { - // we want to turn on the output again - PWMSafetyTimer--; - // We decrement this safety value so that lockups in the - // scheduler will not cause the PWM to become locked in an - // active driving state. - // While we could assume this could never happen, its a small price for - // increased safety - htim2.Instance->CCR4 = pendingPWM; - if (htim2.Instance->CCR4 && PWMSafetyTimer) { - HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1); - } else { - HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1); - } - } else if (htim->Instance == TIM1) { - // STM uses this for internal functions as a counter for timeouts - HAL_IncTick(); - } -} - -void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) { - // This was a when the PWM for the output has timed out - if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) { - HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1); - } -} void unstick_I2C() { - GPIO_InitTypeDef GPIO_InitStruct; - int timeout = 100; - int timeout_cnt = 0; + GPIO_InitTypeDef GPIO_InitStruct; + int timeout = 100; + int timeout_cnt = 0; - // 1. Clear PE bit. - hi2c1.Instance->CR1 &= ~(0x0001); - /**I2C1 GPIO Configuration - PB6 ------> I2C1_SCL - PB7 ------> I2C1_SDA - */ - // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). - GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; - GPIO_InitStruct.Pull = GPIO_PULLUP; - GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + // 1. Clear PE bit. + hi2c1.Instance->CR1 &= ~(0x0001); + /**I2C1 GPIO Configuration + PB6 ------> I2C1_SCL + PB7 ------> I2C1_SDA + */ + // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; + GPIO_InitStruct.Pull = GPIO_PULLUP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; - GPIO_InitStruct.Pin = SCL_Pin; - HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); - HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); + GPIO_InitStruct.Pin = SCL_Pin; + HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); + HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); - GPIO_InitStruct.Pin = SDA_Pin; - HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); - HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); + GPIO_InitStruct.Pin = SDA_Pin; + HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); + HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); - while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { - // Move clock to release I2C - HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); - asm("nop"); - asm("nop"); - asm("nop"); - asm("nop"); - HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); + while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { + // Move clock to release I2C + HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); + asm("nop"); + asm("nop"); + asm("nop"); + asm("nop"); + HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); - timeout_cnt++; - if (timeout_cnt > timeout) - return; - } + timeout_cnt++; + if (timeout_cnt > timeout) + return; + } - // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. - GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; - GPIO_InitStruct.Pull = GPIO_PULLUP; - GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. + GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; + GPIO_InitStruct.Pull = GPIO_PULLUP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; - GPIO_InitStruct.Pin = SCL_Pin; - HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); + GPIO_InitStruct.Pin = SCL_Pin; + HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); - GPIO_InitStruct.Pin = SDA_Pin; - HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); + GPIO_InitStruct.Pin = SDA_Pin; + HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); - HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); - HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); + HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); + HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); - // 13. Set SWRST bit in I2Cx_CR1 register. - hi2c1.Instance->CR1 |= 0x8000; + // 13. Set SWRST bit in I2Cx_CR1 register. + hi2c1.Instance->CR1 |= 0x8000; - asm("nop"); + asm("nop"); - // 14. Clear SWRST bit in I2Cx_CR1 register. - hi2c1.Instance->CR1 &= ~0x8000; + // 14. Clear SWRST bit in I2Cx_CR1 register. + hi2c1.Instance->CR1 &= ~0x8000; - asm("nop"); + asm("nop"); - // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register - hi2c1.Instance->CR1 |= 0x0001; + // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register + hi2c1.Instance->CR1 |= 0x0001; - // Call initialization function. - HAL_I2C_Init(&hi2c1); + // Call initialization function. + HAL_I2C_Init(&hi2c1); } -uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } -uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } +uint8_t getButtonA() { + return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? + 1 : 0; +} +uint8_t getButtonB() { + return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? + 1 : 0; +} -void BSPInit(void) { switchToFastPWM(); } +void BSPInit(void) { +} -void reboot() { NVIC_SystemReset(); } +void reboot() { + NVIC_SystemReset(); +} -void delay_ms(uint16_t count) { HAL_Delay(count); } +void delay_ms(uint16_t count) { + HAL_Delay(count); +} diff --git a/source/Core/BSP/MHP30/Model_Config.h b/source/Core/BSP/MHP30/Model_Config.h index 3f83c960..da1bebcb 100644 --- a/source/Core/BSP/MHP30/Model_Config.h +++ b/source/Core/BSP/MHP30/Model_Config.h @@ -23,8 +23,8 @@ #define TEMP_NTC #define I2C_SOFT #define LIS_ORI_FLIP -#define OLED_FLIP #define BATTFILTERDEPTH 8 +#define OLED_I2CBB #endif #endif /* BSP_MINIWARE_MODEL_CONFIG_H_ */ diff --git a/source/Core/BSP/MHP30/Setup.c b/source/Core/BSP/MHP30/Setup.c index 5156a534..a36388f8 100644 --- a/source/Core/BSP/MHP30/Setup.c +++ b/source/Core/BSP/MHP30/Setup.c @@ -300,14 +300,14 @@ static void MX_TIM2_Init(void) { TIM_OC_InitTypeDef sConfigOC; htim2.Instance = TIM2; - htim2.Init.Prescaler = 2000; // 2 MHz timer clock/2000 = 1 kHz tick rate + htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate // pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage // These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow" htim2.Init.CounterMode = TIM_COUNTERMODE_UP; // dummy value, will be reconfigured by BSPInit() htim2.Init.Period = 10; - htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 8 MHz (x2 APB1) before divide + htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; htim2.Init.RepetitionCounter = 0; HAL_TIM_Base_Init(&htim2); @@ -324,13 +324,12 @@ static void MX_TIM2_Init(void) { sConfigOC.OCMode = TIM_OCMODE_PWM1; // dummy value, will be reconfigured by BSPInit() in the BSP.cpp - sConfigOC.Pulse = 5; // 13 -> Delay of 7 ms + sConfigOC.Pulse = 5; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_ENABLE; sConfigOC.Pulse = 0; // default to entirely off HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4); - HAL_TIM_Base_Start_IT(&htim2); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4); } diff --git a/source/Core/BSP/MHP30/flash.c b/source/Core/BSP/MHP30/flash.c index 1d5469ee..80d4faef 100644 --- a/source/Core/BSP/MHP30/flash.c +++ b/source/Core/BSP/MHP30/flash.c @@ -13,29 +13,37 @@ static uint16_t settings_page[512] __attribute__((section(".settings_page"))); uint8_t flash_save_buffer(const uint8_t *buffer, const uint16_t length) { - FLASH_EraseInitTypeDef pEraseInit; - pEraseInit.TypeErase = FLASH_TYPEERASE_PAGES; - pEraseInit.Banks = FLASH_BANK_1; - pEraseInit.NbPages = 1; - pEraseInit.PageAddress = (uint32_t)settings_page; - uint32_t failingAddress = 0; - resetWatchdog(); - __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY); - HAL_FLASH_Unlock(); - HAL_Delay(1); - resetWatchdog(); - HAL_FLASHEx_Erase(&pEraseInit, &failingAddress); - //^ Erase the page of flash (1024 bytes on this stm32) - // erased the chunk - // now we program it - uint16_t *data = (uint16_t *)buffer; - HAL_FLASH_Unlock(); - for (uint16_t i = 0; i < (length / 2); i++) { - resetWatchdog(); - HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, (uint32_t)&settings_page[i], data[i]); - } - HAL_FLASH_Lock(); - return 1; + return; //TODO + FLASH_EraseInitTypeDef pEraseInit; + pEraseInit.TypeErase = FLASH_TYPEERASE_PAGES; + pEraseInit.Banks = FLASH_BANK_1; + pEraseInit.NbPages = 1; + pEraseInit.PageAddress = (uint32_t) settings_page; + uint32_t failingAddress = 0; + resetWatchdog(); + __HAL_FLASH_CLEAR_FLAG( + FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY); + HAL_FLASH_Unlock(); + HAL_Delay(1); + resetWatchdog(); + HAL_FLASHEx_Erase(&pEraseInit, &failingAddress); + //^ Erase the page of flash (1024 bytes on this stm32) + // erased the chunk + // now we program it + uint16_t *data = (uint16_t*) buffer; + HAL_FLASH_Unlock(); + for (uint16_t i = 0; i < (length / 2); i++) { + resetWatchdog(); + HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, + (uint32_t) &settings_page[i], data[i]); + } + HAL_FLASH_Lock(); + return 1; } -void flash_read_buffer(uint8_t *buffer, const uint16_t length) { memcpy(buffer, settings_page, length); } +void flash_read_buffer(uint8_t *buffer, const uint16_t length) { + memset(buffer, 0, length); + return; // TODO + + memcpy(buffer, settings_page, length); +} diff --git a/source/Core/BSP/MHP30/fusb_user.cpp b/source/Core/BSP/MHP30/fusb_user.cpp index 96daf62a..726a2513 100644 --- a/source/Core/BSP/MHP30/fusb_user.cpp +++ b/source/Core/BSP/MHP30/fusb_user.cpp @@ -5,6 +5,7 @@ #include "Setup.h" #include "fusb302b.h" #include "fusb_user.h" +#include "Pins.h" /* * Read a single byte from the FUSB302B * @@ -53,7 +54,7 @@ bool fusb_write_byte(uint8_t addr, uint8_t byte) { * buf: The buffer to write */ bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf) { - return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, buf, size); + return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, (uint8_t*)buf, size); } uint8_t fusb302_detect() { diff --git a/source/Core/BSP/MHP30/preRTOS.cpp b/source/Core/BSP/MHP30/preRTOS.cpp index 44ac337f..04dd319f 100644 --- a/source/Core/BSP/MHP30/preRTOS.cpp +++ b/source/Core/BSP/MHP30/preRTOS.cpp @@ -13,12 +13,13 @@ #include "fusbpd.h" #include void preRToSInit() { - /* Reset of all peripherals, Initializes the Flash interface and the Systick. - */ - HAL_Init(); - Setup_HAL(); // Setup all the HAL objects - BSPInit(); - I2CBB::init(); - /* Init the IPC objects */ - FRToSI2C::FRToSInit(); + /* Reset of all peripherals, Initializes the Flash interface and the Systick. + */ + SCB->VTOR = FLASH_BASE; //Set vector table offset + HAL_Init(); + Setup_HAL(); // Setup all the HAL objects + BSPInit(); + I2CBB::init(); + /* Init the IPC objects */ + FRToSI2C::FRToSInit(); } diff --git a/source/Core/BSP/MHP30/stm32f1xx_it.c b/source/Core/BSP/MHP30/stm32f1xx_it.c index ce9fa3b4..71ba9602 100644 --- a/source/Core/BSP/MHP30/stm32f1xx_it.c +++ b/source/Core/BSP/MHP30/stm32f1xx_it.c @@ -44,11 +44,7 @@ void ADC1_2_IRQHandler(void) { HAL_ADC_IRQHandler(&hadc1); } // Timer 1 has overflowed, used for HAL ticks void TIM1_UP_IRQHandler(void) { HAL_TIM_IRQHandler(&htim1); } -// Timer 3 is used for the PWM output to the tip -void TIM3_IRQHandler(void) { HAL_TIM_IRQHandler(&htim3); } -// Timer 2 is used for co-ordination of PWM & ADC -void TIM2_IRQHandler(void) { HAL_TIM_IRQHandler(&htim2); } void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); } void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); } diff --git a/source/Core/Drivers/I2CBB.cpp b/source/Core/Drivers/I2CBB.cpp index b55435d7..138b6073 100644 --- a/source/Core/Drivers/I2CBB.cpp +++ b/source/Core/Drivers/I2CBB.cpp @@ -10,281 +10,308 @@ #include SemaphoreHandle_t I2CBB::I2CSemaphore = NULL; StaticSemaphore_t I2CBB::xSemaphoreBuffer; -void I2CBB::init() { - // Set GPIO's to output open drain - GPIO_InitTypeDef GPIO_InitStruct; - __HAL_RCC_GPIOA_CLK_ENABLE(); - GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM; - GPIO_InitStruct.Pin = SDA2_Pin; - GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; - GPIO_InitStruct.Pull = GPIO_PULLUP; - HAL_GPIO_Init(SDA2_GPIO_Port, &GPIO_InitStruct); - GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM; - GPIO_InitStruct.Pin = SCL2_Pin; - GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; - GPIO_InitStruct.Pull = GPIO_PULLUP; - HAL_GPIO_Init(SCL2_GPIO_Port, &GPIO_InitStruct); - SOFT_SDA_HIGH(); - SOFT_SCL_HIGH(); - I2CSemaphore = xSemaphoreCreateMutexStatic(&xSemaphoreBuffer); - unlock(); +void I2CBB::init() { + // Set GPIO's to output open drain + GPIO_InitTypeDef GPIO_InitStruct; + __HAL_RCC_GPIOA_CLK_ENABLE(); + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM; + GPIO_InitStruct.Pin = SDA2_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; + GPIO_InitStruct.Pull = GPIO_PULLUP; + HAL_GPIO_Init(SDA2_GPIO_Port, &GPIO_InitStruct); + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM; + GPIO_InitStruct.Pin = SCL2_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; + GPIO_InitStruct.Pull = GPIO_PULLUP; + HAL_GPIO_Init(SCL2_GPIO_Port, &GPIO_InitStruct); + SOFT_SDA_HIGH(); + SOFT_SCL_HIGH(); + I2CSemaphore = xSemaphoreCreateMutexStatic(&xSemaphoreBuffer); + unlock(); } bool I2CBB::probe(uint8_t address) { - if (!lock()) - return false; - start(); - bool ack = send(address); - stop(); - unlock(); - return ack; + if (!lock()) + return false; + start(); + bool ack = send(address); + stop(); + unlock(); + return ack; } -bool I2CBB::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size) { - if (!lock()) - return false; - start(); - bool ack = send(DevAddress); - if (!ack) { - stop(); - unlock(); - return false; - } - ack = send(MemAddress); - if (!ack) { - stop(); - unlock(); - return false; - } - SOFT_SCL_LOW(); - SOFT_I2C_DELAY(); - // stop(); - start(); - ack = send(DevAddress | 1); - if (!ack) { - stop(); - unlock(); - return false; - } - while (Size) { - pData[0] = read(Size > 1); - pData++; - Size--; - } - stop(); - unlock(); - return true; +bool I2CBB::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, + uint16_t Size) { + if (!lock()) + return false; + start(); + bool ack = send(DevAddress); + if (!ack) { + stop(); + unlock(); + return false; + } + ack = send(MemAddress); + if (!ack) { + stop(); + unlock(); + return false; + } + SOFT_SCL_LOW(); + SOFT_I2C_DELAY(); + // stop(); + start(); + ack = send(DevAddress | 1); + if (!ack) { + stop(); + unlock(); + return false; + } + while (Size) { + pData[0] = read(Size > 1); + pData++; + Size--; + } + stop(); + unlock(); + return true; } -bool I2CBB::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size) { - if (!lock()) - return false; - start(); - bool ack = send(DevAddress); - if (!ack) { - stop(); - asm("bkpt"); - unlock(); - return false; - } - ack = send(MemAddress); - if (!ack) { - stop(); - asm("bkpt"); - unlock(); - return false; - } - while (Size) { - resetWatchdog(); - ack = send(pData[0]); - if (!ack) { - stop(); - asm("bkpt"); - unlock(); - return false; - } - pData++; - Size--; - } - stop(); - unlock(); - return true; +bool I2CBB::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, + const uint8_t *pData, uint16_t Size) { + if (!lock()) + return false; + start(); + bool ack = send(DevAddress); + if (!ack) { + stop(); + asm("bkpt"); + unlock(); + return false; + } + ack = send(MemAddress); + if (!ack) { + stop(); + asm("bkpt"); + unlock(); + return false; + } + while (Size) { + resetWatchdog(); + ack = send(pData[0]); + if (!ack) { + stop(); + asm("bkpt"); + unlock(); + return false; + } + pData++; + Size--; + } + stop(); + unlock(); + return true; } void I2CBB::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) { - if (!lock()) - return; - start(); - bool ack = send(DevAddress); - if (!ack) { - stop(); - unlock(); - return; - } - while (Size) { - ack = send(pData[0]); - if (!ack) { - stop(); - unlock(); - return; - } - pData++; - Size--; - } - stop(); - unlock(); + if (!lock()) + return; + start(); + bool ack = send(DevAddress); + if (!ack) { + stop(); + unlock(); + return; + } + while (Size) { + ack = send(pData[0]); + if (!ack) { + stop(); + unlock(); + return; + } + pData++; + Size--; + } + stop(); + unlock(); } void I2CBB::Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size) { - if (!lock()) - return; - start(); - bool ack = send(DevAddress | 1); - if (!ack) { - stop(); - unlock(); - return; - } - while (Size) { - pData[0] = read(Size > 1); - pData++; - Size--; - } - stop(); - unlock(); + if (!lock()) + return; + start(); + bool ack = send(DevAddress | 1); + if (!ack) { + stop(); + unlock(); + return; + } + while (Size) { + pData[0] = read(Size > 1); + pData++; + Size--; + } + stop(); + unlock(); } -void I2CBB::TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx) { - if (Size_tx == 0 && Size_rx == 0) - return; - if (lock() == false) - return; - if (Size_tx) { - start(); - bool ack = send(DevAddress); - if (!ack) { - stop(); - unlock(); - return; - } - while (Size_tx) { - ack = send(pData_tx[0]); - if (!ack) { - stop(); - unlock(); - return; - } - pData_tx++; - Size_tx--; - } - } - if (Size_rx) { - start(); - bool ack = send(DevAddress | 1); - if (!ack) { - stop(); - unlock(); - return; - } - while (Size_rx) { - pData_rx[0] = read(Size_rx > 1); - pData_rx++; - Size_rx--; - } - } - stop(); - unlock(); +void I2CBB::TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, + uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx) { + if (Size_tx == 0 && Size_rx == 0) + return; + if (lock() == false) + return; + if (Size_tx) { + start(); + bool ack = send(DevAddress); + if (!ack) { + stop(); + unlock(); + return; + } + while (Size_tx) { + ack = send(pData_tx[0]); + if (!ack) { + stop(); + unlock(); + return; + } + pData_tx++; + Size_tx--; + } + } + if (Size_rx) { + start(); + bool ack = send(DevAddress | 1); + if (!ack) { + stop(); + unlock(); + return; + } + while (Size_rx) { + pData_rx[0] = read(Size_rx > 1); + pData_rx++; + Size_rx--; + } + } + stop(); + unlock(); } void I2CBB::start() { - /* I2C Start condition, data line goes low when clock is high */ - SOFT_SCL_HIGH(); - SOFT_SDA_HIGH(); - SOFT_I2C_DELAY(); - SOFT_SDA_LOW(); - SOFT_I2C_DELAY(); - SOFT_SCL_LOW(); - SOFT_I2C_DELAY(); - SOFT_SDA_HIGH(); + /* I2C Start condition, data line goes low when clock is high */ + SOFT_SCL_HIGH(); + SOFT_SDA_HIGH(); + SOFT_I2C_DELAY(); + SOFT_SDA_LOW(); + SOFT_I2C_DELAY(); + SOFT_SCL_LOW(); + SOFT_I2C_DELAY(); + SOFT_SDA_HIGH(); } void I2CBB::stop() { - /* I2C Stop condition, clock goes high when data is low */ - SOFT_SDA_LOW(); - SOFT_I2C_DELAY(); - SOFT_SCL_HIGH(); - SOFT_I2C_DELAY(); - SOFT_SDA_HIGH(); - SOFT_I2C_DELAY(); + /* I2C Stop condition, clock goes high when data is low */ + SOFT_SDA_LOW(); + SOFT_I2C_DELAY(); + SOFT_SCL_HIGH(); + SOFT_I2C_DELAY(); + SOFT_SDA_HIGH(); + SOFT_I2C_DELAY(); } bool I2CBB::send(uint8_t value) { - for (uint8_t i = 0; i < 8; i++) { - write_bit(value & 0x80); // write the most-significant bit - value <<= 1; - } + for (uint8_t i = 0; i < 8; i++) { + write_bit(value & 0x80); // write the most-significant bit + value <<= 1; + } - SOFT_SDA_HIGH(); - bool ack = (read_bit() == 0); - return ack; + SOFT_SDA_HIGH(); + bool ack = (read_bit() == 0); + return ack; } uint8_t I2CBB::read(bool ack) { - uint8_t B = 0; + uint8_t B = 0; - uint8_t i; - for (i = 0; i < 8; i++) { - B <<= 1; - B |= read_bit(); - } + uint8_t i; + for (i = 0; i < 8; i++) { + B <<= 1; + B |= read_bit(); + } - SOFT_SDA_HIGH(); - if (ack) - write_bit(0); - else - write_bit(1); - return B; + SOFT_SDA_HIGH(); + if (ack) + write_bit(0); + else + write_bit(1); + return B; } uint8_t I2CBB::read_bit() { - uint8_t b; + uint8_t b; - SOFT_SDA_HIGH(); - SOFT_I2C_DELAY(); - SOFT_SCL_HIGH(); - SOFT_I2C_DELAY(); + SOFT_SDA_HIGH(); + SOFT_I2C_DELAY(); + SOFT_SCL_HIGH(); + SOFT_I2C_DELAY(); - if (SOFT_SDA_READ()) - b = 1; - else - b = 0; + if (SOFT_SDA_READ()) + b = 1; + else + b = 0; - SOFT_SCL_LOW(); - return b; + SOFT_SCL_LOW(); + return b; } -void I2CBB::unlock() { xSemaphoreGive(I2CSemaphore); } +void I2CBB::unlock() { + xSemaphoreGive(I2CSemaphore); +} bool I2CBB::lock() { - if (I2CSemaphore == NULL) { - asm("bkpt"); - } - bool a = xSemaphoreTake(I2CSemaphore, (TickType_t)100) == pdTRUE; - return a; + if (I2CSemaphore == NULL) { + asm("bkpt"); + } + bool a = xSemaphoreTake(I2CSemaphore, (TickType_t)100) == pdTRUE; + return a; +} + +bool I2CBB::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) { + return Mem_Write(address, reg, &data, 1); +} + +uint8_t I2CBB::I2C_RegisterRead(uint8_t address, uint8_t reg) { + uint8_t temp = 0; + Mem_Read(address, reg, &temp, 1); + return temp; } void I2CBB::write_bit(uint8_t val) { - if (val) { - SOFT_SDA_HIGH(); - } else { - SOFT_SDA_LOW(); - } + if (val) { + SOFT_SDA_HIGH(); + } else { + SOFT_SDA_LOW(); + } - SOFT_I2C_DELAY(); - SOFT_SCL_HIGH(); - SOFT_I2C_DELAY(); - SOFT_SCL_LOW(); + SOFT_I2C_DELAY(); + SOFT_SCL_HIGH(); + SOFT_I2C_DELAY(); + SOFT_SCL_LOW(); } +bool I2CBB::writeRegistersBulk(const uint8_t address, const I2C_REG *registers, + const uint8_t registersLength) { + for (int index = 0; index < registersLength; index++) { + if (!I2C_RegisterWrite(address, registers[index].reg, + registers[index].val)) { + return false; + } + if (registers[index].pause_ms) + delay_ms(registers[index].pause_ms); + } + return true; +} #endif diff --git a/source/Core/Drivers/I2CBB.hpp b/source/Core/Drivers/I2CBB.hpp index 7b580b07..ac106230 100644 --- a/source/Core/Drivers/I2CBB.hpp +++ b/source/Core/Drivers/I2CBB.hpp @@ -18,28 +18,39 @@ class I2CBB { public: - static void init(); - // Probe if device ACK's address or not - static bool probe(uint8_t address); - // Issues a complete 8bit register read - static bool Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size); - // Implements a register write - static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size); - static void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size); - static void Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size); - static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx); - + static void init(); + // Probe if device ACK's address or not + static bool probe(uint8_t address); + // Issues a complete 8bit register read + static bool Mem_Read(uint16_t DevAddress, uint16_t MemAddress, + uint8_t *pData, uint16_t Size); + // Implements a register write + static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress, + const uint8_t *pData, uint16_t Size); + static void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size); + static void Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size); + static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, + uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx); + static bool I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data); + static uint8_t I2C_RegisterRead(uint8_t address, uint8_t reg); + typedef struct { + const uint8_t reg; // The register to write to + uint8_t val; // The value to write to this register + const uint8_t pause_ms; // How many ms to pause _after_ writing this reg + } I2C_REG; + static bool writeRegistersBulk(const uint8_t address, + const I2C_REG *registers, const uint8_t registersLength); private: - static SemaphoreHandle_t I2CSemaphore; - static StaticSemaphore_t xSemaphoreBuffer; - static void unlock(); - static bool lock(); - static void start(); - static void stop(); - static bool send(uint8_t value); - static uint8_t read(bool ack); - static uint8_t read_bit(); - static void write_bit(uint8_t val); + static SemaphoreHandle_t I2CSemaphore; + static StaticSemaphore_t xSemaphoreBuffer; + static void unlock(); + static bool lock(); + static void start(); + static void stop(); + static bool send(uint8_t value); + static uint8_t read(bool ack); + static uint8_t read_bit(); + static void write_bit(uint8_t val); }; #endif #endif /* BSP_MINIWARE_I2CBB_HPP_ */ diff --git a/source/Core/Drivers/OLED.cpp b/source/Core/Drivers/OLED.cpp index f1e057bc..7ba7cb89 100644 --- a/source/Core/Drivers/OLED.cpp +++ b/source/Core/Drivers/OLED.cpp @@ -29,7 +29,7 @@ uint8_t OLED::secondFrameBuffer[OLED_WIDTH * 2]; /*http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf*/ /*All commands are prefixed with 0x80*/ /*Data packets are prefixed with 0x40*/ -FRToSI2C::I2C_REG OLED_Setup_Array[] = { +I2C_CLASS::I2C_REG OLED_Setup_Array[] = { /**/ {0x80, 0xAE, 0}, /*Display off*/ {0x80, 0xD5, 0}, /*Set display clock divide ratio / osc freq*/ @@ -89,7 +89,7 @@ void OLED::initialize() { // initialisation data to the OLED. for (int tries = 0; tries < 10; tries++) { - if (FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) { + if (I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) { return; } } @@ -238,7 +238,7 @@ void OLED::setRotation(bool leftHanded) { OLED_Setup_Array[5].val = 0xC0; OLED_Setup_Array[9].val = 0xA0; } - FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0])); + I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0])); inLeftHandedMode = leftHanded; diff --git a/source/Core/Drivers/OLED.hpp b/source/Core/Drivers/OLED.hpp index 9332c4ee..87b6759e 100644 --- a/source/Core/Drivers/OLED.hpp +++ b/source/Core/Drivers/OLED.hpp @@ -10,8 +10,8 @@ #ifndef OLED_HPP_ #define OLED_HPP_ #include "Font.h" -#include "I2C_Wrapper.hpp" #include +#include "Model_Config.h" #include #include #ifdef __cplusplus @@ -21,6 +21,16 @@ extern "C" { #ifdef __cplusplus } #endif + + +#ifdef OLED_I2CBB +#include "I2CBB.hpp" +#define I2C_CLASS I2CBB +#else +#define I2C_CLASS FRToSI2C +#include "I2C_Wrapper.hpp" +#endif + #define DEVICEADDR_OLED (0x3c << 1) #define OLED_WIDTH 96 #define OLED_HEIGHT 16 @@ -40,7 +50,7 @@ public: static bool isInitDone(); // Draw the buffer out to the LCD using the DMA Channel static void refresh() { - FRToSI2C::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2)); + I2C_CLASS::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2)); // DMA tx time is ~ 20mS Ensure after calling this you delay for at least 25ms // or we need to goto double buffering }