Format BSP
This commit is contained in:
@@ -11,258 +11,250 @@
|
||||
#include "main.hpp"
|
||||
#include <IRQ.h>
|
||||
volatile uint16_t PWMSafetyTimer = 0;
|
||||
volatile uint8_t pendingPWM = 0;
|
||||
uint16_t totalPWM = 255;
|
||||
const uint16_t powerPWM = 255;
|
||||
volatile uint8_t pendingPWM = 0;
|
||||
uint16_t totalPWM = 255;
|
||||
const uint16_t powerPWM = 255;
|
||||
|
||||
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
|
||||
void resetWatchdog() {
|
||||
HAL_IWDG_Refresh(&hiwdg);
|
||||
}
|
||||
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
|
||||
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
||||
|
||||
#ifdef TEMP_NTC
|
||||
// Lookup table for the NTC
|
||||
// Stored as ADCReading,Temp in degC
|
||||
static const uint16_t NTCHandleLookup[] = {
|
||||
// ADC Reading , Temp in C
|
||||
11292, 600, //
|
||||
12782, 550, //
|
||||
14380, 500, //
|
||||
16061, 450, //
|
||||
17793, 400, //
|
||||
19541, 350, //
|
||||
21261, 300, //
|
||||
22915, 250, //
|
||||
24465, 200, //
|
||||
25882, 150, //
|
||||
27146, 100, //
|
||||
28249, 50, //
|
||||
29189, 0, //
|
||||
};
|
||||
const int NTCHandleLookupItems = sizeof(NTCHandleLookup)
|
||||
/ (2 * sizeof(uint16_t));
|
||||
// ADC Reading , Temp in C
|
||||
11292, 600, //
|
||||
12782, 550, //
|
||||
14380, 500, //
|
||||
16061, 450, //
|
||||
17793, 400, //
|
||||
19541, 350, //
|
||||
21261, 300, //
|
||||
22915, 250, //
|
||||
24465, 200, //
|
||||
25882, 150, //
|
||||
27146, 100, //
|
||||
28249, 50, //
|
||||
29189, 0, //
|
||||
};
|
||||
const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t));
|
||||
#endif
|
||||
|
||||
// These are called by the HAL after the corresponding events from the system
|
||||
// timers.
|
||||
|
||||
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
||||
// Period has elapsed
|
||||
if (htim->Instance == TIM1) {
|
||||
// STM uses this for internal functions as a counter for timeouts
|
||||
HAL_IncTick();
|
||||
}
|
||||
// Period has elapsed
|
||||
if (htim->Instance == TIM1) {
|
||||
// STM uses this for internal functions as a counter for timeouts
|
||||
HAL_IncTick();
|
||||
}
|
||||
}
|
||||
uint16_t getHandleTemperature() {
|
||||
int32_t result = getADC(0);
|
||||
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems,
|
||||
result);
|
||||
int32_t result = getADC(0);
|
||||
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result);
|
||||
}
|
||||
|
||||
uint16_t getTipInstantTemperature() {
|
||||
return getADC(2);
|
||||
}
|
||||
uint16_t getTipInstantTemperature() { return getADC(2); }
|
||||
|
||||
uint16_t getTipRawTemp(uint8_t refresh) {
|
||||
if (refresh) {
|
||||
uint16_t lastSample = getTipInstantTemperature();
|
||||
rawTempFilter.update(lastSample);
|
||||
return lastSample;
|
||||
} else {
|
||||
return rawTempFilter.average();
|
||||
}
|
||||
if (refresh) {
|
||||
uint16_t lastSample = getTipInstantTemperature();
|
||||
rawTempFilter.update(lastSample);
|
||||
return lastSample;
|
||||
} else {
|
||||
return rawTempFilter.average();
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
||||
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
||||
// Therefore we can divide down from there
|
||||
// Multiplying ADC max by 4 for additional calibration options,
|
||||
// ideal term is 467
|
||||
static uint8_t preFillneeded = 10;
|
||||
static uint32_t samples[BATTFILTERDEPTH];
|
||||
static uint8_t index = 0;
|
||||
if (preFillneeded) {
|
||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||
samples[i] = getADC(1);
|
||||
preFillneeded--;
|
||||
}
|
||||
if (sample) {
|
||||
samples[index] = getADC(1);
|
||||
index = (index + 1) % BATTFILTERDEPTH;
|
||||
}
|
||||
uint32_t sum = 0;
|
||||
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
||||
// Therefore we can divide down from there
|
||||
// Multiplying ADC max by 4 for additional calibration options,
|
||||
// ideal term is 467
|
||||
static uint8_t preFillneeded = 10;
|
||||
static uint32_t samples[BATTFILTERDEPTH];
|
||||
static uint8_t index = 0;
|
||||
if (preFillneeded) {
|
||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||
samples[i] = getADC(1);
|
||||
preFillneeded--;
|
||||
}
|
||||
if (sample) {
|
||||
samples[index] = getADC(1);
|
||||
index = (index + 1) % BATTFILTERDEPTH;
|
||||
}
|
||||
uint32_t sum = 0;
|
||||
|
||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||
sum += samples[i];
|
||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||
sum += samples[i];
|
||||
|
||||
sum /= BATTFILTERDEPTH;
|
||||
if (divisor == 0) {
|
||||
divisor = 1;
|
||||
}
|
||||
return sum * 4 / divisor;
|
||||
sum /= BATTFILTERDEPTH;
|
||||
if (divisor == 0) {
|
||||
divisor = 1;
|
||||
}
|
||||
return sum * 4 / divisor;
|
||||
}
|
||||
bool tryBetterPWM(uint8_t pwm) {
|
||||
// We dont need this for the MHP30
|
||||
return false;
|
||||
// We dont need this for the MHP30
|
||||
return false;
|
||||
}
|
||||
void setTipPWM(uint8_t pulse) {
|
||||
// We can just set the timer directly
|
||||
htim3.Instance->CCR1 = pulse;
|
||||
// We can just set the timer directly
|
||||
htim3.Instance->CCR1 = pulse;
|
||||
}
|
||||
|
||||
void unstick_I2C() {
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
int timeout = 100;
|
||||
int timeout_cnt = 0;
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
int timeout = 100;
|
||||
int timeout_cnt = 0;
|
||||
|
||||
// 1. Clear PE bit.
|
||||
hi2c1.Instance->CR1 &= ~(0x0001);
|
||||
/**I2C1 GPIO Configuration
|
||||
PB6 ------> I2C1_SCL
|
||||
PB7 ------> I2C1_SDA
|
||||
*/
|
||||
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
// 1. Clear PE bit.
|
||||
hi2c1.Instance->CR1 &= ~(0x0001);
|
||||
/**I2C1 GPIO Configuration
|
||||
PB6 ------> I2C1_SCL
|
||||
PB7 ------> I2C1_SDA
|
||||
*/
|
||||
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
|
||||
GPIO_InitStruct.Pin = SCL_Pin;
|
||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
GPIO_InitStruct.Pin = SCL_Pin;
|
||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
|
||||
GPIO_InitStruct.Pin = SDA_Pin;
|
||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||
GPIO_InitStruct.Pin = SDA_Pin;
|
||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||
|
||||
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
||||
// Move clock to release I2C
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
||||
// Move clock to release I2C
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
|
||||
timeout_cnt++;
|
||||
if (timeout_cnt > timeout)
|
||||
return;
|
||||
}
|
||||
timeout_cnt++;
|
||||
if (timeout_cnt > timeout)
|
||||
return;
|
||||
}
|
||||
|
||||
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
|
||||
GPIO_InitStruct.Pin = SCL_Pin;
|
||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||
GPIO_InitStruct.Pin = SCL_Pin;
|
||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
GPIO_InitStruct.Pin = SDA_Pin;
|
||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
GPIO_InitStruct.Pin = SDA_Pin;
|
||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||
|
||||
// 13. Set SWRST bit in I2Cx_CR1 register.
|
||||
hi2c1.Instance->CR1 |= 0x8000;
|
||||
// 13. Set SWRST bit in I2Cx_CR1 register.
|
||||
hi2c1.Instance->CR1 |= 0x8000;
|
||||
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
|
||||
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
||||
hi2c1.Instance->CR1 &= ~0x8000;
|
||||
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
||||
hi2c1.Instance->CR1 &= ~0x8000;
|
||||
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
|
||||
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
||||
hi2c1.Instance->CR1 |= 0x0001;
|
||||
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
||||
hi2c1.Instance->CR1 |= 0x0001;
|
||||
|
||||
// Call initialization function.
|
||||
HAL_I2C_Init(&hi2c1);
|
||||
// Call initialization function.
|
||||
HAL_I2C_Init(&hi2c1);
|
||||
}
|
||||
|
||||
uint8_t getButtonA() {
|
||||
return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
|
||||
1 : 0;
|
||||
}
|
||||
uint8_t getButtonB() {
|
||||
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
|
||||
1 : 0;
|
||||
}
|
||||
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
||||
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
||||
|
||||
void BSPInit(void) {
|
||||
}
|
||||
void BSPInit(void) {}
|
||||
|
||||
void reboot() {
|
||||
NVIC_SystemReset();
|
||||
}
|
||||
void reboot() { NVIC_SystemReset(); }
|
||||
|
||||
void delay_ms(uint16_t count) {
|
||||
HAL_Delay(count);
|
||||
}
|
||||
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
||||
|
||||
void setPlatePullup(bool pullingUp) {
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
if (pullingUp) {
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port,
|
||||
PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
|
||||
} else {
|
||||
//Hi-z
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port,
|
||||
PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
|
||||
}
|
||||
HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
if (pullingUp) {
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
|
||||
} else {
|
||||
// Hi-z
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
|
||||
}
|
||||
HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
|
||||
}
|
||||
|
||||
uint16_t tipSenseResistancex10Ohms = 0;
|
||||
bool isTipDisconnected() {
|
||||
static bool lastTipDisconnectedState = true;
|
||||
static uint16_t adcReadingPD1Set = 0;
|
||||
static TickType_t lastMeas = 0;
|
||||
// For the MHP30 we want to include a little extra logic in here
|
||||
// As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip
|
||||
// And likewise if its removed we want to clear that measurement
|
||||
/*
|
||||
* plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0;
|
||||
* */
|
||||
bool isTipDisconnected() {
|
||||
static bool lastTipDisconnectedState = true;
|
||||
static uint16_t adcReadingPD1Set = 0;
|
||||
static TickType_t lastMeas = 0;
|
||||
// For the MHP30 we want to include a little extra logic in here
|
||||
// As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip
|
||||
// And likewise if its removed we want to clear that measurement
|
||||
/*
|
||||
* plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0;
|
||||
* */
|
||||
|
||||
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
|
||||
uint32_t tipTemp = TipThermoModel::getTipInC();
|
||||
bool tipDisconnected = tipTemp > tipDisconnectedThres;
|
||||
if (tipDisconnected != lastTipDisconnectedState) {
|
||||
if (tipDisconnected) {
|
||||
// Tip is now disconnected
|
||||
tipSenseResistancex10Ohms = 0; // zero out the resistance
|
||||
adcReadingPD1Set = 0;
|
||||
lastMeas = xTaskGetTickCount();
|
||||
setPlatePullup(true);
|
||||
}
|
||||
lastTipDisconnectedState = tipDisconnected;
|
||||
}
|
||||
if (!tipDisconnected) {
|
||||
if (tipSenseResistancex10Ohms == 0) {
|
||||
if (xTaskGetTickCount() - lastMeas > (TICKS_100MS / 2)) {
|
||||
lastMeas = xTaskGetTickCount();
|
||||
//We are sensing the resistance
|
||||
if (adcReadingPD1Set == 0) {
|
||||
//We will record the reading for PD1 being set
|
||||
adcReadingPD1Set = getADC(3);
|
||||
setPlatePullup(false);
|
||||
} else {
|
||||
//We have taken reading one
|
||||
uint16_t adcReadingPD1Cleared = getADC(3);
|
||||
tipSenseResistancex10Ohms = ((((int) adcReadingPD1Set
|
||||
- (int) adcReadingPD1Cleared) * 10000)
|
||||
/ ((int) adcReadingPD1Cleared
|
||||
+ (65536 - (int) adcReadingPD1Set)));
|
||||
}
|
||||
}
|
||||
return true; // we fake tip being disconnected until this is measured
|
||||
}
|
||||
}
|
||||
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
|
||||
uint32_t tipTemp = TipThermoModel::getTipInC();
|
||||
bool tipDisconnected = tipTemp > tipDisconnectedThres;
|
||||
// We have to handle here that this ^ will trip while measuring the gain resistor
|
||||
if (xTaskGetTickCount() - lastMeas < (TICKS_100MS * 2 + (TICKS_100MS / 2))) {
|
||||
tipDisconnected = false;
|
||||
}
|
||||
|
||||
return tipDisconnected;
|
||||
if (tipDisconnected != lastTipDisconnectedState) {
|
||||
if (tipDisconnected) {
|
||||
// Tip is now disconnected
|
||||
tipSenseResistancex10Ohms = 0; // zero out the resistance
|
||||
adcReadingPD1Set = 0;
|
||||
lastMeas = 0;
|
||||
}
|
||||
lastTipDisconnectedState = tipDisconnected;
|
||||
}
|
||||
if (!tipDisconnected) {
|
||||
if (tipSenseResistancex10Ohms == 0) {
|
||||
if (lastMeas == 0) {
|
||||
lastMeas = xTaskGetTickCount();
|
||||
setPlatePullup(true);
|
||||
} else if (xTaskGetTickCount() - lastMeas > (TICKS_100MS)) {
|
||||
lastMeas = xTaskGetTickCount();
|
||||
// We are sensing the resistance
|
||||
if (adcReadingPD1Set == 0) {
|
||||
// We will record the reading for PD1 being set
|
||||
adcReadingPD1Set = getADC(3);
|
||||
setPlatePullup(false);
|
||||
} else {
|
||||
// We have taken reading one
|
||||
uint16_t adcReadingPD1Cleared = getADC(3);
|
||||
uint32_t a = ((int)adcReadingPD1Set - (int)adcReadingPD1Cleared);
|
||||
a *= 10000;
|
||||
uint32_t b = ((int)adcReadingPD1Cleared + (32768 - (int)adcReadingPD1Set));
|
||||
if (b) {
|
||||
tipSenseResistancex10Ohms = a / b;
|
||||
} else {
|
||||
tipSenseResistancex10Ohms = adcReadingPD1Set = lastMeas = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true; // we fake tip being disconnected until this is measured
|
||||
}
|
||||
}
|
||||
|
||||
return tipDisconnected;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user