1
0
forked from me/IronOS

Merge pull request #1039 from Ralim/refactor-adc

Refactor adc using wisdom from @sandmanRO
This commit is contained in:
Ben V. Brown
2021-09-12 19:23:39 +10:00
committed by GitHub
14 changed files with 153 additions and 205 deletions

View File

@@ -35,7 +35,7 @@ void resetWatchdog();
// Accepts a output level of 0.. to use to control the tip output PWM
void setTipPWM(uint8_t pulse);
// Returns the Handle temp in C, X10
uint16_t getHandleTemperature();
uint16_t getHandleTemperature(uint8_t sample);
// Returns the Tip temperature ADC reading in raw units
uint16_t getTipRawTemp(uint8_t refresh);
// Returns the main DC input voltage, using the adjustable divisor + sample flag

View File

@@ -201,7 +201,7 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
HAL_IncTick();
}
}
uint16_t getHandleTemperature() {
uint16_t getHandleTemperature(uint8_t sample) {
int32_t result = getADC(0);
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result);
}

View File

@@ -93,12 +93,12 @@ static const uint16_t NTCHandleLookup[] = {
};
#endif
uint16_t getHandleTemperature() {
uint16_t getHandleTemperature(uint8_t sample) {
int32_t result = getADCHandleTemp(sample);
#ifdef TEMP_NTC
// TS80P uses 100k NTC resistors instead
// NTCG104EF104FT1X from TDK
// For now not doing interpolation
int32_t result = getADC(0);
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
if (result > NTCHandleLookup[(i * 2) + 0]) {
return NTCHandleLookup[(i * 2) + 1] * 10;
@@ -114,7 +114,6 @@ uint16_t getHandleTemperature() {
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
int32_t result = getADC(0);
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
@@ -122,72 +121,18 @@ uint16_t getHandleTemperature() {
result /= 994;
return result;
#endif
}
uint16_t getTipInstantTemperature() {
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
uint16_t readings[8];
// Looking to reject the highest outlier readings.
// As on some hardware these samples can run into the op-amp recovery time
// Once this time is up the signal stabilises quickly, so no need to reject minimums
readings[0] = hadc1.Instance->JDR1;
readings[1] = hadc1.Instance->JDR2;
readings[2] = hadc1.Instance->JDR3;
readings[3] = hadc1.Instance->JDR4;
readings[4] = hadc2.Instance->JDR1;
readings[5] = hadc2.Instance->JDR2;
readings[6] = hadc2.Instance->JDR3;
readings[7] = hadc2.Instance->JDR4;
for (int i = 0; i < 8; i++) {
sum += readings[i];
}
return sum; // 8x over sample
}
uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) {
uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample);
return lastSample;
} else {
return rawTempFilter.average();
}
return 0;
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
#ifdef MODEL_TS100
#define BATTFILTERDEPTH 32
#else
#define BATTFILTERDEPTH 8
#endif
static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0;
if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1);
preFillneeded--;
}
if (sample) {
samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH;
}
uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i];
sum /= BATTFILTERDEPTH;
if (divisor == 0) {
divisor = 1;
}
return sum * 4 / divisor;
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
uint32_t res = getADCVin(sample);
res *= 4;
res /= divisor;
return res;
}
void setTipPWM(uint8_t pulse) {

View File

@@ -5,7 +5,10 @@
* Author: Ben V. Brown
*/
#include "Setup.h"
#include "BSP.h"
#include "Pins.h"
#include "history.hpp"
#include <stdint.h>
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc1;
@@ -17,9 +20,9 @@ DMA_HandleTypeDef hdma_i2c1_tx;
IWDG_HandleTypeDef hiwdg;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
#define ADC_CHANNELS 2
#define ADC_SAMPLES 16
uint32_t ADCReadings[ADC_SAMPLES * ADC_CHANNELS]; // room for 32 lots of the pair of readings
#define ADC_FILTER_LEN 32
#define ADC_SAMPLES 16
uint16_t ADCReadings[ADC_SAMPLES]; // Used to store the adc readings for the handle cold junction temp
// Functions
static void SystemClock_Config(void);
@@ -48,24 +51,53 @@ void Setup_HAL() {
MX_TIM3_Init();
MX_TIM2_Init();
MX_IWDG_Init();
HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings, (ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings
HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)ADCReadings, (ADC_SAMPLES)); // start DMA of normal readings
HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
}
// channel 0 -> temperature sensor, 1-> VIN
uint16_t getADC(uint8_t channel) {
uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_SAMPLES; i++) {
uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)];
uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16;
sum += (adc1Sample + adc2Sample);
uint16_t getADCHandleTemp(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_SAMPLES; i++) {
sum += ADCReadings[i];
}
filter.update(sum);
}
return sum >> 2;
return filter.average() >> 1;
}
uint16_t getADCVin(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint16_t latestADC = 0;
latestADC += hadc2.Instance->JDR1;
latestADC += hadc2.Instance->JDR2;
latestADC += hadc2.Instance->JDR3;
latestADC += hadc2.Instance->JDR4;
latestADC <<= 3;
filter.update(latestADC);
}
return filter.average();
}
// Returns either average or instant value. When sample is set the samples from the injected ADC are copied to the filter and then the raw reading is returned
uint16_t getTipRawTemp(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint16_t latestADC = 0;
latestADC += hadc1.Instance->JDR1;
latestADC += hadc1.Instance->JDR2;
latestADC += hadc1.Instance->JDR3;
latestADC += hadc1.Instance->JDR4;
latestADC <<= 1;
filter.update(latestADC);
return latestADC;
}
return filter.average();
}
/** System Clock Configuration
*/
void SystemClock_Config(void) {
@@ -113,7 +145,6 @@ void SystemClock_Config(void) {
/* ADC1 init function */
static void MX_ADC1_Init(void) {
ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig;
ADC_InjectionConfTypeDef sConfigInjected;
@@ -125,14 +156,9 @@ static void MX_ADC1_Init(void) {
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
hadc1.Init.NbrOfConversion = 1;
HAL_ADC_Init(&hadc1);
/**Configure the ADC multi-mode
*/
multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
/**Configure Regular Channel
*/
sConfig.Channel = TMP36_ADC1_CHANNEL;
@@ -140,12 +166,6 @@ static void MX_ADC1_Init(void) {
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Regular Channel
*/
sConfig.Channel = VIN_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Injected Channel
*/
// F in = 10.66 MHz
@@ -157,15 +177,13 @@ static void MX_ADC1_Init(void) {
sConfigInjected.InjectedChannel = TIP_TEMP_ADC1_CHANNEL;
sConfigInjected.InjectedRank = 1;
sConfigInjected.InjectedNbrOfConversion = 4;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_28CYCLES_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_TRGO;
sConfigInjected.AutoInjectedConv = DISABLE;
sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
sConfigInjected.InjectedOffset = 0;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.InjectedRank = 2;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedRank = 3;
@@ -180,44 +198,30 @@ static void MX_ADC1_Init(void) {
/* ADC2 init function */
static void MX_ADC2_Init(void) {
ADC_ChannelConfTypeDef sConfig;
ADC_InjectionConfTypeDef sConfigInjected;
/**Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = ADC_CHANNELS;
hadc2.Init.NbrOfConversion = 0;
HAL_ADC_Init(&hadc2);
/**Configure Regular Channel
*/
sConfig.Channel = TMP36_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = VIN_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
/**Configure Injected Channel
*/
sConfigInjected.InjectedChannel = TIP_TEMP_ADC2_CHANNEL;
sConfigInjected.InjectedChannel = VIN_ADC2_CHANNEL;
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1;
sConfigInjected.InjectedNbrOfConversion = 4;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_28CYCLES_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_TRGO;
sConfigInjected.AutoInjectedConv = DISABLE;
sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
sConfigInjected.InjectedOffset = 0;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_3;
@@ -334,7 +338,7 @@ static void MX_TIM2_Init(void) {
HAL_TIM_PWM_Init(&htim2);
HAL_TIM_OC_Init(&htim2);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);

View File

@@ -27,9 +27,9 @@ extern IWDG_HandleTypeDef hiwdg;
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim3;
void Setup_HAL();
uint16_t getADC(uint8_t channel);
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); // Since the hal header file does not define this one
uint16_t getADCHandleTemp(uint8_t sample);
uint16_t getADCVin(uint8_t sample);
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); // Since the hal header file does not define this one
#ifdef __cplusplus
}

View File

@@ -38,8 +38,8 @@ void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) {
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_Init(&hdma_adc1);

View File

@@ -21,27 +21,7 @@ uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() { fwdgt_counter_reload(); }
uint16_t getTipInstantTemperature() {
volatile uint16_t sum = 0; // 12 bit readings * 8*2 -> 16 bits
for (int i = 0; i < 4; i++) {
sum += adc_inserted_data_read(ADC0, i);
sum += adc_inserted_data_read(ADC1, i);
}
return sum; // 8x over sample
}
uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) {
uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample);
return lastSample;
} else {
return rawTempFilter.average();
}
}
uint16_t getHandleTemperature() {
uint16_t getHandleTemperature(uint8_t sample) {
#ifdef TEMP_TMP36
// We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
@@ -50,7 +30,7 @@ uint16_t getHandleTemperature() {
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
int32_t result = getADC(0);
int32_t result = getADCHandleTemp(sample);
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C
@@ -58,33 +38,14 @@ uint16_t getHandleTemperature() {
result /= 993;
return result;
#else
#error
#error Pinecil only uses TMP36
#endif
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0;
if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1);
preFillneeded--;
}
if (sample) {
samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH;
}
uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i];
sum /= BATTFILTERDEPTH;
if (divisor == 0) {
divisor = 1;
}
return sum * 4 / divisor;
uint32_t res = getADCVin(sample);
res *= 4;
res /= divisor;
return res;
}
void unstick_I2C() {

View File

@@ -22,7 +22,7 @@ void log_system_state(int32_t PWMWattsx10) {
outputLength = snprintf(uartOutputBuffer, uartOutputBufferLength, "%lu,%u,%li,%u,%lu\r\n", //
TipThermoModel::getTipInC(false), // Tip temp in C
getHandleTemperature(), // Handle temp in C X10
getHandleTemperature(0), // Handle temp in C X10
PWMWattsx10, // Output Wattage
pendingPWM, // PWM
TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true) // Tip temp in uV

View File

@@ -9,10 +9,11 @@
#include "Debug.h"
#include "Pins.h"
#include "gd32vf103.h"
#include "history.hpp"
#include <string.h>
#define ADC_NORM_CHANNELS 2
#define ADC_NORM_SAMPLES 32
uint16_t ADCReadings[ADC_NORM_SAMPLES * ADC_NORM_CHANNELS]; // room for 32 lots of the pair of readings
#define ADC_NORM_SAMPLES 16
#define ADC_FILTER_LEN 32
uint16_t ADCReadings[ADC_NORM_SAMPLES]; // room for 32 lots of the pair of readings
// Functions
void setup_gpio();
@@ -43,12 +44,48 @@ void hardware_init() {
timer_enable(TIMER1);
timer_enable(TIMER2);
}
// channel 0 -> temperature sensor, 1-> VIN
uint16_t getADC(uint8_t channel) {
uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_NORM_SAMPLES; i++)
sum += ADCReadings[channel + (i * ADC_NORM_CHANNELS)];
return sum >> 2;
uint16_t getADCHandleTemp(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_NORM_SAMPLES; i++) {
sum += ADCReadings[i];
}
filter.update(sum);
}
return filter.average() >> 1;
}
uint16_t getADCVin(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint16_t latestADC = 0;
latestADC += adc_inserted_data_read(ADC1, 0);
latestADC += adc_inserted_data_read(ADC1, 1);
latestADC += adc_inserted_data_read(ADC1, 2);
latestADC += adc_inserted_data_read(ADC1, 3);
latestADC <<= 1;
filter.update(latestADC);
}
return filter.average();
}
// Returns either average or instant value. When sample is set the samples from the injected ADC are copied to the filter and then the raw reading is returned
uint16_t getTipRawTemp(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint16_t latestADC = 0;
latestADC += adc_inserted_data_read(ADC0, 0);
latestADC += adc_inserted_data_read(ADC0, 1);
latestADC += adc_inserted_data_read(ADC0, 2);
latestADC += adc_inserted_data_read(ADC0, 3);
latestADC <<= 1;
filter.update(latestADC);
return latestADC;
}
return filter.average();
}
void setup_uart() {
@@ -125,7 +162,7 @@ void setup_dma() {
dma_data_parameter.periph_width = DMA_PERIPHERAL_WIDTH_16BIT;
dma_data_parameter.memory_width = DMA_MEMORY_WIDTH_16BIT;
dma_data_parameter.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_data_parameter.number = ADC_NORM_SAMPLES * ADC_NORM_CHANNELS;
dma_data_parameter.number = ADC_NORM_SAMPLES;
dma_data_parameter.priority = DMA_PRIORITY_HIGH;
dma_init(DMA0, DMA_CH0, &dma_data_parameter);
@@ -160,7 +197,7 @@ void setup_adc() {
/* config ADC clock */
rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16);
// Run in normal parallel + inserted parallel
adc_mode_config(ADC0, ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL);
adc_mode_config(ADC0, ADC_DAUL_INSERTED_PARALLEL);
adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE);
@@ -168,28 +205,22 @@ void setup_adc() {
// Align right
adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT);
adc_data_alignment_config(ADC1, ADC_DATAALIGN_RIGHT);
// Setup reading 2 channels on regular mode (Handle Temp + dc in)
adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
// Setup reading the handle temp
adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, 1);
adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, 0);
// Setup the two channels
adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL,
ADC_SAMPLETIME_71POINT5); // temp sensor
adc_regular_channel_config(ADC1, 0, TMP36_ADC1_CHANNEL,
ADC_SAMPLETIME_71POINT5); // temp sensor
adc_regular_channel_config(ADC0, 1, VIN_ADC0_CHANNEL,
ADC_SAMPLETIME_71POINT5); // DC Input voltage
adc_regular_channel_config(ADC1, 1, VIN_ADC1_CHANNEL,
ADC_SAMPLETIME_71POINT5); // DC Input voltage
// Setup that we want all 4 inserted readings to be the tip temp
adc_channel_length_config(ADC0, ADC_INSERTED_CHANNEL, 4);
adc_channel_length_config(ADC1, ADC_INSERTED_CHANNEL, 4);
for (int rank = 0; rank < 4; rank++) {
adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL, ADC_SAMPLETIME_1POINT5);
adc_inserted_channel_config(ADC1, rank, TIP_TEMP_ADC1_CHANNEL, ADC_SAMPLETIME_1POINT5);
adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL, ADC_SAMPLETIME_28POINT5);
adc_inserted_channel_config(ADC1, rank, VIN_ADC1_CHANNEL, ADC_SAMPLETIME_28POINT5);
}
// Setup timer 1 channel 0 to trigger injected measurements
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_TRGO);
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_TRGO);
adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE);
adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE);
@@ -255,7 +286,7 @@ void setup_timers() {
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara);
timer_master_output_trigger_source_select(TIMER1, TIMER_TRI_OUT_SRC_CH0);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0);
timer_channel_output_mode_config(TIMER1, TIMER_CH_1, TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_1, TIMER_OC_SHADOW_DISABLE);

View File

@@ -16,6 +16,8 @@ extern "C" {
uint16_t getADC(uint8_t channel);
void hardware_init();
void setupFUSBIRQ();
uint16_t getADCHandleTemp(uint8_t sample);
uint16_t getADCVin(uint8_t sample);
#ifdef __cplusplus
}
#endif

View File

@@ -71,10 +71,10 @@ uint32_t TipThermoModel::convertFtoC(uint32_t degF) {
}
uint32_t TipThermoModel::getTipInC(bool sampleNow) {
int32_t currentTipTempInC = TipThermoModel::convertTipRawADCToDegC(getTipRawTemp(sampleNow));
currentTipTempInC += getHandleTemperature() / 10; // Add handle offset
// Power usage indicates that our tip temp is lower than our thermocouple temp.
// I found a number that doesn't unbalance the existing PID, causing overshoot.
// This could be tuned in concert with PID parameters...
currentTipTempInC += getHandleTemperature(sampleNow) / 10; // Add handle offset
// Power usage indicates that our tip temp is lower than our thermocouple temp.
// I found a number that doesn't unbalance the existing PID, causing overshoot.
// This could be tuned in concert with PID parameters...
#ifdef THERMAL_MASS_OVERSHOOTS
currentTipTempInC += x10WattHistory.average() / 25;
#else
@@ -93,6 +93,6 @@ uint32_t TipThermoModel::getTipInF(bool sampleNow) {
uint32_t TipThermoModel::getTipMaxInC() {
uint32_t maximumTipTemp = TipThermoModel::convertTipRawADCToDegC(0x7FFF - (21 * 5)); // back off approx 5 deg c from ADC max
maximumTipTemp += getHandleTemperature() / 10; // Add handle offset
maximumTipTemp += getHandleTemperature(0) / 10; // Add handle offset
return maximumTipTemp - 1;
}

View File

@@ -705,7 +705,7 @@ void showDebugMenu(void) {
break;
case 8:
// Handle Temp
OLED::printNumber(getHandleTemperature(), 3, FontStyle::SMALL);
OLED::printNumber(getHandleTemperature(0), 6, FontStyle::SMALL);
break;
case 9:
// Voltage input

View File

@@ -37,6 +37,11 @@ void startPIDTask(void const *argument __unused) {
uint32_t PIDTempTarget = 0;
uint16_t tipTempCRunawayTemp = 0;
TickType_t runawaylastChangeTime = 0;
// Pre-seed the adc filters
for (int i = 0; i < 64; i++) {
vTaskDelay(2);
TipThermoModel::getTipInC(true);
}
#ifdef SLEW_LIMIT
int32_t x10WattsOutLast = 0;
#endif

View File

@@ -521,7 +521,7 @@ $(foreach group_code,$(LANGUAGE_GROUPS),$(eval $(call multi_lang_rule,$(group_co
clean :
rm -Rf Core/Gen
rm -Rf $(OUTPUT_DIR_BASE)
rm -Rf $(HEXFILE_DIR)
rm -Rf $(HEXFILE_DIR)/*
style:
@for src in $(ALL_SOURCE) $(ALL_INCLUDES); do \