PD cleanups

This commit is contained in:
Ben V. Brown
2022-06-23 22:45:29 +10:00
parent c4973a07b0
commit f7078da587
5 changed files with 109 additions and 80 deletions

View File

@@ -28,7 +28,7 @@ bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *re
void pdbs_dpm_get_sink_capability(pd_msg *cap, const bool isPD3);
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request);
FUSB302 fusb((0x22 << 1), fusb_read_buf, fusb_write_buf, ms_delay); // Create FUSB driver
PolicyEngine pe(fusb, get_ms_timestamp, ms_delay, pdbs_dpm_get_sink_capability, pdbs_dpm_evaluate_capability, EPREvaluateCapabilityFunc);
PolicyEngine pe(fusb, get_ms_timestamp, ms_delay, pdbs_dpm_get_sink_capability, pdbs_dpm_evaluate_capability, EPREvaluateCapabilityFunc, 140);
int USBPowerDelivery::detectionState = 0;
uint16_t requested_voltage_mv = 0;
@@ -75,6 +75,10 @@ bool USBPowerDelivery::isVBUSConnected() {
if (state) {
return state == 1;
}
// Dont run if we havent negotiated
if (!negotiationComplete()) {
return true;
}
if (fusb.isVBUSConnected()) {
state = 1;
return true;
@@ -83,20 +87,17 @@ bool USBPowerDelivery::isVBUSConnected() {
return false;
}
}
pd_msg lastCapabilities;
epr_pd_msg lastEPRCapabilities;
bool EPRCapabilitiesSeen = false;
pd_msg *USBPowerDelivery::getLastSeenCapabilities() { return &lastCapabilities; }
uint32_t lastCapabilities[11];
uint32_t *USBPowerDelivery::getLastSeenCapabilities() { return lastCapabilities; }
// parseCapabilitiesArray returns true if a valid capability was found
// caps is the array of capabilities objects
// best* are output references
bool parseCapabilitiesArray(const uint32_t *caps, const uint8_t numCaps, uint8_t &bestIndex, uint16_t &bestVoltage, uint16_t &bestCurrent, bool &bestIsPPS, bool &bestIsAVO) {
bool parseCapabilitiesArray(const uint8_t numCaps, uint8_t *bestIndex, uint16_t *bestVoltage, uint16_t *bestCurrent, bool *bestIsPPS, bool *bestIsAVO) {
// Walk the given capabilities array; and select the best option
// Given assumption of fixed tip resistance; this can be simplified to highest voltage selection
bestIndex = 0xFF; // Mark unselected
bestVoltage = 0; //
*bestIndex = 0xFF; // Mark unselected
*bestVoltage = 5000; // Default 5V
// Fudge of 0.5 ohms to round up a little to account for us always having off periods in PWM
uint8_t tipResistance = getTipResitanceX10() + 5;
@@ -107,79 +108,107 @@ bool parseCapabilitiesArray(const uint32_t *caps, const uint8_t numCaps, uint8_t
#endif
for (uint8_t i = 0; i < numCaps; i++) {
/* If we have a fixed PDO, its V equals our desired V, and its I is
* at least our desired I */
if ((caps[i] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
// This is a fixed PDO entry
// Evaluate if it can produve sufficient current based on the TIP_RESISTANCE (ohms*10)
// V=I*R -> V/I => minimum resistance, if our tip resistance is >= this then we can use this supply
int voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(caps[i])); // voltage in mV units
int current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(caps[i]); // current in 10mA units
int voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCapabilities[i])); // voltage in mV units
int current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCapabilities[i]); // current in 10mA units
int min_resistance_ohmsx10 = voltage_mv / current_a_x100;
if (voltage_mv <= (USB_PD_VMAX * 1000)) {
if (min_resistance_ohmsx10 <= tipResistance) {
// This is a valid power source we can select as
if (voltage_mv > bestVoltage) {
if (voltage_mv > *bestVoltage) {
// Higher voltage and valid, select this instead
bestIndex = i;
bestVoltage = voltage_mv;
bestCurrent = current_a_x100 * 10;
*bestIndex = i;
*bestVoltage = voltage_mv;
*bestCurrent = current_a_x100;
}
}
}
} else if ((caps[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && (((caps[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS) || ((caps[i] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS))) {
// If this is a PPS slot, calculate the max voltage in the PPS range that can we be used and maintain
uint16_t max_voltage = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(caps[i]));
// uint16_t min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(caps[i]));
uint16_t max_current = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(caps[i])); // max current in 10mA units
// Using the current and tip resistance, calculate the ideal max voltage
// if this is range, then we will work with this voltage
// if this is not in range; then max_voltage can be safely selected
int ideal_voltage_mv = (getTipResitanceX10() * max_current);
if (ideal_voltage_mv > max_voltage) {
ideal_voltage_mv = max_voltage; // constrain to what this PDO offers
}
if (ideal_voltage_mv > (USB_PD_VMAX * 1000)) {
ideal_voltage_mv = (USB_PD_VMAX * 1000); // constrain to model max
}
if (ideal_voltage_mv > bestVoltage) {
bestIndex = i;
bestVoltage = ideal_voltage_mv;
bestCurrent = max_current * 10;
bestIsPPS = (caps[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS;
bestIsAVO = (caps[i] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS;
}
}
// else if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED
// && (((lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS) || ((lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS))) {
// // If this is a PPS slot, calculate the max voltage in the PPS range that can we be used and maintain
// uint16_t max_voltage = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCapabilities[i]));
// // uint16_t min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCapabilities[i]));
// uint16_t max_current = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCapabilities[i])); // max current in 10mA units
// // Using the current and tip resistance, calculate the ideal max voltage
// // if this is range, then we will work with this voltage
// // if this is not in range; then max_voltage can be safely selected
// int ideal_voltage_mv = (getTipResitanceX10() * max_current);
// if (ideal_voltage_mv > max_voltage) {
// ideal_voltage_mv = max_voltage; // constrain to what this PDO offers
// }
// if (ideal_voltage_mv > (USB_PD_VMAX * 1000)) {
// ideal_voltage_mv = (USB_PD_VMAX * 1000); // constrain to model max voltage safe to select
// }
// if (ideal_voltage_mv > bestVoltage) {
// bestIndex = i;
// bestVoltage = ideal_voltage_mv;
// bestCurrent = max_current;
// bestIsPPS = (lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS;
// bestIsAVO = (lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS;
// }
// }
}
// Now that the best index is known, set the current values
return bestIndex != 0xFF; // have we selected one
return *bestIndex != 0xFF; // have we selected one
}
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request) {
#ifdef POW_EPR
// Select any EPR slots up to USB_PD_VMAX
memcpy(&lastEPRCapabilities, capabilities, sizeof(epr_pd_msg));
memset(lastCapabilities, 0, sizeof(lastCapabilities));
memcpy(lastCapabilities, capabilities->obj, sizeof(lastCapabilities));
// PDO slots 1-7 shall be the standard PDO's
// PDO slots 8-11 shall be the >20V slots
uint8_t numobj = PD_NUMOBJ_GET(capabilities);
for (int i = 0; i < numobj; i++) {
if (i < 7) {
// SPR PDO
if ((capabilities->obj[i] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
// These should match the same logic as "normal" PDO's
}
uint8_t numobj = PD_NUMOBJ_GET(capabilities);
uint8_t bestIndex = 0xFF;
uint16_t bestIndexVoltage = 0;
uint16_t bestIndexCurrent = 0;
bool bestIsPPS = false;
bool bestIsAVO = false;
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVO)) {
/* We got what we wanted, so build a request for that */
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
request->obj[1] = lastCapabilities[bestIndex]; // Copy PDO into slot 2
if (bestIsPPS | bestIsAVO) {
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2PRV(bestIndexVoltage)) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
} else {
// EPR PDO
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(bestIndexCurrent) | PD_RDO_FV_CURRENT_SET(bestIndexCurrent) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
}
request->obj[0] |= PD_RDO_EPR_CAPABLE;
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = bestIndexVoltage;
powerSupplyWattageLimit = bestIndexVoltage * bestIndexCurrent / 100 / 1000; // Set watts for limit from PSU limit
} else {
/* Nothing matched (or no configuration), so get 5 V at low current */
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
request->obj[1] = lastCapabilities[0];
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(DPM_MIN_CURRENT) | PD_RDO_FV_CURRENT_SET(DPM_MIN_CURRENT) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(1);
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = 5000;
}
return true;
#endif
return false;
}
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request) {
memcpy(&lastCapabilities, capabilities, sizeof(pd_msg));
memset(lastCapabilities, 0, sizeof(lastCapabilities));
memcpy(lastCapabilities, capabilities->obj, sizeof(uint32_t) * 7);
/* Get the number of PDOs */
uint8_t numobj = PD_NUMOBJ_GET(capabilities);
@@ -191,10 +220,8 @@ bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request) {
uint16_t bestIndexCurrent = 0;
bool bestIsPPS = false;
bool bestIsAVO = false;
uint32_t caps[11];
memcpy(caps, capabilities->obj, numobj * sizeof(uint32_t)); // memcpy to avoid alignment breaking across function calls
if (parseCapabilitiesArray(caps, numobj, bestIndex, bestIndexVoltage, bestIndexCurrent, bestIsPPS, bestIsAVO)) {
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVO)) {
/* We got what we wanted, so build a request for that */
request->hdr = PD_MSGTYPE_REQUEST | PD_NUMOBJ(1);
if (bestIsPPS) {
@@ -204,6 +231,9 @@ bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request) {
}
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
#ifdef POW_EPR
request->obj[0] |= PD_RDO_EPR_CAPABLE;
#endif
/* Update requested voltage */
requested_voltage_mv = bestIndexVoltage;

View File

@@ -2,7 +2,6 @@
#ifndef DRIVERS_USBPD_H_
#define DRIVERS_USBPD_H_
#include "configuration.h"
#include "pdb_msg.h"
#include <stdbool.h>
#include <stdint.h>
@@ -10,18 +9,18 @@
#if POW_PD
class USBPowerDelivery {
public:
static bool start(); // Start the PD stack
static bool negotiationComplete(); // Has negotiation completed to a voltage > 5v
static bool negotiationInProgress(); // Is negotiation ongoing
static bool fusbPresent(); // Is the FUSB302 present on the bus
static void PPSTimerCallback(); // PPS Timer
static void IRQOccured(); // Thread callback that an irq occured
static void step(); // Iterate the step machine
static bool negotiationHasWorked(); // Has PD negotiation worked (are we in a PD contract)
static uint8_t getStateNumber(); // Debugging - Get the internal state number
static bool isVBUSConnected(); // Is the VBus pin connected on the FUSB302
static void triggerRenegotiation(); // Trigger a restart of voltage selection
static pd_msg *getLastSeenCapabilities(); // returns pointer to the last seen capabilities from the powersource
static bool start(); // Start the PD stack
static bool negotiationComplete(); // Has negotiation completed to a voltage > 5v
static bool negotiationInProgress(); // Is negotiation ongoing
static bool fusbPresent(); // Is the FUSB302 present on the bus
static void PPSTimerCallback(); // PPS Timer
static void IRQOccured(); // Thread callback that an irq occured
static void step(); // Iterate the step machine
static bool negotiationHasWorked(); // Has PD negotiation worked (are we in a PD contract)
static uint8_t getStateNumber(); // Debugging - Get the internal state number
static bool isVBUSConnected(); // Is the VBus pin connected on the FUSB302
static void triggerRenegotiation(); // Trigger a restart of voltage selection
static uint32_t *getLastSeenCapabilities(); // returns pointer to the last seen capabilities from the powersource
private:
//
static int detectionState;

View File

@@ -848,22 +848,21 @@ static void showPDDebug(void) {
}
} else {
// Print out the Proposed power options one by one
auto lastCaps = USBPowerDelivery::getLastSeenCapabilities();
uint8_t numobj = PD_NUMOBJ_GET(lastCaps);
if ((screen - 1) < numobj) {
auto lastCaps = USBPowerDelivery::getLastSeenCapabilities();
if ((screen - 1) < 11) {
int voltage_mv = 0;
int min_voltage = 0;
int current_a_x100 = 0;
if ((lastCaps->obj[screen - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCaps->obj[screen - 1])); // voltage in mV units
current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCaps->obj[screen - 1]); // current in 10mA units
if ((lastCaps[screen - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCaps[screen - 1])); // voltage in mV units
current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCaps[screen - 1]); // current in 10mA units
} else {
voltage_mv = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCaps->obj[screen - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps->obj[screen - 1]));
current_a_x100 = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCaps->obj[screen - 1])); // max current in 10mA units
voltage_mv = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCaps[screen - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps[screen - 1]));
current_a_x100 = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCaps[screen - 1])); // max current in 10mA units
}
// print out this entry of the proposal
OLED::printNumber(screen, 1, FontStyle::SMALL, true); // print the entry number
OLED::printNumber(screen, 2, FontStyle::SMALL, true); // print the entry number
OLED::print(SymbolSpace, FontStyle::SMALL);
if (min_voltage > 0) {
OLED::printNumber(min_voltage / 1000, 2, FontStyle::SMALL, true); // print the voltage

View File

@@ -40,7 +40,7 @@ void startPOWTask(void const *argument __unused) {
* Then we would sleep as nothing to do, but 100ms> 20ms power supply typical timeout
*/
if (!getFUS302IRQLow()) {
res = xTaskNotifyWait(0x0, 0xFFFFFF, NULL, TICKS_100MS);
res = xTaskNotifyWait(0x0, 0xFFFFFF, NULL, TICKS_100MS / 2);
}
#if POW_PD
@@ -49,9 +49,10 @@ void startPOWTask(void const *argument __unused) {
}
USBPowerDelivery::step();
USBPowerDelivery::PPSTimerCallback();
#else
(void)res;
#endif
power_check();
// power_check();
}
}