1
0
forked from me/IronOS

Slow PWM drive to reduce some handle heating, Improve PWM power for ts80, add ts80 pulse for keep awake

This commit is contained in:
Ben V. Brown
2018-11-11 20:43:35 +11:00
parent 5b882c819c
commit 6a1572de81
5 changed files with 95 additions and 38 deletions

View File

@@ -11,9 +11,10 @@
#ifndef POWER_HPP_
#define POWER_HPP_
const uint8_t hz = 32;
const uint8_t oscillationPeriod = 3.5 * hz;
const uint8_t hz = 32;//PID loop rate
const uint8_t oscillationPeriod = 3.5 * hz; // dampening look back tuning
extern history<uint16_t, oscillationPeriod> milliWattHistory;
void setupPower(uint8_t resistance);
int32_t tempToMilliWatts(int32_t rawTemp, uint16_t mass, uint8_t rawC);
void setTipMilliWatts(int32_t mw);

View File

@@ -253,7 +253,7 @@ static void MX_TIM3_Init(void) {
TIM_OC_InitTypeDef sConfigOC;
htim3.Instance = TIM3;
htim3.Init.Prescaler = 2;
htim3.Init.Prescaler = 4;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 100; // 10 Khz PWM freq
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 4mhz before div

View File

@@ -156,16 +156,16 @@ uint16_t getInputVoltageX10(uint16_t divisor) {
#ifdef MODEL_TS80
uint8_t QCMode = 0;
uint8_t QCTries = 0;
void seekQC(int16_t Vx10,uint16_t divisor) {
void seekQC(int16_t Vx10, uint16_t divisor) {
if (QCMode == 5)
startQC(divisor);
startQC(divisor);
if (QCMode == 0)
return; // NOT connected to a QC Charger
return; // NOT connected to a QC Charger
if (Vx10 < 45)
return;
if(Vx10>130)
Vx10=130;//Cap max value at 13V
return;
if (Vx10 > 130)
Vx10 = 130; //Cap max value at 13V
// Seek the QC to the Voltage given if this adapter supports continuous mode
// try and step towards the wanted value
@@ -178,11 +178,11 @@ void seekQC(int16_t Vx10,uint16_t divisor) {
int steps = difference / 2;
if (QCMode == 3) {
while (steps < 0) {
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);//D+0.6
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);//D-3.3V
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);// D-3.3Vs
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET); //D+0.6
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET); //D-3.3V
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET); // D-3.3Vs
vTaskDelay(3);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);//-0.6V
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); //-0.6V
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_IWDG_Refresh(&hiwdg);
@@ -237,7 +237,7 @@ void startQC(uint16_t divisor) {
// negotiating as someone is feeding in hv
uint16_t vin = getInputVoltageX10(divisor);
if (vin > 150)
return;// Over voltage
return; // Over voltage
if (vin > 100) {
QCMode = 1; // ALready at ~12V
return;
@@ -279,7 +279,7 @@ void startQC(uint16_t divisor) {
}
// Check if D- is low to spot a QC charger
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_11) == GPIO_PIN_RESET)
enteredQC = 1;
enteredQC = 1;
if (enteredQC) {
// We have a QC capable charger
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
@@ -299,7 +299,7 @@ void startQC(uint16_t divisor) {
for (uint8_t i = 0; i < 10; i++) {
if (getInputVoltageX10(divisor) > 80) {
// yay we have at least QC2.0 or QC3.0
QCMode = 3;// We have at least QC2, pray for 3
QCMode = 3; // We have at least QC2, pray for 3
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
@@ -310,17 +310,20 @@ void startQC(uint16_t divisor) {
QCMode = 5;
QCTries++;
if (QCTries > 10) // 10 goes to get it going
QCMode = 0;
QCMode = 0;
} else {
// no QC
QCMode = 0;
}
if (QCTries > 10)
QCMode = 0;
QCMode = 0;
}
// Get tip resistance in milliohms
uint32_t calculateTipR() {
static uint32_t lastRes=0;
if(lastRes)
return lastRes;
// We inject a small current into the front end of the iron,
// By measuring the Vdrop over the tip we can calculate the resistance
// Turn PA0 into an output and drive high to inject (3.3V-0.6)/(6K8+Rtip)
@@ -331,24 +334,27 @@ uint32_t calculateTipR() {
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);// Set low first
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); // Set low first
setTipPWM(0);
vTaskDelay(1);
uint32_t offReading = getTipRawTemp(1);
for (uint8_t i = 0; i < 24; i++) {
for (uint8_t i = 0; i < 49; i++) {
vTaskDelay(1); // delay to allow it to stabilize
offReading += getTipRawTemp(1);
}
// Turn on
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET);// Set low first
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET); // Set hgih
vTaskDelay(1); // delay to allow it too stabilize
uint32_t onReading = getTipInstantTemperature();
for (uint8_t i = 0; i < 24; i++) {
for (uint8_t i = 0; i < 49; i++) {
vTaskDelay(1); // delay to allow it to stabilize
onReading += getTipRawTemp(1);
}
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); // Turn the output off finally
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
uint32_t difference = onReading - offReading;
// V = IR, therefore I = V/R
// We can divide this reading by a known "gain" to get the resulting
@@ -356,7 +362,8 @@ uint32_t calculateTipR() {
// 4688 milliohms (Measured using 4 terminal measurement) 25x oversampling
// reads this as around 47490 Almost perfectly 10x the milliohms value This
// will drift massively with tip temp However we really only need 10x ohms
return (difference / 10) + 1;// ceil
lastRes=(difference / 21) + 1; // ceil
return lastRes;
}
static unsigned int sqrt32(unsigned long n) {
unsigned int c = 0x8000;
@@ -364,10 +371,10 @@ static unsigned int sqrt32(unsigned long n) {
for (;;) {
if (g * g > n)
g ^= c;
g ^= c;
c >>= 1;
if (c == 0)
return g;
return g;
g |= c;
}
}
@@ -378,26 +385,35 @@ int16_t calculateMaxVoltage(uint8_t useHP) {
uint32_t milliOhms = calculateTipR();
// Check no tip
if (milliOhms > 10000)
return -1;
return -1;
//Because of tolerance, if a user has asked for the higher power mode, then just goto 12V and call it a day
if (useHP)
return 120;
//
// V = sqrt(18W*R)
// Convert this to sqrt(18W)*sqrt(milli ohms)*sqrt(1/1000)
uint32_t Vx = sqrt32(milliOhms);
if (useHP)
Vx *= 1549;//sqrt(24)*sqrt(1/1000)
Vx *= 1549; //sqrt(24)*sqrt(1/1000)*10000
else
Vx *= 1342;// sqrt(18) * sqrt(1/1000)
Vx *= 1342; // sqrt(18) * sqrt(1/1000)*10000
// Round to nearest 200mV,
// So divide by 100 to start, to get in Vxx
Vx /= 100;
if (Vx % 10 >= 5)
Vx += 10;
Vx += 10;
Vx /= 10;
// Round to nearest increment of 2
if (Vx % 2 == 1)
Vx++;
Vx++;
//Because of how bad the tolerance is on detecting the tip resistance is
//Its more functional to bin this
if (Vx < 90)
Vx = 90;
else if (Vx >= 105)
Vx = 12;
return Vx;
}

View File

@@ -657,9 +657,11 @@ static const char *HEADERS[] = {
__DATE__, "Heap: ", "HWMG: ", "HWMP: ", "HWMM: ", "Time: ", "Move: ", "RTip: ",
"CTip: ", "Vin :", "THan: ", "Model: ",
#ifdef MODEL_TS80
"QCV: ",
"QCV: ", "Tr ",
#else
"Tm ",
"Ralim-",
#endif
};
@@ -714,6 +716,13 @@ void showVersion(void) {
case 12:
#ifdef MODEL_TS80
OLED::printNumber(idealQCVoltage, 3);
#else
OLED::printNumber(systemSettings.tipType, 3);
#endif
break;
case 13:
#ifdef MODEL_TS80
OLED::printNumber(calculateTipR(), 5);
#else
OLED::print("Tek.com");
#endif
@@ -728,7 +737,7 @@ void showVersion(void) {
return;
else if (b == BUTTON_F_SHORT) {
screen++;
screen = screen % 13;
screen = screen % 14;
}
GUIDelay();
}
@@ -924,7 +933,14 @@ void startPIDTask(void const *argument __unused) {
uint8_t rawC = ctoTipMeasurement(101) - ctoTipMeasurement(100); // 1*C change in raw.
currentlyActiveTemperatureTarget = 0; // Force start with no output (off). If in sleep / soldering this will
// be over-ridden rapidly
#ifdef MODEL_TS80
//Set power management code to the tip resistance in ohms * 10
setupPower(calculateTipR() / 100);
size_t lastPowerPulse = 0;
#else
setupPower(85);
#endif
history<int16_t> tempError = { { 0 }, 0, 0 };
pidTaskNotification = xTaskGetCurrentTaskHandle();
@@ -987,7 +1003,23 @@ void startPIDTask(void const *argument __unused) {
setTipMilliWatts(milliWattsOut);
} else {
#ifdef MODEL_TS80
//If its a TS80, we want to have the option of using an occasional pulse to keep the power bank on
//~200ms @ a low wattage
//Doesnt keep all power banks awake but helps with some
if (xTaskGetTickCount() - lastPowerPulse < 20) {
// for the first 200mS turn on for a bit
setTipMilliWatts(4000); // typically its around 5W to hold the current temp, so this wont raise temp much
}else
setTipMilliWatts(0);
//Then wait until the next second
if (xTaskGetTickCount() - lastPowerPulse > 100) {
lastPowerPulse = xTaskGetTickCount();
}
#else
setTipMilliWatts(0);
#endif
}
HAL_IWDG_Refresh(&hiwdg);

View File

@@ -9,11 +9,14 @@
#include <Settings.h>
#include <hardware.h>
const uint8_t tipResistance = 87;
uint8_t tipResistance = 85; //x10 ohms, 8.5 typical for ts100, 4.5 typical for ts80
const uint8_t maxPWM = 255;
history<uint16_t, oscillationPeriod> milliWattHistory = {{0}, 0, 0};
history<uint16_t, oscillationPeriod> milliWattHistory = { { 0 }, 0, 0 };
void setupPower(uint8_t res) {
tipResistance = res;
}
int32_t tempToMilliWatts(int32_t rawTemp, uint16_t mass, uint8_t rawC) {
// mass is in milliJ/*C, rawC is raw per degree C
@@ -26,14 +29,19 @@ int32_t tempToMilliWatts(int32_t rawTemp, uint16_t mass, uint8_t rawC) {
void setTipMilliWatts(int32_t mw) {
int32_t output = milliWattsToPWM(mw, systemSettings.voltageDiv / 10);
setTipPWM(output);
uint16_t actualMilliWatts = PWMToMilliWatts(output, systemSettings.voltageDiv / 10);
uint16_t actualMilliWatts = PWMToMilliWatts(output,
systemSettings.voltageDiv / 10);
milliWattHistory.update(actualMilliWatts);
}
uint8_t milliWattsToPWM(int32_t milliWatts, uint8_t divisor) {
int32_t v = getInputVoltageX10(divisor); // 1000 = 10v
int32_t availableMilliWatts = v*v / tipResistance;
//P = V^2 / R, v*v = v^2 * 100
// R = R*10
// P therefore is in V^2*10/R = W*10.
// Scale input milliWatts to the pwm rate
int32_t v = getInputVoltageX10(divisor);// 100 = 10v
int32_t availableMilliWatts = v * v / tipResistance;
int32_t pwm = maxPWM * milliWatts / availableMilliWatts;
if (pwm > maxPWM) {
@@ -46,5 +54,5 @@ uint8_t milliWattsToPWM(int32_t milliWatts, uint8_t divisor) {
int32_t PWMToMilliWatts(uint8_t pwm, uint8_t divisor) {
int32_t v = getInputVoltageX10(divisor);
return pwm * (v*v / tipResistance) / maxPWM;
return pwm * (v * v / tipResistance) / maxPWM;
}