Big overhaul of the UI framework (#1749)

* Starting GUI render refactor to be more immediate mode

Update TemperatureAdjust.cpp

.

Cleanup Soldering

Sleep

SolderingProfiles

Soldering Rework

Rough pass GUI

Temp Adjust

Cleanup old OperatingMode

Debug Menu

* Update TemperatureAdjust.cpp

* Roughing some transition work

* Fixup! Hook in the init starter helper

* Better home screen button handler

* FIXUP! Fix typo's

.

* Update SettingsMenu.cpp

* More settings rework

* More settings rendering

* Fixup

* Transitions

Update SolderingProfile.cpp

Hook in transistions

* Update TemperatureAdjust.cpp

* Update push.yml

* Add auto-repeat to settings menu

* Miniware: Use IT for I2C writes

* Update USBPDDebug_HUSB238.cpp

* Force write screen on side animation cancel

.

* Refactor moving down the settings list

* Update settingsGUI.cpp

* Update I2C_Wrapper.cpp

* Update OLED.cpp

* Rework button handling

* Fix PD debug at boot

* Fixup not showing right menu options

* silence some warnings

* Style cleanup

* Fkit use bit-bang I2C for Miniware

* Update GUIRendering.md

* Fixup transition on enter soldering mode

* Save Settings

* Fixes for some animations not running

Dont bail on animations if keypress is still held

* Fixup settings acceleration

* OLED Up animation

* Link up/down on debug meny

* Make all accelerometers I2C bus aware

Update accelerometers_common.h

* Make I2C mag optional

* Miniware -> Only Bit-Bang I2C

* Fixup for scrollbar

FIXUP! Debug menu returns to home screen

FIXUP! Up oled animation

Fix temp exit

* Settings menu -> Both buttons return a menu layer

* Merge fixup

* Update BMA223.cpp

* Re-Enable OLED sleep

* Save Setting on temp adjust exit

* WiP on startup mode

* Some autostart working

* Add hibernation mode & more autostart fixes

* If cant CJC; go to startup

* Hibernate in sleep

* Cleanup scroll indicator

* FIXUP! Ensure startup warnings are linked in

* FIXUP! Ensure we render out temp change before timing out

* Ensure 100ms delay between CJC samples

* Fix not re-calculating menu length on entering menu

* Implement NegotiationinProgress for USB-PD

* Mask heating until PD finishes negotiation

* Fixup staying in hibernate correctly

* Warning timeout

* Show reset settings warning

* Correctly compensate help text start time

* Update GUIThread.cpp

* Update USBPD.cpp

* .

* Fixup sleep time

* Update printSleepCountdown.cpp

* replacing countdown with big plus while in boost mode

* bringing back the + 1 since it was missing when not in boost mode

* Bail on USB-PD check after 3 seconds incase of DC source

* Fix hibernate

* Update PIDThread.cpp

* did center plus symbol (boost mode)

* Big refactor to not make settings increment handler handle the "is last item" return

* Fixup boot logo

* Fix flashing

* Fixup recalculate the menu length on long hold

* Fixup missing menu entries

* Fix junk left on screen after user confirmation

* Re-order button handler to use custom, then default order to allow setting associated setting

* Attach setting for settings using custom handler

* Fix swap +/- keys

* Fix boost temp

* Implement last menu option for Language selector

* Wait for init before CJC runs

* Check last setting via increment value

* Update BSP.cpp

* removed = from >=

Otherwise incrementing would stop and the scroll bar would already flash at the second to last value.

* (Hacky) Fix for Settings reset

---------

Co-authored-by: discip <53649486+discip@users.noreply.github.com>
This commit is contained in:
Ben V. Brown
2024-02-18 09:42:08 +11:00
committed by GitHub
parent 21a1012102
commit baf2f26e59
50 changed files with 1717 additions and 6610 deletions

View File

@@ -360,14 +360,7 @@ uint8_t preStartChecks() {
}
#endif
#ifdef POW_PD
// If we are in the middle of negotiating PD, wait until timeout
// Before turning on the heater
if (!USBPowerDelivery::negotiationComplete()) {
return 0;
}
#endif
return 1;
}
uint64_t getDeviceID() {

View File

@@ -1,639 +1,5 @@
/**
******************************************************************************
* @file stm32f1xx_hal_i2c.h
* @author MCD Application Team
* @brief Header file of I2C HAL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_I2C_H
#define __STM32F1xx_HAL_I2C_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup I2C
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup I2C_Exported_Types I2C Exported Types
* @{
*/
/**
* @brief I2C Configuration Structure definition
*/
typedef struct {
uint32_t ClockSpeed; /*!< Specifies the clock frequency.
This parameter must be set to a value lower than 400kHz */
uint32_t DutyCycle; /*!< Specifies the I2C fast mode duty cycle.
This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */
uint32_t OwnAddress1; /*!< Specifies the first device own address.
This parameter can be a 7-bit or 10-bit address. */
uint32_t AddressingMode; /*!< Specifies if 7-bit or 10-bit addressing mode is selected.
This parameter can be a value of @ref I2C_addressing_mode */
uint32_t DualAddressMode; /*!< Specifies if dual addressing mode is selected.
This parameter can be a value of @ref I2C_dual_addressing_mode */
uint32_t OwnAddress2; /*!< Specifies the second device own address if dual addressing mode is selected
This parameter can be a 7-bit address. */
uint32_t GeneralCallMode; /*!< Specifies if general call mode is selected.
This parameter can be a value of @ref I2C_general_call_addressing_mode */
uint32_t NoStretchMode; /*!< Specifies if nostretch mode is selected.
This parameter can be a value of @ref I2C_nostretch_mode */
} I2C_InitTypeDef;
/**
* @brief HAL State structure definition
* @note HAL I2C State value coding follow below described bitmap :
* b7-b6 Error information
* 00 : No Error
* 01 : Abort (Abort user request on going)
* 10 : Timeout
* 11 : Error
* b5 IP initilisation status
* 0 : Reset (IP not initialized)
* 1 : Init done (IP initialized and ready to use. HAL I2C Init function called)
* b4 (not used)
* x : Should be set to 0
* b3
* 0 : Ready or Busy (No Listen mode ongoing)
* 1 : Listen (IP in Address Listen Mode)
* b2 Intrinsic process state
* 0 : Ready
* 1 : Busy (IP busy with some configuration or internal operations)
* b1 Rx state
* 0 : Ready (no Rx operation ongoing)
* 1 : Busy (Rx operation ongoing)
* b0 Tx state
* 0 : Ready (no Tx operation ongoing)
* 1 : Busy (Tx operation ongoing)
*/
typedef enum {
HAL_I2C_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized */
HAL_I2C_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use */
HAL_I2C_STATE_BUSY = 0x24U, /*!< An internal process is ongoing */
HAL_I2C_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing */
HAL_I2C_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing */
HAL_I2C_STATE_LISTEN = 0x28U, /*!< Address Listen Mode is ongoing */
HAL_I2C_STATE_BUSY_TX_LISTEN = 0x29U, /*!< Address Listen Mode and Data Transmission
process is ongoing */
HAL_I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /*!< Address Listen Mode and Data Reception
process is ongoing */
HAL_I2C_STATE_ABORT = 0x60U, /*!< Abort user request ongoing */
HAL_I2C_STATE_TIMEOUT = 0xA0U, /*!< Timeout state */
HAL_I2C_STATE_ERROR = 0xE0U /*!< Error */
} HAL_I2C_StateTypeDef;
/**
* @brief HAL Mode structure definition
* @note HAL I2C Mode value coding follow below described bitmap :
* b7 (not used)
* x : Should be set to 0
* b6
* 0 : None
* 1 : Memory (HAL I2C communication is in Memory Mode)
* b5
* 0 : None
* 1 : Slave (HAL I2C communication is in Slave Mode)
* b4
* 0 : None
* 1 : Master (HAL I2C communication is in Master Mode)
* b3-b2-b1-b0 (not used)
* xxxx : Should be set to 0000
*/
typedef enum {
HAL_I2C_MODE_NONE = 0x00U, /*!< No I2C communication on going */
HAL_I2C_MODE_MASTER = 0x10U, /*!< I2C communication is in Master Mode */
HAL_I2C_MODE_SLAVE = 0x20U, /*!< I2C communication is in Slave Mode */
HAL_I2C_MODE_MEM = 0x40U /*!< I2C communication is in Memory Mode */
} HAL_I2C_ModeTypeDef;
/**
* @brief I2C handle Structure definition
*/
typedef struct {
I2C_TypeDef *Instance; /*!< I2C registers base address */
I2C_InitTypeDef Init; /*!< I2C communication parameters */
uint8_t *pBuffPtr; /*!< Pointer to I2C transfer buffer */
uint16_t XferSize; /*!< I2C transfer size */
__IO uint16_t XferCount; /*!< I2C transfer counter */
__IO uint32_t XferOptions; /*!< I2C transfer options */
__IO uint32_t PreviousState; /*!< I2C communication Previous state and mode
context for internal usage */
DMA_HandleTypeDef *hdmatx; /*!< I2C Tx DMA handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< I2C Rx DMA handle parameters */
HAL_LockTypeDef Lock; /*!< I2C locking object */
__IO HAL_I2C_StateTypeDef State; /*!< I2C communication state */
__IO HAL_I2C_ModeTypeDef Mode; /*!< I2C communication mode */
__IO uint32_t ErrorCode; /*!< I2C Error code */
__IO uint32_t Devaddress; /*!< I2C Target device address */
__IO uint32_t Memaddress; /*!< I2C Target memory address */
__IO uint32_t MemaddSize; /*!< I2C Target memory address size */
__IO uint32_t EventCount; /*!< I2C Event counter */
} I2C_HandleTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2C_Exported_Constants I2C Exported Constants
* @{
*/
/** @defgroup I2C_Error_Code I2C Error Code
* @brief I2C Error Code
* @{
*/
#define HAL_I2C_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_I2C_ERROR_BERR 0x00000001U /*!< BERR error */
#define HAL_I2C_ERROR_ARLO 0x00000002U /*!< ARLO error */
#define HAL_I2C_ERROR_AF 0x00000004U /*!< AF error */
#define HAL_I2C_ERROR_OVR 0x00000008U /*!< OVR error */
#define HAL_I2C_ERROR_DMA 0x00000010U /*!< DMA transfer error */
#define HAL_I2C_ERROR_TIMEOUT 0x00000020U /*!< Timeout Error */
/**
* @}
*/
/** @defgroup I2C_duty_cycle_in_fast_mode I2C duty cycle in fast mode
* @{
*/
#define I2C_DUTYCYCLE_2 0x00000000U
#define I2C_DUTYCYCLE_16_9 I2C_CCR_DUTY
/**
* @}
*/
/** @defgroup I2C_addressing_mode I2C addressing mode
* @{
*/
#define I2C_ADDRESSINGMODE_7BIT 0x00004000U
// #define I2C_ADDRESSINGMODE_10BIT (I2C_OAR1_ADDMODE | 0x00004000U)
/**
* @}
*/
/** @defgroup I2C_dual_addressing_mode I2C dual addressing mode
* @{
*/
#define I2C_DUALADDRESS_DISABLE 0x00000000U
#define I2C_DUALADDRESS_ENABLE I2C_OAR2_ENDUAL
/**
* @}
*/
/** @defgroup I2C_general_call_addressing_mode I2C general call addressing mode
* @{
*/
#define I2C_GENERALCALL_DISABLE 0x00000000U
#define I2C_GENERALCALL_ENABLE I2C_CR1_ENGC
/**
* @}
*/
/** @defgroup I2C_nostretch_mode I2C nostretch mode
* @{
*/
#define I2C_NOSTRETCH_DISABLE 0x00000000U
#define I2C_NOSTRETCH_ENABLE I2C_CR1_NOSTRETCH
/**
* @}
*/
/** @defgroup I2C_Memory_Address_Size I2C Memory Address Size
* @{
*/
#define I2C_MEMADD_SIZE_8BIT 0x00000001U
#define I2C_MEMADD_SIZE_16BIT 0x00000010U
/**
* @}
*/
/** @defgroup I2C_XferDirection_definition I2C XferDirection definition
* @{
*/
#define I2C_DIRECTION_RECEIVE 0x00000000U
#define I2C_DIRECTION_TRANSMIT 0x00000001U
/**
* @}
*/
/** @defgroup I2C_XferOptions_definition I2C XferOptions definition
* @{
*/
#define I2C_FIRST_FRAME 0x00000001U
#define I2C_NEXT_FRAME 0x00000002U
#define I2C_FIRST_AND_LAST_FRAME 0x00000004U
#define I2C_LAST_FRAME 0x00000008U
/**
* @}
*/
/** @defgroup I2C_Interrupt_configuration_definition I2C Interrupt configuration definition
* @{
*/
#define I2C_IT_BUF I2C_CR2_ITBUFEN
#define I2C_IT_EVT I2C_CR2_ITEVTEN
#define I2C_IT_ERR I2C_CR2_ITERREN
/**
* @}
*/
/** @defgroup I2C_Flag_definition I2C Flag definition
* @{
*/
#define I2C_FLAG_SMBALERT 0x00018000U
#define I2C_FLAG_TIMEOUT 0x00014000U
#define I2C_FLAG_PECERR 0x00011000U
#define I2C_FLAG_OVR 0x00010800U
#define I2C_FLAG_AF 0x00010400U
#define I2C_FLAG_ARLO 0x00010200U
#define I2C_FLAG_BERR 0x00010100U
#define I2C_FLAG_TXE 0x00010080U
#define I2C_FLAG_RXNE 0x00010040U
#define I2C_FLAG_STOPF 0x00010010U
// #define I2C_FLAG_ADD10 0x00010008U
#define I2C_FLAG_BTF 0x00010004U
#define I2C_FLAG_ADDR 0x00010002U
#define I2C_FLAG_SB 0x00010001U
#define I2C_FLAG_DUALF 0x00100080U
#define I2C_FLAG_SMBHOST 0x00100040U
#define I2C_FLAG_SMBDEFAULT 0x00100020U
#define I2C_FLAG_GENCALL 0x00100010U
#define I2C_FLAG_TRA 0x00100004U
#define I2C_FLAG_BUSY 0x00100002U
#define I2C_FLAG_MSL 0x00100001U
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup I2C_Exported_Macros I2C Exported Macros
* @{
*/
/** @brief Reset I2C handle state
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @retval None
*/
#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2C_STATE_RESET)
/** @brief Enable or disable the specified I2C interrupts.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @param __INTERRUPT__: specifies the interrupt source to enable or disable.
* This parameter can be one of the following values:
* @arg I2C_IT_BUF: Buffer interrupt enable
* @arg I2C_IT_EVT: Event interrupt enable
* @arg I2C_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_I2C_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR2 |= (__INTERRUPT__))
#define __HAL_I2C_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR2 &= (~(__INTERRUPT__)))
/** @brief Checks if the specified I2C interrupt source is enabled or disabled.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @param __INTERRUPT__: specifies the I2C interrupt source to check.
* This parameter can be one of the following values:
* @arg I2C_IT_BUF: Buffer interrupt enable
* @arg I2C_IT_EVT: Event interrupt enable
* @arg I2C_IT_ERR: Error interrupt enable
* @retval The new state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_I2C_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/** @brief Checks whether the specified I2C flag is set or not.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @param __FLAG__: specifies the flag to check.
* This parameter can be one of the following values:
* @arg I2C_FLAG_SMBALERT: SMBus Alert flag
* @arg I2C_FLAG_TIMEOUT: Timeout or Tlow error flag
* @arg I2C_FLAG_PECERR: PEC error in reception flag
* @arg I2C_FLAG_OVR: Overrun/Underrun flag
* @arg I2C_FLAG_AF: Acknowledge failure flag
* @arg I2C_FLAG_ARLO: Arbitration lost flag
* @arg I2C_FLAG_BERR: Bus error flag
* @arg I2C_FLAG_TXE: Data register empty flag
* @arg I2C_FLAG_RXNE: Data register not empty flag
* @arg I2C_FLAG_STOPF: Stop detection flag
* @arg I2C_FLAG_ADD10: 10-bit header sent flag
* @arg I2C_FLAG_BTF: Byte transfer finished flag
* @arg I2C_FLAG_ADDR: Address sent flag
* Address matched flag
* @arg I2C_FLAG_SB: Start bit flag
* @arg I2C_FLAG_DUALF: Dual flag
* @arg I2C_FLAG_SMBHOST: SMBus host header
* @arg I2C_FLAG_SMBDEFAULT: SMBus default header
* @arg I2C_FLAG_GENCALL: General call header flag
* @arg I2C_FLAG_TRA: Transmitter/Receiver flag
* @arg I2C_FLAG_BUSY: Bus busy flag
* @arg I2C_FLAG_MSL: Master/Slave flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_I2C_GET_FLAG(__HANDLE__, __FLAG__) \
((((uint8_t)((__FLAG__) >> 16U)) == 0x01U) ? ((((__HANDLE__)->Instance->SR1) & ((__FLAG__)&I2C_FLAG_MASK)) == ((__FLAG__)&I2C_FLAG_MASK)) \
: ((((__HANDLE__)->Instance->SR2) & ((__FLAG__)&I2C_FLAG_MASK)) == ((__FLAG__)&I2C_FLAG_MASK)))
/** @brief Clears the I2C pending flags which are cleared by writing 0 in a specific bit.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @param __FLAG__: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg I2C_FLAG_SMBALERT: SMBus Alert flag
* @arg I2C_FLAG_TIMEOUT: Timeout or Tlow error flag
* @arg I2C_FLAG_PECERR: PEC error in reception flag
* @arg I2C_FLAG_OVR: Overrun/Underrun flag (Slave mode)
* @arg I2C_FLAG_AF: Acknowledge failure flag
* @arg I2C_FLAG_ARLO: Arbitration lost flag (Master mode)
* @arg I2C_FLAG_BERR: Bus error flag
* @retval None
*/
#define __HAL_I2C_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR1 = ~((__FLAG__)&I2C_FLAG_MASK))
/** @brief Clears the I2C ADDR pending flag.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @retval None
*/
#define __HAL_I2C_CLEAR_ADDRFLAG(__HANDLE__) \
do { \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR1; \
tmpreg = (__HANDLE__)->Instance->SR2; \
UNUSED(tmpreg); \
} while (0U)
/** @brief Clears the I2C STOPF pending flag.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @retval None
*/
#define __HAL_I2C_CLEAR_STOPFLAG(__HANDLE__) \
do { \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR1; \
(__HANDLE__)->Instance->CR1 |= I2C_CR1_PE; \
UNUSED(tmpreg); \
} while (0U)
/** @brief Enable the I2C peripheral.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2Cx where x: 1 or 2 to select the I2C peripheral.
* @retval None
*/
#define __HAL_I2C_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= I2C_CR1_PE)
/** @brief Disable the I2C peripheral.
* @param __HANDLE__: specifies the I2C Handle.
* This parameter can be I2Cx where x: 1 or 2 to select the I2C peripheral.
* @retval None
*/
#define __HAL_I2C_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~I2C_CR1_PE)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2C_Exported_Functions
* @{
*/
/** @addtogroup I2C_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions **********************************/
HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/** @addtogroup I2C_Exported_Functions_Group2
* @{
*/
/* I/O operation functions *****************************************************/
/******* Blocking mode: Polling */
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);
/******* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress);
HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c);
/******* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
/******* I2C IRQHandler and Callbacks used in non blocking modes (Interrupt and DMA) */
void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c);
void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode);
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/** @addtogroup I2C_Exported_Functions_Group3
* @{
*/
/* Peripheral State, Mode and Errors functions *********************************/
HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c);
HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c);
uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup I2C_Private_Constants I2C Private Constants
* @{
*/
#define I2C_FLAG_MASK 0x0000FFFFU
#define I2C_MIN_PCLK_FREQ_STANDARD 2000000U /*!< 2 MHz */
#define I2C_MIN_PCLK_FREQ_FAST 4000000U /*!< 4 MHz */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup I2C_Private_Macros I2C Private Macros
* @{
*/
#define I2C_MIN_PCLK_FREQ(__PCLK__, __SPEED__) (((__SPEED__) <= 100000U) ? ((__PCLK__) < I2C_MIN_PCLK_FREQ_STANDARD) : ((__PCLK__) < I2C_MIN_PCLK_FREQ_FAST))
#define I2C_CCR_CALCULATION(__PCLK__, __SPEED__, __COEFF__) (((((__PCLK__)-1U) / ((__SPEED__) * (__COEFF__))) + 1U) & I2C_CCR_CCR)
#define I2C_FREQRANGE(__PCLK__) ((__PCLK__) / 1000000U)
#define I2C_RISE_TIME(__FREQRANGE__, __SPEED__) (((__SPEED__) <= 100000U) ? ((__FREQRANGE__) + 1U) : ((((__FREQRANGE__)*300U) / 1000U) + 1U))
#define I2C_SPEED_STANDARD(__PCLK__, __SPEED__) ((I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 2U) < 4U) ? 4U : I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 2U))
#define I2C_SPEED_FAST(__PCLK__, __SPEED__, __DUTYCYCLE__) \
(((__DUTYCYCLE__) == I2C_DUTYCYCLE_2) ? I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 3U) : (I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 25U) | I2C_DUTYCYCLE_16_9))
#define I2C_SPEED(__PCLK__, __SPEED__, __DUTYCYCLE__) \
(((__SPEED__) <= 100000U) ? (I2C_SPEED_STANDARD((__PCLK__), (__SPEED__))) \
: ((I2C_SPEED_FAST((__PCLK__), (__SPEED__), (__DUTYCYCLE__)) & I2C_CCR_CCR) == 0U) ? 1U \
: ((I2C_SPEED_FAST((__PCLK__), (__SPEED__), (__DUTYCYCLE__))) | I2C_CCR_FS))
#define I2C_7BIT_ADD_WRITE(__ADDRESS__) ((uint8_t)((__ADDRESS__) & (~I2C_OAR1_ADD0)))
#define I2C_7BIT_ADD_READ(__ADDRESS__) ((uint8_t)((__ADDRESS__) | I2C_OAR1_ADD0))
#define I2C_10BIT_ADDRESS(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)(0x00FFU))))
#define I2C_10BIT_HEADER_WRITE(__ADDRESS__) ((uint8_t)((uint16_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)(0x0300U))) >> 7U) | (uint16_t)(0x00F0U))))
#define I2C_10BIT_HEADER_READ(__ADDRESS__) ((uint8_t)((uint16_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)(0x0300U))) >> 7U) | (uint16_t)(0x00F1U))))
#define I2C_MEM_ADD_MSB(__ADDRESS__) ((uint8_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)(0xFF00U))) >> 8U)))
#define I2C_MEM_ADD_LSB(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)(0x00FFU))))
/** @defgroup I2C_IS_RTC_Definitions I2C Private macros to check input parameters
* @{
*/
#define IS_I2C_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_DUTYCYCLE_2) || ((CYCLE) == I2C_DUTYCYCLE_16_9))
#define IS_I2C_ADDRESSING_MODE(ADDRESS) (((ADDRESS) == I2C_ADDRESSINGMODE_7BIT) || ((ADDRESS) == I2C_ADDRESSINGMODE_10BIT))
#define IS_I2C_DUAL_ADDRESS(ADDRESS) (((ADDRESS) == I2C_DUALADDRESS_DISABLE) || ((ADDRESS) == I2C_DUALADDRESS_ENABLE))
#define IS_I2C_GENERAL_CALL(CALL) (((CALL) == I2C_GENERALCALL_DISABLE) || ((CALL) == I2C_GENERALCALL_ENABLE))
#define IS_I2C_NO_STRETCH(STRETCH) (((STRETCH) == I2C_NOSTRETCH_DISABLE) || ((STRETCH) == I2C_NOSTRETCH_ENABLE))
#define IS_I2C_MEMADD_SIZE(SIZE) (((SIZE) == I2C_MEMADD_SIZE_8BIT) || ((SIZE) == I2C_MEMADD_SIZE_16BIT))
#define IS_I2C_CLOCK_SPEED(SPEED) (((SPEED) > 0) && ((SPEED) <= 400000U))
#define IS_I2C_OWN_ADDRESS1(ADDRESS1) (((ADDRESS1) & (uint32_t)(0xFFFFFC00U)) == 0U)
#define IS_I2C_OWN_ADDRESS2(ADDRESS2) (((ADDRESS2) & (uint32_t)(0xFFFFFF01U)) == 0U)
#define IS_I2C_TRANSFER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_FIRST_FRAME) || ((REQUEST) == I2C_NEXT_FRAME) || ((REQUEST) == I2C_FIRST_AND_LAST_FRAME) || ((REQUEST) == I2C_LAST_FRAME))
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup I2C_Private_Functions I2C Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_I2C_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@@ -177,6 +177,9 @@
#define TIP_RESISTANCE 75 // x10 ohms, 7.5 typical for ts100 tips
#define POW_DC
#define I2C_SOFT_BUS_1 1
#define OLED_I2CBB1 1
#define ACCEL_I2CBB1 1
#define TEMP_TMP36
#endif /* TS100 */
@@ -241,6 +244,9 @@
#define POW_QC
#define TEMP_TMP36
#define I2C_SOFT_BUS_1 1
#define OLED_I2CBB1 1
#define ACCEL_I2CBB1 1
#endif /* TS80 */
#ifdef MODEL_TS80P
@@ -257,6 +263,10 @@
#define USB_PD_EPR_WATTAGE 0 /*No EPR*/
#define POW_QC 1
#define TEMP_NTC
#define I2C_SOFT_BUS_2 1
#define I2C_SOFT_BUS_1 1
#define OLED_I2CBB1 1
#define ACCEL_I2CBB1 1
#define SC7_ORI_FLIP
#endif /* TS80P */

View File

@@ -282,7 +282,7 @@ typedef union {
*/
#define __RV_CSR_SWAP(csr, val) \
({ \
register rv_csr_t __v = (unsigned long)(val); \
volatile rv_csr_t __v = (unsigned long)(val); \
__ASM volatile("csrrw %0, " STRINGIFY(csr) ", %1" : "=r"(__v) : "rK"(__v) : "memory"); \
__v; \
})
@@ -297,7 +297,7 @@ typedef union {
*/
#define __RV_CSR_READ(csr) \
({ \
register rv_csr_t __v; \
volatile rv_csr_t __v; \
__ASM volatile("csrr %0, " STRINGIFY(csr) : "=r"(__v) : : "memory"); \
__v; \
})
@@ -312,7 +312,7 @@ typedef union {
*/
#define __RV_CSR_WRITE(csr, val) \
({ \
register rv_csr_t __v = (rv_csr_t)(val); \
volatile rv_csr_t __v = (rv_csr_t)(val); \
__ASM volatile("csrw " STRINGIFY(csr) ", %0" : : "rK"(__v) : "memory"); \
})
@@ -328,7 +328,7 @@ typedef union {
*/
#define __RV_CSR_READ_SET(csr, val) \
({ \
register rv_csr_t __v = (rv_csr_t)(val); \
volatile rv_csr_t __v = (rv_csr_t)(val); \
__ASM volatile("csrrs %0, " STRINGIFY(csr) ", %1" : "=r"(__v) : "rK"(__v) : "memory"); \
__v; \
})
@@ -343,7 +343,7 @@ typedef union {
*/
#define __RV_CSR_SET(csr, val) \
({ \
register rv_csr_t __v = (rv_csr_t)(val); \
volatile rv_csr_t __v = (rv_csr_t)(val); \
__ASM volatile("csrs " STRINGIFY(csr) ", %0" : : "rK"(__v) : "memory"); \
})
@@ -359,7 +359,7 @@ typedef union {
*/
#define __RV_CSR_READ_CLEAR(csr, val) \
({ \
register rv_csr_t __v = (rv_csr_t)(val); \
volatile rv_csr_t __v = (rv_csr_t)(val); \
__ASM volatile("csrrc %0, " STRINGIFY(csr) ", %1" : "=r"(__v) : "rK"(__v) : "memory"); \
__v; \
})
@@ -374,7 +374,7 @@ typedef union {
*/
#define __RV_CSR_CLEAR(csr, val) \
({ \
register rv_csr_t __v = (rv_csr_t)(val); \
volatile rv_csr_t __v = (rv_csr_t)(val); \
__ASM volatile("csrc " STRINGIFY(csr) ", %0" : : "rK"(__v) : "memory"); \
})
#endif /* __ASSEMBLY__ */

View File

@@ -147,11 +147,12 @@
#define POW_PD 1
#define USB_PD_EPR_WATTAGE 0 /*No EPR (Yet?) */
#define POW_PD_EXT 0
#define POW_QC 1
#define POW_DC 1
#define POW_QC_20V 1
#define ENABLE_QC2 1
#define POW_PD_EXT 0
#define POW_QC 1
#define POW_DC 1
#define POW_QC_20V 1
#define ENABLE_QC2 1
#define MAG_SLEEP_SUPPORT 1
#define TEMP_TMP36
#define ACCEL_BMA
#define ACCEL_SC7

View File

@@ -34,7 +34,7 @@
#endif
extern TickType_t lastMovementTime;
extern OperatingMode currentMode;
extern OperatingMode currentOperatingMode;
int ble_char_read_status_callback(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf, u16_t len, u16_t offset) {
if (attr == NULL || attr->uuid == NULL) {
@@ -123,7 +123,7 @@ int ble_char_read_status_callback(struct bt_conn *conn, const struct bt_gatt_att
break;
case 13:
// Operating mode
temp = currentMode;
temp = (uint32_t)currentOperatingMode;
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
@@ -162,7 +162,7 @@ int ble_char_read_bulk_value_callback(struct bt_conn *conn, const struct bt_gatt
TipThermoModel::getTipMaxInC(), // 9 - max temp
TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true), // 10 - Raw tip in μV
abs(getRawHallEffect()), // 11 - hall sensor
currentMode, // 12 - Operating mode
(uint32_t)currentOperatingMode, // 12 - Operating mode
x10WattHistory.average(), // 13 - Estimated Wattage *10
};
int lenToCopy = sizeof(bulkData) - offset;
@@ -203,6 +203,8 @@ int ble_char_read_bulk_value_callback(struct bt_conn *conn, const struct bt_gatt
memcpy(buf, &id, sizeof(id));
return sizeof(id);
}
default:
break;
}
return 0;
}

View File

@@ -153,6 +153,7 @@
#define POW_QC_20V 1 // Supported features
#define POW_EPR 1
#define ENABLE_QC2 1
#define MAG_SLEEP_SUPPORT 1
#define DEVICE_HAS_VALIDATION_SUPPORT
#define TEMP_NTC
#define ACCEL_BMA

View File

@@ -9,6 +9,7 @@
#define CORE_DRIVERS_BMA223_HPP_
#include "BMA223_defines.h"
#include "BSP.h"
#include "accelerometers_common.h"
#include "I2C_Wrapper.hpp"
#include "accelerometers_common.h"

View File

@@ -10,6 +10,10 @@
#include "cmsis_os.h"
#include <array>
#include "MMA8652FC.hpp"
#include "accelerometers_common.h"
#include "cmsis_os.h"
static const ACCEL_I2C_CLASS::I2C_REG i2c_registers[] = {
{ CTRL_REG2, 0, 0}, // Normal mode
{ CTRL_REG2, 0x40, 2}, // Reset all registers to POR values

View File

@@ -262,7 +262,8 @@ void OLED::maskScrollIndicatorOnOLED() {
* If forward is true, this displays a forward navigation to the second framebuffer contents.
* Otherwise a rewinding navigation animation is shown to the second framebuffer contents.
*/
void OLED::transitionSecondaryFramebuffer(bool forwardNavigation) {
void OLED::transitionSecondaryFramebuffer(const bool forwardNavigation, const TickType_t viewEnterTime) {
bool buttonsReleased = getButtonState() == BUTTON_NONE;
uint8_t *stripBackPointers[4];
stripBackPointers[0] = &secondFrameBuffer[FRAMEBUFFER_START + 0];
stripBackPointers[1] = &secondFrameBuffer[FRAMEBUFFER_START + OLED_WIDTH];
@@ -317,10 +318,14 @@ void OLED::transitionSecondaryFramebuffer(bool forwardNavigation) {
refresh(); // Now refresh to write out the contents to the new page
vTaskDelayUntil(&startDraw, TICKS_100MS / 7);
if (getButtonState() != BUTTON_NONE) {
buttonsReleased |= getButtonState() == BUTTON_NONE;
if (getButtonState() != BUTTON_NONE && buttonsReleased) {
memcpy(screenBuffer + FRAMEBUFFER_START, secondFrameBuffer + FRAMEBUFFER_START, sizeof(screenBuffer) - FRAMEBUFFER_START);
refresh(); // Now refresh to write out the contents to the new page
return;
}
}
refresh(); //
}
void OLED::useSecondaryFramebuffer(bool useSecondary) {
@@ -330,6 +335,7 @@ void OLED::useSecondaryFramebuffer(bool useSecondary) {
setFramebuffer(screenBuffer);
}
}
/**
* This assumes that the current display output buffer has the current on screen contents
* Then the secondary buffer has the "new" contents to be slid up onto the screen
@@ -337,8 +343,9 @@ void OLED::useSecondaryFramebuffer(bool useSecondary) {
*
* **This function blocks until the transition has completed or user presses button**
*/
void OLED::transitionScrollDown() {
TickType_t startDraw = xTaskGetTickCount();
void OLED::transitionScrollDown(const TickType_t viewEnterTime) {
TickType_t startDraw = xTaskGetTickCount();
bool buttonsReleased = getButtonState() == BUTTON_NONE;
for (uint8_t heightPos = 0; heightPos < OLED_HEIGHT; heightPos++) {
// For each line, we shuffle all bits up a row
@@ -365,9 +372,9 @@ void OLED::transitionScrollDown() {
// Finally on the bottom row; we shuffle it up ready
secondFrameBuffer[fourthStripPos] >>= 1;
#else
// Move the MSB off the first strip, and pop MSB from second strip onto the first strip
// Move the LSB off the first strip, and pop MSB from second strip onto the first strip
screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] >> 1) | ((screenBuffer[secondStripPos] & 0x01) << 7);
// Now shuffle off the second strip MSB, and replace it with the MSB of the secondary buffer
// Now shuffle off the second strip MSB, and replace it with the LSB of the secondary buffer
screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] >> 1) | ((secondFrameBuffer[firstStripPos] & 0x01) << 7);
// Finally, do the shuffle on the second frame buffer
secondFrameBuffer[firstStripPos] = (secondFrameBuffer[firstStripPos] >> 1) | ((secondFrameBuffer[secondStripPos] & 0x01) << 7);
@@ -375,7 +382,62 @@ void OLED::transitionScrollDown() {
secondFrameBuffer[secondStripPos] >>= 1;
#endif /* OLED_128x32 */
}
if (getButtonState() != BUTTON_NONE) {
buttonsReleased |= getButtonState() == BUTTON_NONE;
if (getButtonState() != BUTTON_NONE && buttonsReleased) {
// Exit early, but have to transition whole buffer
memcpy(screenBuffer + FRAMEBUFFER_START, secondFrameBuffer + FRAMEBUFFER_START, sizeof(screenBuffer) - FRAMEBUFFER_START);
refresh(); // Now refresh to write out the contents to the new page
return;
}
refresh(); // Now refresh to write out the contents to the new page
vTaskDelayUntil(&startDraw, TICKS_100MS / 7);
}
}
/**
* This assumes that the current display output buffer has the current on screen contents
* Then the secondary buffer has the "new" contents to be slid down onto the screen
* Sadly we cant use the hardware scroll as some devices with the 128x32 screens dont have the GRAM for holding both screens at once
*
* **This function blocks until the transition has completed or user presses button**
*/
void OLED::transitionScrollUp(const TickType_t viewEnterTime) {
TickType_t startDraw = xTaskGetTickCount();
bool buttonsReleased = getButtonState() == BUTTON_NONE;
for (uint8_t heightPos = 0; heightPos < OLED_HEIGHT; heightPos++) {
// For each line, we shuffle all bits down a row
for (uint8_t xPos = 0; xPos < OLED_WIDTH; xPos++) {
const uint16_t firstStripPos = FRAMEBUFFER_START + xPos;
const uint16_t secondStripPos = firstStripPos + OLED_WIDTH;
#ifdef OLED_128x32
// For 32 pixel high OLED's we have four strips to tailchain
const uint16_t thirdStripPos = secondStripPos + OLED_WIDTH;
const uint16_t fourthStripPos = thirdStripPos + OLED_WIDTH;
// We are shffling LSB's off the end and pushing bits down
screenBuffer[fourthStripPos] = (screenBuffer[fourthStripPos] << 1) | ((screenBuffer[thirdStripPos] & 0x80) >> 7);
screenBuffer[thirdStripPos] = (screenBuffer[thirdStripPos] << 1) | ((screenBuffer[secondStripPos] & 0x80) >> 7);
screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] << 1) | ((screenBuffer[firstStripPos] & 0x80) >> 7);
screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] << 1) | ((secondFrameBuffer[fourthStripPos] & 0x80) >> 7);
secondFrameBuffer[fourthStripPos] = (secondFrameBuffer[fourthStripPos] << 1) | ((secondFrameBuffer[thirdStripPos] & 0x80) >> 7);
secondFrameBuffer[thirdStripPos] = (secondFrameBuffer[thirdStripPos] << 1) | ((secondFrameBuffer[secondStripPos] & 0x80) >> 7);
secondFrameBuffer[secondStripPos] = (secondFrameBuffer[secondStripPos] << 1) | ((secondFrameBuffer[firstStripPos] & 0x80) >> 7);
// Finally on the bottom row; we shuffle it up ready
secondFrameBuffer[firstStripPos] <<= 1;
#else
// We pop the LSB off the bottom row, and replace the MSB in that byte with the LSB of the row above
screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] << 1) | ((screenBuffer[firstStripPos] & 0x80) >> 7);
// Move the LSB off the first strip, and pop MSB from second strip onto the first strip
screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] << 1) | ((secondFrameBuffer[secondStripPos] & 0x80) >> 7);
// Finally, do the shuffle on the second frame buffer
secondFrameBuffer[secondStripPos] = (secondFrameBuffer[secondStripPos] << 1) | ((secondFrameBuffer[firstStripPos] & 0x80) >> 7);
// Finally on the bottom row; we shuffle it up ready
secondFrameBuffer[firstStripPos] <<= 1;
#endif /* OLED_128x32 */
}
buttonsReleased |= getButtonState() == BUTTON_NONE;
if (getButtonState() != BUTTON_NONE && buttonsReleased) {
// Exit early, but have to transition whole buffer
memcpy(screenBuffer + FRAMEBUFFER_START, secondFrameBuffer + FRAMEBUFFER_START, sizeof(screenBuffer) - FRAMEBUFFER_START);
refresh(); // Now refresh to write out the contents to the new page
@@ -428,14 +490,18 @@ void OLED::setRotation(bool leftHanded) {
}
void OLED::setBrightness(uint8_t contrast) {
OLED_Setup_Array[15].val = contrast;
I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, &OLED_Setup_Array[14], 2);
if (OLED_Setup_Array[15].val != contrast) {
OLED_Setup_Array[15].val = contrast;
I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, &OLED_Setup_Array[14], 2);
}
}
void OLED::setInverseDisplay(bool inverse) {
uint8_t normalInverseCmd = inverse ? 0xA7 : 0xA6;
OLED_Setup_Array[21].val = normalInverseCmd;
I2C_CLASS::I2C_RegisterWrite(DEVICEADDR_OLED, 0x80, normalInverseCmd);
if (OLED_Setup_Array[21].val != normalInverseCmd) {
OLED_Setup_Array[21].val = normalInverseCmd;
I2C_CLASS::I2C_RegisterWrite(DEVICEADDR_OLED, 0x80, normalInverseCmd);
}
}
// print a string to the current cursor location, len chars MAX

View File

@@ -149,9 +149,10 @@ public:
static void drawHeatSymbol(uint8_t state);
static void drawScrollIndicator(uint8_t p, uint8_t h); // Draws a scrolling position indicator
static void maskScrollIndicatorOnOLED();
static void transitionSecondaryFramebuffer(bool forwardNavigation);
static void transitionSecondaryFramebuffer(const bool forwardNavigation, const TickType_t viewEnterTime);
static void useSecondaryFramebuffer(bool useSecondary);
static void transitionScrollDown();
static void transitionScrollDown(const TickType_t viewEnterTime);
static void transitionScrollUp(const TickType_t viewEnterTime);
private:
static bool checkDisplayBufferChecksum() {

View File

@@ -13,7 +13,8 @@
#include "Si7210_defines.h"
#include "accelerometers_common.h"
#include <Si7210.h>
bool Si7210::detect() { return ACCEL_I2C_CLASS::wakePart(SI7210_ADDRESS); }
#ifdef MAG_SLEEP_SUPPORT
bool Si7210::detect() { return FRToSI2C::wakePart(SI7210_ADDRESS); }
bool Si7210::init() {
// Turn on auto increment and sanity check ID
@@ -185,3 +186,4 @@ bool Si7210::set_high_range() {
worked &= write_reg(SI7210_A5, 0, val);
return worked;
}
#endif // MAG_SLEEP_SUPPORT

View File

@@ -7,7 +7,10 @@
#ifndef CORE_DRIVERS_SI7210_H_
#define CORE_DRIVERS_SI7210_H_
#include "configuration.h"
#include <stdint.h>
#ifdef MAG_SLEEP_SUPPORT
class Si7210 {
public:
// Return true if present
@@ -23,5 +26,5 @@ private:
static bool get_field_strength(int16_t *field);
static bool set_high_range();
};
#endif // MAG_SLEEP_SUPPORT
#endif /* CORE_DRIVERS_SI7210_H_ */

View File

@@ -5,11 +5,11 @@
* Author: ralim
*/
#ifndef SRC_TIPTHERMOMODEL_H_
#define SRC_TIPTHERMOMODEL_H_
#include "BSP.h"
#include "Types.h"
#include "stdint.h"
#ifndef SRC_TIPTHERMOMODEL_H_
#define SRC_TIPTHERMOMODEL_H_
class TipThermoModel {
public:
// These are the main two functions

View File

@@ -29,6 +29,7 @@ bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *r
FUSB302 fusb((0x22 << 1), fusb_read_buf, fusb_write_buf, ms_delay); // Create FUSB driver
PolicyEngine pe(fusb, get_ms_timestamp, ms_delay, pdbs_dpm_get_sink_capability, pdbs_dpm_evaluate_capability, EPREvaluateCapabilityFunc, USB_PD_EPR_WATTAGE);
int USBPowerDelivery::detectionState = 0;
bool haveSeenCapabilityOffer = false;
uint16_t requested_voltage_mv = 0;
/* The current draw when the output is disabled */
@@ -51,6 +52,15 @@ void USBPowerDelivery::step() {
}
void USBPowerDelivery::PPSTimerCallback() { pe.TimersCallback(); }
bool USBPowerDelivery::negotiationInProgress() {
if (USBPowerDelivery::negotiationComplete()) {
return false;
}
if (haveSeenCapabilityOffer) {
return false;
}
return true;
}
bool USBPowerDelivery::negotiationComplete() {
if (!fusbPresent()) {
return true;
@@ -268,6 +278,7 @@ bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request)
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request) {
memset(lastCapabilities, 0, sizeof(lastCapabilities));
memcpy(lastCapabilities, capabilities->obj, sizeof(uint32_t) * 7);
haveSeenCapabilityOffer = true;
/* Get the number of PDOs */
uint8_t numobj = PD_NUMOBJ_GET(capabilities);

View File

@@ -4,50 +4,21 @@
#include "portmacro.h"
#include <stdint.h>
/**
* A helper class for showing a full-screen scrolling message.
* A helper for showing a full-screen scrolling message.
*/
class ScrollMessage {
TickType_t messageStart = 0;
int16_t lastOffset = -1;
/**
* Calcualte the width in pixels of the message string, in the large
* font and taking into account multi-byte chars.
*
* @param message The null-terminated message string.
*/
static uint16_t messageWidth(const char *message);
public:
ScrollMessage() {}
/**
* Resets this `ScrollMessage` instance to its initial state.
*/
void reset() {
messageStart = 0;
lastOffset = -1;
}
/**
* Gets whether this `ScrollMessage` instance is in its initial state.
*/
bool isReset() const { return messageStart == 0; }
/**
* Draw and update the scroll message if needed.
*
* This function does not call `OLED::refresh()`. If this function
* returns `true`, the caller shall call `OLED::refresh()` to draw the
* modified framebuffer to the OLED screen.
*
* @param message The null-terminated message string. This must be the
* same string as the previous call, unless this `ScrollMessage` instance
* is in its initial state or `reset()` has been called.
* @param currentTick The current tick as returned by `xTaskGetTickCount()`.
* @return Whether the OLED framebuffer has been modified.
*/
bool drawUpdate(const char *message, TickType_t currentTick);
};
/**
* Draw and update the scroll message if needed.
*
* This function does not call `OLED::refresh()`. If this function
* returns `true`, the caller shall call `OLED::refresh()` to draw the
* modified framebuffer to the OLED screen.
*
* @param message The null-terminated message string. This must be the
* same string as the previous call, unless this `ScrollMessage` instance
* is in its initial state or `reset()` has been called.
* @param currentTick The current tick as returned by `xTaskGetTickCount()` offset to 0 at start of scrolling.
*/
void drawScrollingText(const char *message, TickType_t currentTickOffset);
#endif /* SCROLL_MESSAGE_HPP_ */

View File

@@ -107,8 +107,9 @@ void resetSettings();
uint16_t getSettingValue(const enum SettingsOptions option);
// Returns true if setting is now on the last value (next iteration will wrap)
bool nextSettingValue(const enum SettingsOptions option);
bool prevSettingValue(const enum SettingsOptions option);
void nextSettingValue(const enum SettingsOptions option);
void prevSettingValue(const enum SettingsOptions option);
bool isLastSettingValue(const enum SettingsOptions option);
void setSettingValue(const enum SettingsOptions option, const uint16_t newValue);

View File

@@ -183,6 +183,7 @@ const char *translatedString(uint16_t index);
void prepareTranslations();
void settings_displayLanguageSwitch(void);
bool settings_showLanguageSwitch(void);
bool settings_setLanguageSwitch(void);
void settings_setLanguageSwitch(void);
bool isLastLanguageOption(void);
#endif /* TRANSLATION_H_ */

View File

@@ -1,6 +1,6 @@
#ifndef TYPES_H_
#define TYPES_H_
#include <stddef.h>
#include <stdint.h>
// Used for temperature represented in C or x10C.
//

View File

@@ -8,11 +8,11 @@
#ifndef GUI_HPP_
#define GUI_HPP_
#include "BSP.h"
#include "Buttons.hpp"
#include "FreeRTOS.h"
#include "Settings.h"
#include "Translation.h"
#define PRESS_ACCEL_STEP (TICKS_100MS / 3)
#define PRESS_ACCEL_INTERVAL_MIN TICKS_100MS
#define PRESS_ACCEL_INTERVAL_MAX (TICKS_100MS * 3)
@@ -26,9 +26,8 @@ typedef struct {
// The settings description index, please use the `SETTINGS_DESC` macro with
// the `SettingsItemIndex` enum. Use 0 for no description.
uint8_t description;
// return true if increment reached the maximum value
bool (*const incrementHandler)(void);
void (*const draw)(void);
void (*const incrementHandler)(void);
void (*const draw)(void); // Must not be nullptr, as that marks end of menu
bool (*const isVisible)(void);
// If this is set, we will automatically use the settings increment handler instead, set >= num settings to disable
SettingsOptions autoSettingOption;
@@ -36,8 +35,9 @@ typedef struct {
uint8_t shortDescriptionSize;
} menuitem;
void enterSettingsMenu();
void warnUser(const char *warning, const TickType_t timeout);
extern const menuitem rootSettingsMenu[];
void enterSettingsMenu();
bool warnUser(const char *warning, const ButtonState buttons);
extern const menuitem rootSettingsMenu[];
extern const menuitem *subSettingsMenus[];
#endif /* GUI_HPP_ */

View File

@@ -63,12 +63,13 @@ void prepareTranslations() {
}
}
bool settings_setLanguageSwitch(void) {
void settings_setLanguageSwitch(void) {
selectedLangIndex = (selectedLangIndex + 1) % LanguageCount;
writeSelectedLanguageToSettings();
prepareTranslations();
return selectedLangIndex == (LanguageCount - 1);
}
bool settings_showLanguageSwitch(void) { return true; }
void settings_displayLanguageSwitch(void) { OLED::printWholeScreen(translatedString(Tr->SettingsShortNames[static_cast<uint8_t>(SettingsItemIndex::LanguageSwitch)])); }
bool isLastLanguageOption(void) { return selectedLangIndex == (LanguageCount - 1); }

View File

@@ -1,6 +1,7 @@
#include "Translation.h"
bool settings_setLanguageSwitch(void) { return false; }
void settings_setLanguageSwitch(void) {}
void settings_displayLanguageSwitch(void) {}
bool settings_showLanguageSwitch(void) { return false; }
bool isLastLanguageOption(void) { return true; }

View File

@@ -28,19 +28,20 @@ static uint16_t str_display_len(const char *const str) {
return count;
}
uint16_t ScrollMessage::messageWidth(const char *message) { return FONT_12_WIDTH * str_display_len(message); }
/**
* Calculate the width in pixels of the message string, in the large
* font and taking into account multi-byte chars.
*
* @param message The null-terminated message string.
*/
uint16_t messageWidth(const char *message) { return FONT_12_WIDTH * str_display_len(message); }
bool ScrollMessage::drawUpdate(const char *message, TickType_t currentTick) {
bool lcdRefresh = false;
if (messageStart == 0) {
messageStart = currentTick;
lcdRefresh = true;
}
void drawScrollingText(const char *message, TickType_t currentTickOffset) {
OLED::clearScreen();
int16_t messageOffset;
uint16_t msgWidth = messageWidth(message);
if (msgWidth > OLED_WIDTH) {
messageOffset = ((currentTick - messageStart) / (getSettingValue(SettingsOptions::DescriptionScrollSpeed) == 1 ? TICKS_100MS / 10 : (TICKS_100MS / 5)));
messageOffset = (currentTickOffset / (getSettingValue(SettingsOptions::DescriptionScrollSpeed) == 1 ? TICKS_100MS / 10 : (TICKS_100MS / 5)));
messageOffset %= msgWidth + OLED_WIDTH; // Roll around at the end
if (messageOffset < OLED_WIDTH) {
// Snap the message to the left edge.
@@ -54,15 +55,7 @@ bool ScrollMessage::drawUpdate(const char *message, TickType_t currentTick) {
messageOffset = (OLED_WIDTH - msgWidth) / 2 + msgWidth;
}
if (lastOffset != messageOffset) {
OLED::clearScreen();
//^ Rolling offset based on time
OLED::setCursor((OLED_WIDTH - messageOffset), 0);
OLED::print(message, FontStyle::LARGE);
lastOffset = messageOffset;
lcdRefresh = true;
}
return lcdRefresh;
//^ Rolling offset based on time
OLED::setCursor((OLED_WIDTH - messageOffset), 0);
OLED::print(message, FontStyle::LARGE);
}

View File

@@ -188,7 +188,7 @@ uint16_t getSettingValue(const enum SettingsOptions option) { return systemSetti
// Increment by the step size to the next value. If past the end wrap to the minimum
// Returns true if we are on the _last_ value
bool nextSettingValue(const enum SettingsOptions option) {
void nextSettingValue(const enum SettingsOptions option) {
const auto constants = settingsConstants[(int)option];
if (systemSettings.settingsValues[(int)option] == (constants.max)) {
// Already at max, wrap to the start
@@ -200,13 +200,38 @@ bool nextSettingValue(const enum SettingsOptions option) {
// Otherwise increment
systemSettings.settingsValues[(int)option] += constants.increment;
}
// Return if we are at the max
return constants.max == systemSettings.settingsValues[(int)option];
}
bool isLastSettingValue(const enum SettingsOptions option) {
const auto constants = settingsConstants[(int)option];
uint16_t max = constants.max;
// handle temp unit limitations
if (option == SettingsOptions::SolderingTemp) {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
max = MAX_TEMP_F;
} else {
max = MAX_TEMP_C;
}
} else if (option == SettingsOptions::BoostTemp) {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
max = MAX_TEMP_F;
} else {
max = MAX_TEMP_C;
}
} else if (option == SettingsOptions::SleepTemp) {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
max = 580;
} else {
max = 300;
}
} else if (option == SettingsOptions::UILanguage) {
return isLastLanguageOption();
}
return systemSettings.settingsValues[(int)option] > (max - constants.increment);
}
// Step backwards on the settings item
// Return true if we are at the end (min)
bool prevSettingValue(const enum SettingsOptions option) {
void prevSettingValue(const enum SettingsOptions option) {
const auto constants = settingsConstants[(int)option];
if (systemSettings.settingsValues[(int)option] == (constants.min)) {
// Already at min, wrap to the max
@@ -218,8 +243,6 @@ bool prevSettingValue(const enum SettingsOptions option) {
// Otherwise decrement
systemSettings.settingsValues[(int)option] -= constants.increment;
}
// Return if we are at the min
return constants.min == systemSettings.settingsValues[(int)option];
}
uint16_t lookupHallEffectThreshold() {

View File

@@ -14,8 +14,6 @@
#include "configuration.h"
#include "main.hpp"
void gui_Menu(const menuitem *menu);
#ifdef POW_DC
static void displayInputVRange(void);
static bool showInputVOptions(void);
@@ -36,16 +34,17 @@ static void displayShutdownTime(void);
static bool showSleepOptions(void);
#ifndef NO_SLEEP_MODE
static bool setSleepTemp(void);
static void setSleepTemp(void);
static void displaySleepTemp(void);
static void displaySleepTime(void);
#endif /* *not* NO_SLEEP_MODE */
static bool setTempF(void);
static void setTempF(void);
static void displayTempF(void);
static void displayAdvancedSolderingScreens(void);
static void displayAdvancedIDLEScreens(void);
static void displayScrollSpeed(void);
static void displayReverseButtonTempChangeEnabled(void);
static void displayPowerLimit(void);
#ifdef BLE_ENABLED
@@ -53,20 +52,20 @@ static void displayBluetoothLE(void);
#endif /* BLE_ENABLED */
#ifndef NO_DISPLAY_ROTATE
static bool setDisplayRotation(void);
static void setDisplayRotation(void);
static void displayDisplayRotation(void);
#endif /* *not* NO_DISPLAY_ROTATE */
static bool setBoostTemp(void);
static void setBoostTemp(void);
static void displayBoostTemp(void);
#ifdef PROFILE_SUPPORT
static bool setProfilePreheatTemp();
static bool setProfilePhase1Temp();
static bool setProfilePhase2Temp();
static bool setProfilePhase3Temp();
static bool setProfilePhase4Temp();
static bool setProfilePhase5Temp();
static void setProfilePreheatTemp();
static void setProfilePhase1Temp();
static void setProfilePhase2Temp();
static void setProfilePhase3Temp();
static void setProfilePhase4Temp();
static void setProfilePhase5Temp();
static void displayProfilePhases(void);
static void displayProfilePreheatTemp(void);
static void displayProfilePreheatSpeed(void);
@@ -91,13 +90,10 @@ static bool showProfilePhase5Options(void);
static void displayAutomaticStartMode(void);
static void displayLockingMode(void);
static void displayCoolingBlinkEnabled(void);
static bool setResetSettings(void);
static void displayResetSettings(void);
static bool setCalibrate(void);
static void setResetSettings(void);
static void setCalibrate(void);
static void displayCalibrate(void);
static bool setCalibrateVIN(void);
static void displayCalibrateVIN(void);
static void displayReverseButtonTempChangeEnabled(void);
static void setCalibrateVIN(void);
static void displayTempChangeShortStep(void);
static void displayTempChangeLongStep(void);
static void displayPowerPulse(void);
@@ -120,17 +116,12 @@ static bool showHallEffect(void);
#if defined(POW_DC) || defined(POW_QC)
static void displayPowerMenu(void);
static bool enterPowerMenu(void);
#endif /* POW_DC or POW_QC */
static void displaySolderingMenu(void);
static bool enterSolderingMenu(void);
static void displayPowerSavingMenu(void);
static bool enterPowerSavingMenu(void);
static void displayUIMenu(void);
static bool enterUIMenu(void);
static void displayAdvancedMenu(void);
static bool enterAdvancedMenu(void);
/*
* Root Settings Menu
@@ -196,6 +187,7 @@ static bool enterAdvancedMenu(void);
*
*/
void noOpDisplay() {}
/* vvv !!!DISABLE CLANG-FORMAT for menuitems initialization!!! vvv */
/* clang-format off */
@@ -216,16 +208,16 @@ const menuitem rootSettingsMenu[] {
*/
#if defined(POW_DC) || defined(POW_QC)
/* Power */
{0, enterPowerMenu, displayPowerMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
{0, nullptr, displayPowerMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
#endif
/* Soldering */
{0, enterSolderingMenu, displaySolderingMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
{0, nullptr, displaySolderingMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
/* Sleep Options Menu */
{0, enterPowerSavingMenu, displayPowerSavingMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
{0, nullptr, displayPowerSavingMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
/* UI Menu */
{0, enterUIMenu, displayUIMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
{0, nullptr, displayUIMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
/* Advanced Menu */
{0, enterAdvancedMenu, displayAdvancedMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
{0, nullptr, displayAdvancedMenu, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
/* Language Switch */
{0, settings_setLanguageSwitch, settings_displayLanguageSwitch, settings_showLanguageSwitch, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0},
/* vvvv end of menu marker. DO NOT REMOVE vvvv */
@@ -287,7 +279,7 @@ const menuitem solderingMenu[] = {
* Profile Cooldown Max Temperature Change Per Second
*/
/* Boost Temp */
{SETTINGS_DESC(SettingsItemIndex::BoostTemperature), setBoostTemp, displayBoostTemp, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::BoostTemperature, 5},
{SETTINGS_DESC(SettingsItemIndex::BoostTemperature), setBoostTemp, displayBoostTemp, nullptr, SettingsOptions::BoostTemp, SettingsItemIndex::BoostTemperature, 5},
/* Auto start */
{SETTINGS_DESC(SettingsItemIndex::AutoStart), nullptr, displayAutomaticStartMode, nullptr, SettingsOptions::AutoStartMode, SettingsItemIndex::AutoStart, 7},
/* Temp change short step */
@@ -300,27 +292,27 @@ const menuitem solderingMenu[] = {
/* Profile Phases */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhases), nullptr, displayProfilePhases, nullptr, SettingsOptions::ProfilePhases, SettingsItemIndex::ProfilePhases, 7},
/* Profile Preheat Temp */
{SETTINGS_DESC(SettingsItemIndex::ProfilePreheatTemp), setProfilePreheatTemp, displayProfilePreheatTemp, showProfileOptions, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::ProfilePreheatTemp, 5},
{SETTINGS_DESC(SettingsItemIndex::ProfilePreheatTemp), setProfilePreheatTemp, displayProfilePreheatTemp, showProfileOptions, SettingsOptions::ProfilePreheatTemp, SettingsItemIndex::ProfilePreheatTemp, 5},
/* Profile Preheat Speed */
{SETTINGS_DESC(SettingsItemIndex::ProfilePreheatSpeed), nullptr, displayProfilePreheatSpeed, showProfileOptions, SettingsOptions::ProfilePreheatSpeed, SettingsItemIndex::ProfilePreheatSpeed, 5},
/* Phase 1 Temp */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase1Temp, displayProfilePhase1Temp, showProfileOptions, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::ProfilePhase1Temp, 5},
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase1Temp, displayProfilePhase1Temp, showProfileOptions, SettingsOptions::ProfilePhase1Temp, SettingsItemIndex::ProfilePhase1Temp, 5},
/* Phase 1 Duration */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Duration), nullptr, displayProfilePhase1Duration, showProfileOptions, SettingsOptions::ProfilePhase1Duration, SettingsItemIndex::ProfilePhase1Duration, 5},
/* Phase 2 Temp */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase2Temp, displayProfilePhase2Temp, showProfilePhase2Options, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::ProfilePhase2Temp, 5},
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase2Temp, displayProfilePhase2Temp, showProfilePhase2Options, SettingsOptions::ProfilePhase1Temp, SettingsItemIndex::ProfilePhase2Temp, 5},
/* Phase 2 Duration */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Duration), nullptr, displayProfilePhase2Duration, showProfilePhase2Options, SettingsOptions::ProfilePhase2Duration, SettingsItemIndex::ProfilePhase2Duration, 5},
/* Phase 3 Temp */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase3Temp, displayProfilePhase3Temp, showProfilePhase3Options, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::ProfilePhase3Temp, 5},
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase3Temp, displayProfilePhase3Temp, showProfilePhase3Options, SettingsOptions::ProfilePhase1Temp, SettingsItemIndex::ProfilePhase3Temp, 5},
/* Phase 3 Duration */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Duration), nullptr, displayProfilePhase3Duration, showProfilePhase3Options, SettingsOptions::ProfilePhase3Duration, SettingsItemIndex::ProfilePhase3Duration, 5},
/* Phase 4 Temp */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase4Temp, displayProfilePhase4Temp, showProfilePhase4Options, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::ProfilePhase4Temp, 5},
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase4Temp, displayProfilePhase4Temp, showProfilePhase4Options, SettingsOptions::ProfilePhase1Temp, SettingsItemIndex::ProfilePhase4Temp, 5},
/* Phase 4 Duration */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Duration), nullptr, displayProfilePhase4Duration, showProfilePhase4Options, SettingsOptions::ProfilePhase4Duration, SettingsItemIndex::ProfilePhase4Duration, 5},
/* Phase 5 Temp */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase5Temp, displayProfilePhase5Temp, showProfilePhase5Options, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::ProfilePhase5Temp, 5},
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Temp), setProfilePhase5Temp, displayProfilePhase5Temp, showProfilePhase5Options, SettingsOptions::ProfilePhase1Temp, SettingsItemIndex::ProfilePhase5Temp, 5},
/* Phase 5 Duration */
{SETTINGS_DESC(SettingsItemIndex::ProfilePhase1Duration), nullptr, displayProfilePhase5Duration, showProfilePhase5Options, SettingsOptions::ProfilePhase5Duration, SettingsItemIndex::ProfilePhase5Duration, 5},
/* Profile Cooldown Speed */
@@ -343,7 +335,7 @@ const menuitem PowerSavingMenu[] = {
{SETTINGS_DESC(SettingsItemIndex::MotionSensitivity), nullptr, displaySensitivity, nullptr, SettingsOptions::Sensitivity, SettingsItemIndex::MotionSensitivity, 7},
#ifndef NO_SLEEP_MODE
/* Sleep Temp */
{SETTINGS_DESC(SettingsItemIndex::SleepTemperature), setSleepTemp, displaySleepTemp, showSleepOptions, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::SleepTemperature, 5},
{SETTINGS_DESC(SettingsItemIndex::SleepTemperature), setSleepTemp, displaySleepTemp, showSleepOptions, SettingsOptions::SleepTemp, SettingsItemIndex::SleepTemperature, 5},
/* Sleep Time */
{SETTINGS_DESC(SettingsItemIndex::SleepTimeout), nullptr, displaySleepTime, showSleepOptions, SettingsOptions::SleepTime, SettingsItemIndex::SleepTimeout, 5},
#endif /* *not* NO_SLEEP_MODE */
@@ -374,10 +366,10 @@ const menuitem UIMenu[] = {
* Detailed Soldering
*/
/* Temperature units, this has to be the first element in the array to work with the logic in enterUIMenu() */
{SETTINGS_DESC(SettingsItemIndex::TemperatureUnit), setTempF, displayTempF, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::TemperatureUnit, 7},
{SETTINGS_DESC(SettingsItemIndex::TemperatureUnit), setTempF, displayTempF, nullptr, SettingsOptions::TemperatureInF, SettingsItemIndex::TemperatureUnit, 7},
#ifndef NO_DISPLAY_ROTATE
/* Display Rotation */
{SETTINGS_DESC(SettingsItemIndex::DisplayRotation), setDisplayRotation, displayDisplayRotation, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::DisplayRotation, 7},
{SETTINGS_DESC(SettingsItemIndex::DisplayRotation), setDisplayRotation, displayDisplayRotation, nullptr, SettingsOptions::OrientationMode, SettingsItemIndex::DisplayRotation, 7},
#endif /* *not* NO_DISPLAY_ROTATE */
/* Cooling blink warning */
{SETTINGS_DESC(SettingsItemIndex::CooldownBlink), nullptr, displayCoolingBlinkEnabled, nullptr, SettingsOptions::CoolingTempBlink, SettingsItemIndex::CooldownBlink, 7},
@@ -422,9 +414,9 @@ const menuitem advancedMenu[] = {
/* Power limit */
{SETTINGS_DESC(SettingsItemIndex::PowerLimit), nullptr, displayPowerLimit, nullptr, SettingsOptions::PowerLimit, SettingsItemIndex::PowerLimit, 4},
/* Calibrate Cold Junktion Compensation at next boot */
{SETTINGS_DESC(SettingsItemIndex::CalibrateCJC), setCalibrate, displayCalibrate, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::CalibrateCJC, 7},
{SETTINGS_DESC(SettingsItemIndex::CalibrateCJC), setCalibrate, displayCalibrate, nullptr, SettingsOptions::CalibrateCJC, SettingsItemIndex::CalibrateCJC, 7},
/* Voltage input cal */
{SETTINGS_DESC(SettingsItemIndex::VoltageCalibration), setCalibrateVIN, displayCalibrateVIN, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::VoltageCalibration, 5},
{SETTINGS_DESC(SettingsItemIndex::VoltageCalibration), setCalibrateVIN, noOpDisplay, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::VoltageCalibration, 5},
/* Power Pulse adjustment */
{SETTINGS_DESC(SettingsItemIndex::PowerPulsePower), nullptr, displayPowerPulse, nullptr, SettingsOptions::KeepAwakePulse, SettingsItemIndex::PowerPulsePower, 5},
/* Power Pulse Wait adjustment */
@@ -432,7 +424,7 @@ const menuitem advancedMenu[] = {
/* Power Pulse Duration adjustment */
{SETTINGS_DESC(SettingsItemIndex::PowerPulseDuration), nullptr, displayPowerPulseDuration, showPowerPulseOptions, SettingsOptions::KeepAwakePulseDuration, SettingsItemIndex::PowerPulseDuration, 7},
/* Resets settings */
{SETTINGS_DESC(SettingsItemIndex::SettingsReset), setResetSettings, displayResetSettings, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::SettingsReset, 7},
{SETTINGS_DESC(SettingsItemIndex::SettingsReset), setResetSettings, noOpDisplay, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::SettingsReset, 7},
/* vvvv end of menu marker. DO NOT REMOVE vvvv */
{0, nullptr, nullptr, nullptr, SettingsOptions::SettingsOptionsLength, SettingsItemIndex::NUM_ITEMS, 0}
/* ^^^^ end of menu marker. DO NOT REMOVE ^^^^ */
@@ -440,6 +432,12 @@ const menuitem advancedMenu[] = {
/* clang-format on */
const menuitem *subSettingsMenus[] {
#if defined(POW_DC) || defined(POW_QC) || defined(POW_PD)
powerMenu,
#endif
solderingMenu, PowerSavingMenu, UIMenu, advancedMenu,
};
/* ^^^ !!!ENABLE CLANG-FORMAT back!!! ^^^ */
/**
@@ -460,10 +458,9 @@ static void printShortDescription(SettingsItemIndex settingsItemIndex, uint16_t
}
static int userConfirmation(const char *message) {
ScrollMessage scrollMessage;
TickType_t tickStart = xTaskGetTickCount();
for (;;) {
bool lcdRefresh = scrollMessage.drawUpdate(message, xTaskGetTickCount());
drawScrollingText(message, xTaskGetTickCount() - tickStart);
ButtonState buttons = getButtonState();
switch (buttons) {
@@ -481,10 +478,8 @@ static int userConfirmation(const char *message) {
return 0;
}
if (lcdRefresh) {
OLED::refresh();
osDelay(40);
}
OLED::refresh();
osDelay(40);
}
return 0;
}
@@ -538,7 +533,7 @@ static void displayPDVpdo(void) { OLED::drawCheckbox(getSettingValue(SettingsOpt
#endif /* POW_PD */
static bool setBoostTemp(void) {
static void setBoostTemp(void) {
uint16_t value = getSettingValue(SettingsOptions::BoostTemp);
if (getSettingValue(SettingsOptions::TemperatureInF)) {
if (value == 0) {
@@ -551,18 +546,17 @@ static bool setBoostTemp(void) {
value = 0; // jump to off
}
setSettingValue(SettingsOptions::BoostTemp, value);
return value >= (MAX_TEMP_F - 10);
}
if (value == 0) {
value = MIN_BOOST_TEMP_C; // loop back at 250
} else {
value += 10; // Go up 10C at a time
}
if (value > MAX_TEMP_C) {
value = 0; // Go to off state
if (value == 0) {
value = MIN_BOOST_TEMP_C; // loop back at 250
} else {
value += 10; // Go up 10C at a time
}
if (value > MAX_TEMP_C) {
value = 0; // Go to off state
}
}
setSettingValue(SettingsOptions::BoostTemp, value);
return value >= MAX_TEMP_C;
}
static void displayBoostTemp(void) {
@@ -618,7 +612,7 @@ static void displayLockingMode(void) {
static void displayProfilePhases(void) { OLED::printNumber(getSettingValue(SettingsOptions::ProfilePhases), 1, FontStyle::LARGE); }
static bool setProfileTemp(const enum SettingsOptions option) {
static void setProfileTemp(const enum SettingsOptions option) {
// If in C, 5 deg, if in F 10 deg
uint16_t temp = getSettingValue(option);
if (getSettingValue(SettingsOptions::TemperatureInF)) {
@@ -627,23 +621,21 @@ static bool setProfileTemp(const enum SettingsOptions option) {
temp = MIN_TEMP_F;
}
setSettingValue(option, temp);
return temp == MAX_TEMP_F;
} else {
temp += 5;
if (temp > MAX_TEMP_C) {
temp = MIN_TEMP_C;
}
setSettingValue(option, temp);
return temp == MAX_TEMP_C;
}
}
static bool setProfilePreheatTemp(void) { return setProfileTemp(SettingsOptions::ProfilePreheatTemp); }
static bool setProfilePhase1Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase1Temp); }
static bool setProfilePhase2Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase2Temp); }
static bool setProfilePhase3Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase3Temp); }
static bool setProfilePhase4Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase4Temp); }
static bool setProfilePhase5Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase5Temp); }
static void setProfilePreheatTemp(void) { return setProfileTemp(SettingsOptions::ProfilePreheatTemp); }
static void setProfilePhase1Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase1Temp); }
static void setProfilePhase2Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase2Temp); }
static void setProfilePhase3Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase3Temp); }
static void setProfilePhase4Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase4Temp); }
static void setProfilePhase5Temp(void) { return setProfileTemp(SettingsOptions::ProfilePhase5Temp); }
static void displayProfilePreheatTemp(void) { OLED::printNumber(getSettingValue(SettingsOptions::ProfilePreheatTemp), 3, FontStyle::LARGE); }
static void displayProfilePhase1Temp(void) { OLED::printNumber(getSettingValue(SettingsOptions::ProfilePhase1Temp), 3, FontStyle::LARGE); }
@@ -678,7 +670,7 @@ static bool showSleepOptions(void) { return getSettingValue(SettingsOptions::Sen
#ifndef NO_SLEEP_MODE
static bool setSleepTemp(void) {
static void setSleepTemp(void) {
// If in C, 10 deg, if in F 20 deg
uint16_t temp = getSettingValue(SettingsOptions::SleepTemp);
if (getSettingValue(SettingsOptions::TemperatureInF)) {
@@ -687,14 +679,12 @@ static bool setSleepTemp(void) {
temp = 60;
}
setSettingValue(SettingsOptions::SleepTemp, temp);
return temp == 580;
} else {
temp += 10;
if (temp > 300) {
temp = 10;
}
setSettingValue(SettingsOptions::SleepTemp, temp);
return temp == 300;
}
}
@@ -751,8 +741,8 @@ static void setTempF(const enum SettingsOptions option) {
setSettingValue(option, Temp);
}
static bool setTempF(void) {
bool res = nextSettingValue(SettingsOptions::TemperatureInF);
static void setTempF(void) {
nextSettingValue(SettingsOptions::TemperatureInF);
setTempF(SettingsOptions::BoostTemp);
setTempF(SettingsOptions::SolderingTemp);
#ifndef NO_SLEEP_MODE
@@ -766,15 +756,14 @@ static bool setTempF(void) {
setTempF(SettingsOptions::ProfilePhase4Temp);
setTempF(SettingsOptions::ProfilePhase5Temp);
#endif /* PROFILE_SUPPORT */
return res;
}
static void displayTempF(void) { OLED::printSymbolDeg(FontStyle::LARGE); }
#ifndef NO_DISPLAY_ROTATE
static bool setDisplayRotation(void) {
bool res = nextSettingValue(SettingsOptions::OrientationMode);
static void setDisplayRotation(void) {
nextSettingValue(SettingsOptions::OrientationMode);
switch (getSettingValue(SettingsOptions::OrientationMode)) {
case orientationMode_t::RIGHT:
OLED::setRotation(false);
@@ -788,7 +777,6 @@ static bool setDisplayRotation(void) {
default:
break;
}
return res;
}
static void displayDisplayRotation(void) {
@@ -838,13 +826,13 @@ static void displayAnimationLoop(void) { OLED::drawCheckbox(getSettingValue(Sett
static void displayBrightnessLevel(void) {
OLED::printNumber((getSettingValue(SettingsOptions::OLEDBrightness) / BRIGHTNESS_STEP + 1), 1, FontStyle::LARGE);
// While not optimal to apply this here, it is _very_ convienient
// While not optimal to apply this here, it is _very_ convenient
OLED::setBrightness(getSettingValue(SettingsOptions::OLEDBrightness));
}
static void displayInvertColor(void) {
OLED::drawCheckbox(getSettingValue(SettingsOptions::OLEDInversion));
// While not optimal to apply this here, it is _very_ convienient
// While not optimal to apply this here, it is _very_ convenient
OLED::setInverseDisplay(getSettingValue(SettingsOptions::OLEDInversion));
}
@@ -883,7 +871,7 @@ static void displayPowerLimit(void) {
}
}
static bool setCalibrate(void) {
static void setCalibrate(void) {
if (getSettingValue(SettingsOptions::CalibrateCJC) < 1) {
if (userConfirmation(translatedString(Tr->SettingsCalibrationWarning))) {
// User confirmed
@@ -893,12 +881,11 @@ static bool setCalibrate(void) {
} else {
setSettingValue(SettingsOptions::CalibrateCJC, 0);
}
return false;
}
static void displayCalibrate(void) { OLED::drawCheckbox(getSettingValue(SettingsOptions::CalibrateCJC)); }
static bool setCalibrateVIN(void) {
static void setCalibrateVIN(void) {
// Jump to the voltage calibration subscreen
OLED::clearScreen();
@@ -925,10 +912,10 @@ static bool setCalibrateVIN(void) {
saveSettings();
OLED::clearScreen();
OLED::setCursor(0, 0);
warnUser(translatedString(Tr->CalibrationDone), 3 * TICKS_SECOND);
warnUser(translatedString(Tr->CalibrationDone), getButtonState());
OLED::refresh();
waitForButtonPressOrTimeout(0.5 * TICKS_SECOND);
return false;
return;
case BUTTON_NONE:
default:
break;
@@ -937,11 +924,8 @@ static bool setCalibrateVIN(void) {
OLED::refresh();
osDelay(40);
}
return false;
}
static void displayCalibrateVIN(void) {}
static void displayPowerPulse(void) {
if (getSettingValue(SettingsOptions::KeepAwakePulse)) {
OLED::printNumber(getSettingValue(SettingsOptions::KeepAwakePulse) / 10, 1, FontStyle::LARGE);
@@ -958,17 +942,19 @@ static void displayPowerPulseWait(void) { OLED::printNumber(getSettingValue(Sett
static void displayPowerPulseDuration(void) { OLED::printNumber(getSettingValue(SettingsOptions::KeepAwakePulseDuration), 1, FontStyle::LARGE); }
static bool setResetSettings(void) {
static void setResetSettings(void) {
if (userConfirmation(translatedString(Tr->SettingsResetWarning))) {
resetSettings();
warnUser(translatedString(Tr->ResetOKMessage), 3 * TICKS_SECOND);
OLED::clearScreen();
while (!warnUser(translatedString(Tr->ResetOKMessage), getButtonState())) {
OLED::refresh();
vTaskDelay(TICKS_100MS);
OLED::clearScreen();
}
reboot();
}
return false;
}
static void displayResetSettings(void) {}
// Indicates whether a menu transition is in progress, so that the menu icon
// animation is paused during the transition.
static bool animOpenState = false;
@@ -1016,243 +1002,13 @@ static void displayMenu(size_t index) {
#if defined(POW_DC) || defined(POW_QC)
static void displayPowerMenu(void) { displayMenu(0); }
static bool enterPowerMenu(void) {
gui_Menu(powerMenu);
return false;
}
#endif /* POW_DC or POW_QC */
static void displaySolderingMenu(void) { displayMenu(1); }
static bool enterSolderingMenu(void) {
gui_Menu(solderingMenu);
return false;
}
static void displayPowerSavingMenu(void) { displayMenu(2); }
static bool enterPowerSavingMenu(void) {
gui_Menu(PowerSavingMenu);
return false;
}
static void displayUIMenu(void) { displayMenu(3); }
static bool enterUIMenu(void) {
gui_Menu(HasFahrenheit ? UIMenu : UIMenu + 1);
return false;
}
static void displayAdvancedMenu(void) { displayMenu(4); }
static bool enterAdvancedMenu(void) {
gui_Menu(advancedMenu);
return false;
}
uint8_t gui_getMenuLength(const menuitem *menu) {
uint8_t scrollContentSize = 0;
for (uint8_t i = 0; menu[i].draw != nullptr; i++) {
if (menu[i].isVisible == nullptr) {
scrollContentSize += 1; // Always visible
} else if (menu[i].isVisible()) {
scrollContentSize += 1; // Selectively visible and chosen to show
}
}
return scrollContentSize;
}
void gui_Menu(const menuitem *menu) {
// Draw the settings menu and provide iteration support etc
// This is used to detect whether a menu-exit transition should be played.
static bool wasInGuiMenu;
wasInGuiMenu = true;
enum class NavState {
Idle,
Entering,
ScrollingDown,
Exiting,
};
uint8_t currentScreen = 0; // Current screen index in the menu struct
uint8_t screensSkipped = 0; // Number of screens skipped due to being disabled
TickType_t autoRepeatTimer = 0;
TickType_t autoRepeatAcceleration = 0;
bool earlyExit = false;
bool lcdRefresh = true;
ButtonState lastButtonState = BUTTON_NONE;
uint8_t scrollContentSize = gui_getMenuLength(menu);
bool scrollBlink = false;
bool lastValue = false;
NavState navState = NavState::Entering;
ScrollMessage scrollMessage;
while ((menu[currentScreen].draw != nullptr) && earlyExit == false) {
bool valueChanged = false;
// Handle menu transition:
if (navState != NavState::Idle) {
// Check if this menu item shall be skipped. If it shall be skipped,
// `draw()` returns true. Draw on the secondary framebuffer as we want
// to keep the primary framebuffer intact for the upcoming transition
// animation.
OLED::useSecondaryFramebuffer(true);
if (menu[currentScreen].isVisible != nullptr) {
if (!menu[currentScreen].isVisible()) {
currentScreen++;
screensSkipped++;
OLED::useSecondaryFramebuffer(false);
continue;
}
}
animOpenState = true;
// The menu entering/exiting transition uses the secondary framebuffer,
// but the scroll down transition does not.
OLED::setCursor(0, 0);
OLED::clearScreen();
if (menu[currentScreen].shortDescriptionSize > 0) {
printShortDescription(menu[currentScreen].shortDescriptionIndex, menu[currentScreen].shortDescriptionSize);
}
menu[currentScreen].draw();
if (navState == NavState::ScrollingDown) {
// Play the scroll down animation.
OLED::maskScrollIndicatorOnOLED();
OLED::transitionScrollDown();
OLED::useSecondaryFramebuffer(false);
} else {
// The menu was drawn in a secondary framebuffer.
// Now we play a transition from the pre-drawn primary
// framebuffer to the new buffer.
// The extra buffer is discarded at the end of the transition.
OLED::useSecondaryFramebuffer(false);
OLED::transitionSecondaryFramebuffer(navState == NavState::Entering);
}
animOpenState = false;
navState = NavState::Idle;
}
// If the user has hesitated for >=3 seconds, show the long text
// Otherwise "draw" the option
if ((xTaskGetTickCount() - lastButtonTime < (TICKS_SECOND * 3)) || menu[currentScreen].description == 0) {
lcdRefresh = true;
OLED::setCursor(0, 0);
OLED::clearScreen();
if (menu[currentScreen].shortDescriptionSize > 0) {
printShortDescription(menu[currentScreen].shortDescriptionIndex, menu[currentScreen].shortDescriptionSize);
}
menu[currentScreen].draw();
uint8_t indicatorHeight = OLED_HEIGHT / scrollContentSize;
uint8_t position = OLED_HEIGHT * (currentScreen - screensSkipped) / scrollContentSize;
if (lastValue) {
scrollBlink = !scrollBlink;
}
if (!lastValue || !scrollBlink) {
OLED::drawScrollIndicator(position, indicatorHeight);
}
} else {
// Draw description
const char *description = translatedString(Tr->SettingsDescriptions[menu[currentScreen].description - 1]);
lcdRefresh |= scrollMessage.drawUpdate(description, xTaskGetTickCount());
}
if (lcdRefresh) {
OLED::refresh(); // update the LCD
osDelay(40);
lcdRefresh = false;
}
ButtonState buttons = getButtonState();
if (buttons != lastButtonState) {
autoRepeatAcceleration = 0;
lastButtonState = buttons;
}
auto callIncrementHandler = [&]() {
wasInGuiMenu = false;
valueChanged = true;
bool res = false;
if ((int)menu[currentScreen].autoSettingOption < (int)SettingsOptions::SettingsOptionsLength) {
res = nextSettingValue(menu[currentScreen].autoSettingOption);
} else if (menu[currentScreen].incrementHandler != nullptr) {
res = menu[currentScreen].incrementHandler();
} else {
earlyExit = true;
}
if (wasInGuiMenu) {
navState = NavState::Exiting;
}
wasInGuiMenu = true;
return res;
};
switch (buttons) {
case BUTTON_BOTH:
earlyExit = true; // will make us exit next loop
scrollMessage.reset();
break;
case BUTTON_F_SHORT:
// increment
if (scrollMessage.isReset()) {
lastValue = callIncrementHandler();
} else {
scrollMessage.reset();
}
break;
case BUTTON_B_SHORT:
if (scrollMessage.isReset()) {
currentScreen++;
navState = NavState::ScrollingDown;
lastValue = false;
} else {
scrollMessage.reset();
}
break;
case BUTTON_F_LONG:
if (xTaskGetTickCount() + autoRepeatAcceleration > autoRepeatTimer + PRESS_ACCEL_INTERVAL_MAX) {
if ((lastValue = callIncrementHandler())) {
autoRepeatTimer = 1000;
} else {
autoRepeatTimer = 0;
}
autoRepeatTimer += xTaskGetTickCount();
scrollMessage.reset();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_B_LONG:
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration > PRESS_ACCEL_INTERVAL_MAX) {
currentScreen++;
navState = NavState::ScrollingDown;
autoRepeatTimer = xTaskGetTickCount();
scrollMessage.reset();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_NONE:
default:
break;
}
if ((PRESS_ACCEL_INTERVAL_MAX - autoRepeatAcceleration) < PRESS_ACCEL_INTERVAL_MIN) {
autoRepeatAcceleration = PRESS_ACCEL_INTERVAL_MAX - PRESS_ACCEL_INTERVAL_MIN;
}
if ((xTaskGetTickCount() - lastButtonTime) > (TICKS_SECOND * 2 * 60)) {
// If user has not pressed any buttons in 30 seconds, exit back a menu layer
// This will trickle the user back to the main screen eventually
earlyExit = true;
scrollMessage.reset();
}
if (valueChanged) {
// If user changed value, update the scroll content size
scrollContentSize = gui_getMenuLength(menu);
}
}
}
void enterSettingsMenu() {
gui_Menu(rootSettingsMenu); // Call the root menu
saveSettings();
}

View File

@@ -0,0 +1,40 @@
# GUI Rendering
The GUI aims to be somewhat similar to immediate mode rendering, where the screen is re-rendered each sweep.
This is due to a few aims:
1. Functions should try and contain their state to the context struct (helps keep state usage flatter)
2. Allows external events to change the state
3. Means state can be read/write over BLE or other external control interfaces
## Transitions
When changing the view to a new view it can be preferable to transition using an animation.
The tooling provides for left, right and down animations at this point.
The use of these gives a notion of "direction" when navigating the menu.
```
┌───────────┐
│ Debug Menu│
└─────┬─────┘
┌──────────────┐ ┌────┴─────┐ ┌──────────────────┐ ┌─────────────────┐
│Soldering Mode│ │ │ │ │ │ │
│ OR ├───────────┤Home Menu ├───────────┤Settings Main Menu├───────────┤Settings sub menu│
│Reflow Mode│ │ │ │ │ │ │
└──────────────┘ └──────────┘ └──────────────────┘ └─────────┬───────┘
┌─────────┴───────┐
│ │
│Settings sub menu│
│ │
└─────────────────┘
```
The downside of supporting transitions is that for these to work, the code should render the screen _first_ then return the new state.
This ensures there is a good working copy in the buffer before the transition changes the view.
The code that handles the dispatch will run a new render pass again to get the new buffer contents and then transition between the two for you.
At the moment scrolling "Up" isn't implemented but the enumeration is there so that its implementation can follow.

View File

@@ -32,8 +32,179 @@ extern "C" {
#endif
// File local variables
#define MOVEMENT_INACTIVITY_TIME (60 * configTICK_RATE_HZ)
#define BUTTON_INACTIVITY_TIME (60 * configTICK_RATE_HZ)
extern bool heaterThermalRunaway;
ButtonState buttonsAtDeviceBoot; // We record button state at startup, incase of jumping to debug modes
OperatingMode currentOperatingMode = OperatingMode::InitialisationDone; // Current mode we are rendering
guiContext context; // Context passed to functions to aid in state during render passes
OperatingMode handle_post_init_state();
OperatingMode guiHandleDraw(void) {
OLED::clearScreen(); // Clear ready for render pass
// Read button state
ButtonState buttons = getButtonState();
// Enforce screen on if buttons pressed, movement, hot tip etc
if (buttons != BUTTON_NONE) {
OLED::setDisplayState(OLED::DisplayState::ON);
} else {
// Buttons are none; check if we can sleep display
uint32_t tipTemp = TipThermoModel::getTipInC();
if ((tipTemp < 50) && getSettingValue(SettingsOptions::Sensitivity) &&
(((xTaskGetTickCount() - lastMovementTime) > MOVEMENT_INACTIVITY_TIME) && ((xTaskGetTickCount() - lastButtonTime) > BUTTON_INACTIVITY_TIME))) {
OLED::setDisplayState(OLED::DisplayState::OFF);
setStatusLED(LED_OFF);
} else {
OLED::setDisplayState(OLED::DisplayState::ON);
if (tipTemp > 55) {
setStatusLED(LED_COOLING_STILL_HOT);
} else {
setStatusLED(LED_STANDBY);
}
}
}
// Dispatch button state to gui mode
OperatingMode newMode = currentOperatingMode;
switch (currentOperatingMode) {
case OperatingMode::StartupWarnings:
newMode = showWarnings(buttons, &context);
break;
case OperatingMode::UsbPDDebug:
#ifdef HAS_POWER_DEBUG_MENU
newMode = showPDDebug(buttons, &context);
break;
#else
newMode = OperatingMode::InitialisationDone;
#endif
case OperatingMode::StartupLogo:
showBootLogo();
if (getSettingValue(SettingsOptions::AutoStartMode) == autoStartMode_t::SLEEP) {
lastMovementTime = lastButtonTime = 0; // We mask the values so that sleep goes until user moves again or presses a button
newMode = OperatingMode::Sleeping;
} else if (getSettingValue(SettingsOptions::AutoStartMode) == autoStartMode_t::SOLDER) {
lastMovementTime = lastButtonTime = xTaskGetTickCount(); // Move forward so we dont go to sleep
newMode = OperatingMode::Soldering;
} else if (getSettingValue(SettingsOptions::AutoStartMode) == autoStartMode_t::ZERO) {
lastMovementTime = lastButtonTime = 0; // We mask the values so that sleep goes until user moves again or presses a button
newMode = OperatingMode::Hibernating;
} else {
newMode = OperatingMode::HomeScreen;
}
break;
default:
/* Fallthrough */
case OperatingMode::HomeScreen:
newMode = drawHomeScreen(buttons, &context);
break;
case OperatingMode::Soldering:
context.scratch_state.state4 = 0;
newMode = gui_solderingMode(buttons, &context);
break;
case OperatingMode::SolderingProfile:
newMode = gui_solderingProfileMode(buttons, &context);
break;
case OperatingMode::Sleeping:
newMode = gui_SolderingSleepingMode(buttons, &context);
break;
case OperatingMode::TemperatureAdjust:
newMode = gui_solderingTempAdjust(buttons, &context);
break;
case OperatingMode::DebugMenuReadout:
newMode = showDebugMenu(buttons, &context);
break;
case OperatingMode::CJCCalibration:
newMode = performCJCC(buttons, &context);
break;
case OperatingMode::SettingsMenu:
newMode = gui_SettingsMenu(buttons, &context);
break;
case OperatingMode::InitialisationDone:
newMode = handle_post_init_state();
break;
case OperatingMode::Hibernating:
context.scratch_state.state4 = 1;
gui_SolderingSleepingMode(buttons, &context);
if (lastButtonTime > 0 || lastMovementTime > 0) {
newMode = OperatingMode::Soldering;
}
break;
case OperatingMode::ThermalRunaway:
/*TODO*/
newMode = OperatingMode::HomeScreen;
break;
};
return newMode;
}
void guiRenderLoop(void) {
OperatingMode newMode = guiHandleDraw(); // This does the screen drawing
// Post draw we handle any state transitions
if (newMode != currentOperatingMode) {
context.viewEnterTime = xTaskGetTickCount();
context.previousMode = currentOperatingMode;
// If the previous mode is the startup logo; we dont want to return to it, but instead dispatch out to either home or soldering
if (currentOperatingMode == OperatingMode::StartupLogo) {
if (getSettingValue(SettingsOptions::AutoStartMode)) {
context.previousMode = OperatingMode::Soldering;
} else {
newMode = OperatingMode::HomeScreen;
}
}
memset(&context.scratch_state, 0, sizeof(context.scratch_state));
currentOperatingMode = newMode;
}
// If the transition marker is set, we need to make the next draw occur to the secondary buffer so we have something to transition to
if (context.transitionMode != TransitionAnimation::None) {
OLED::useSecondaryFramebuffer(true);
// Now we need to fill the secondary buffer with the _next_ frame to transistion to
guiHandleDraw();
OLED::useSecondaryFramebuffer(false);
// Now dispatch the transition
switch (context.transitionMode) {
case TransitionAnimation::Down:
OLED::transitionScrollDown(context.viewEnterTime);
break;
case TransitionAnimation::Left:
OLED::transitionSecondaryFramebuffer(false, context.viewEnterTime);
break;
case TransitionAnimation::Right:
OLED::transitionSecondaryFramebuffer(true, context.viewEnterTime);
break;
case TransitionAnimation::Up:
OLED::transitionScrollUp(context.viewEnterTime);
case TransitionAnimation::None:
default:
break; // Do nothing on unknown
}
context.transitionMode = TransitionAnimation::None; // Clear transition flag
}
// Render done, draw it out
OLED::refresh();
}
OperatingMode handle_post_init_state() {
#ifdef HAS_POWER_DEBUG_MENU
#ifdef DEBUG_POWER_MENU_BUTTON_B
if (buttonsAtDeviceBoot == BUTTON_B_LONG || buttonsAtDeviceBoot == BUTTON_B_SHORT) {
#else
if (buttonsAtDeviceBoot == BUTTON_F_LONG || buttonsAtDeviceBoot == BUTTON_F_SHORT) {
#endif
buttonsAtDeviceBoot = BUTTON_NONE;
return OperatingMode::UsbPDDebug;
}
#endif
if (getSettingValue(SettingsOptions::CalibrateCJC) > 0) {
return OperatingMode::CJCCalibration;
}
return OperatingMode::StartupWarnings;
}
/* StartGUITask function */
void startGUITask(void const *argument) {
@@ -47,42 +218,22 @@ void startGUITask(void const *argument) {
bool buttonLockout = false;
renderHomeScreenAssets();
getTipRawTemp(1); // reset filter
memset(&context, 0, sizeof(context));
OLED::setRotation(getSettingValue(SettingsOptions::OrientationMode) & 1);
// If the front button is held down, on supported devices, show PD debugging metrics
#ifdef HAS_POWER_DEBUG_MENU
#ifdef DEBUG_POWER_MENU_BUTTON_B
if (getButtonB()) {
#else
// Read boot button state
if (getButtonA()) {
#endif
showPDDebug();
buttonsAtDeviceBoot = BUTTON_F_LONG;
}
#endif
if (getSettingValue(SettingsOptions::CalibrateCJC) > 0) {
performCJCC();
if (getButtonB()) {
buttonsAtDeviceBoot = BUTTON_B_LONG;
}
uint16_t logoMode = getSettingValue(SettingsOptions::LOGOTime);
uint16_t startMode = getSettingValue(SettingsOptions::AutoStartMode);
// If the boot logo is enabled (but it times out) and the autostart mode is enabled (but not set to sleep w/o heat), start heating during boot logo
if (logoMode && logoMode < logoMode_t::ONETIME && startMode && startMode < autoStartMode_t::ZERO) {
uint16_t sleepTempDegC = getSettingValue(SettingsOptions::SleepTemp);
if (getSettingValue(SettingsOptions::TemperatureInF)) {
sleepTempDegC = TipThermoModel::convertFtoC(sleepTempDegC);
}
// Only heat to sleep temperature (but no higher than 75°C for safety)
currentTempTargetDegC = min(sleepTempDegC, 75);
TickType_t startRender = xTaskGetTickCount();
for (;;) {
guiRenderLoop();
resetWatchdog();
vTaskDelayUntil(&startRender, TICKS_100MS * 4 / 10); // Try and maintain 20-25fps ish update rate, way to fast but if we can its nice
}
showBootLogo();
showWarnings();
if (getSettingValue(SettingsOptions::AutoStartMode)) {
// jump directly to the autostart mode
gui_solderingMode(getSettingValue(SettingsOptions::AutoStartMode) - 1);
buttonLockout = true;
}
drawHomeScreen(buttonLockout);
}

View File

@@ -1,39 +1,49 @@
#include "OperatingModes.h"
void performCJCC(void) {
OperatingMode performCJCC(const ButtonState buttons, guiContext *cxt) {
// Calibrate Cold Junction Compensation directly at boot, before internal components get warm.
OLED::refresh();
osDelay(50);
// While we wait for the pre-start checks to finish, we cant run CJC (as the pre-start checks control the tip)
if (preStartChecks() == 0) {
OLED::setCursor(0, 0);
OLED::print(translatedString(Tr->CJCCalibrating), FontStyle::SMALL);
return OperatingMode::CJCCalibration;
}
if (!isTipDisconnected() && abs(int(TipThermoModel::getTipInC() - getHandleTemperature(0) / 10)) < 10) {
uint16_t setoffset = 0;
// Take 16 samples, only sample
if (cxt->scratch_state.state1 < 16) {
if ((xTaskGetTickCount() - cxt->scratch_state.state4) > TICKS_100MS) {
cxt->scratch_state.state3 += getTipRawTemp(1);
cxt->scratch_state.state1++;
cxt->scratch_state.state4 = xTaskGetTickCount();
}
OLED::setCursor(0, 0);
OLED::print(translatedString(Tr->CJCCalibrating), FontStyle::SMALL);
OLED::setCursor(0, 8);
OLED::print(SmallSymbolDot, FontStyle::SMALL);
for (uint8_t x = 0; x < (cxt->scratch_state.state1 / 4); x++) {
OLED::print(SmallSymbolDot, FontStyle::SMALL);
}
return OperatingMode::CJCCalibration;
}
// If the thermo-couple at the end of the tip, and the handle are at
// equilibrium, then the output should be zero, as there is no temperature
// differential.
while (setoffset == 0) {
uint32_t offset = 0;
for (uint8_t i = 0; i < 16; i++) {
offset += getTipRawTemp(1);
// cycle through the filter a fair bit to ensure we're stable.
OLED::clearScreen();
OLED::setCursor(0, 0);
OLED::print(translatedString(Tr->CJCCalibrating), FontStyle::SMALL);
OLED::setCursor(0, 8);
OLED::print(SmallSymbolDot, FontStyle::SMALL);
for (uint8_t x = 0; x < (i / 4); x++) {
OLED::print(SmallSymbolDot, FontStyle::SMALL);
}
OLED::refresh();
osDelay(100);
}
setoffset = TipThermoModel::convertTipRawADCTouV(offset / 16, true);
uint16_t setOffset = TipThermoModel::convertTipRawADCTouV(cxt->scratch_state.state3 / 16, true);
setSettingValue(SettingsOptions::CalibrationOffset, setOffset);
if (warnUser(translatedString(Tr->CalibrationDone), buttons)) {
// Preventing to repeat calibration at boot automatically (only one shot).
setSettingValue(SettingsOptions::CalibrateCJC, 0);
saveSettings();
return OperatingMode::InitialisationDone;
}
setSettingValue(SettingsOptions::CalibrationOffset, setoffset);
OLED::clearScreen();
warnUser(translatedString(Tr->CalibrationDone), 3 * TICKS_SECOND);
OLED::refresh();
// Preventing to repeat calibration at boot automatically (only one shot).
setSettingValue(SettingsOptions::CalibrateCJC, 0);
saveSettings();
return OperatingMode::CJCCalibration;
}
// Cant run calibration without the tip and for temps to be close
return OperatingMode::StartupWarnings;
}

View File

@@ -1,111 +1,102 @@
#include "OperatingModes.h"
extern osThreadId GUITaskHandle;
extern osThreadId MOVTaskHandle;
extern osThreadId PIDTaskHandle;
extern OperatingMode currentMode;
extern osThreadId GUITaskHandle;
extern osThreadId MOVTaskHandle;
extern osThreadId PIDTaskHandle;
void showDebugMenu(void) {
currentMode = OperatingMode::debug;
uint8_t screen = 0;
ButtonState b;
for (;;) {
OLED::clearScreen(); // Ensure the buffer starts clean
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(SmallSymbolVersionNumber, FontStyle::SMALL); // Print version number
OLED::setCursor(0, 8); // second line
OLED::print(DebugMenu[screen], FontStyle::SMALL);
switch (screen) {
case 0: // Build Date
break;
case 1: // Device ID
{
uint64_t id = getDeviceID();
OperatingMode showDebugMenu(const ButtonState buttons, guiContext *cxt) {
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(SmallSymbolVersionNumber, FontStyle::SMALL); // Print version number
OLED::setCursor(0, 8); // second line
OLED::print(DebugMenu[cxt->scratch_state.state1], FontStyle::SMALL);
switch (cxt->scratch_state.state1) {
case 0: // Build Date
break;
case 1: // Device ID
{
uint64_t id = getDeviceID();
#ifdef DEVICE_HAS_VALIDATION_CODE
// If device has validation code; then we want to take over both lines of the screen
OLED::clearScreen(); // Ensure the buffer starts clean
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(DebugMenu[screen], FontStyle::SMALL);
OLED::drawHex(getDeviceValidation(), FontStyle::SMALL, 8);
OLED::setCursor(0, 8); // second line
// If device has validation code; then we want to take over both lines of the screen
OLED::clearScreen(); // Ensure the buffer starts clean
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(DebugMenu[cxt->scratch_state.state1], FontStyle::SMALL);
OLED::drawHex(getDeviceValidation(), FontStyle::SMALL, 8);
OLED::setCursor(0, 8); // second line
#endif
OLED::drawHex((uint32_t)(id >> 32), FontStyle::SMALL, 8);
OLED::drawHex((uint32_t)(id & 0xFFFFFFFF), FontStyle::SMALL, 8);
} break;
case 2: // ACC Type
OLED::print(AccelTypeNames[(int)DetectedAccelerometerVersion], FontStyle::SMALL);
break;
case 3: // Power Negotiation Status
OLED::print(PowerSourceNames[getPowerSourceNumber()], FontStyle::SMALL);
break;
case 4: // Input Voltage
printVoltage();
break;
case 5: // Temp in °C
OLED::printNumber(TipThermoModel::getTipInC(), 6, FontStyle::SMALL);
break;
case 6: // Handle Temp in °C
OLED::printNumber(getHandleTemperature(0) / 10, 6, FontStyle::SMALL);
OLED::print(SmallSymbolDot, FontStyle::SMALL);
OLED::printNumber(getHandleTemperature(0) % 10, 1, FontStyle::SMALL);
break;
case 7: // Max Temp Limit in °C
OLED::printNumber(TipThermoModel::getTipMaxInC(), 6, FontStyle::SMALL);
break;
case 8: // System Uptime
OLED::printNumber(xTaskGetTickCount() / TICKS_100MS, 8, FontStyle::SMALL);
break;
case 9: // Movement Timestamp
OLED::printNumber(lastMovementTime / TICKS_100MS, 8, FontStyle::SMALL);
break;
case 10: // Tip Resistance in Ω large to pad over so that we cover ID left overs
OLED::printNumber(getTipResistanceX10() / 10, 6, FontStyle::SMALL);
OLED::print(SmallSymbolDot, FontStyle::SMALL);
OLED::printNumber(getTipResistanceX10() % 10, 1, FontStyle::SMALL);
break;
case 11: // Raw Tip in µV
OLED::printNumber(TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true), 8, FontStyle::SMALL);
break;
case 12: // Tip Cold Junction Compensation Offset in µV
OLED::printNumber(getSettingValue(SettingsOptions::CalibrationOffset), 8, FontStyle::SMALL);
break;
case 13: // High Water Mark for GUI
OLED::printNumber(uxTaskGetStackHighWaterMark(GUITaskHandle), 8, FontStyle::SMALL);
break;
case 14: // High Water Mark for Movement Task
OLED::printNumber(uxTaskGetStackHighWaterMark(MOVTaskHandle), 8, FontStyle::SMALL);
break;
case 15: // High Water Mark for PID Task
OLED::printNumber(uxTaskGetStackHighWaterMark(PIDTaskHandle), 8, FontStyle::SMALL);
break;
break;
OLED::drawHex((uint32_t)(id >> 32), FontStyle::SMALL, 8);
OLED::drawHex((uint32_t)(id & 0xFFFFFFFF), FontStyle::SMALL, 8);
} break;
case 2: // ACC Type
OLED::print(AccelTypeNames[(int)DetectedAccelerometerVersion], FontStyle::SMALL);
break;
case 3: // Power Negotiation Status
OLED::print(PowerSourceNames[getPowerSourceNumber()], FontStyle::SMALL);
break;
case 4: // Input Voltage
printVoltage();
break;
case 5: // Temp in °C
OLED::printNumber(TipThermoModel::getTipInC(), 6, FontStyle::SMALL);
break;
case 6: // Handle Temp in °C
OLED::printNumber(getHandleTemperature(0) / 10, 6, FontStyle::SMALL);
OLED::print(SmallSymbolDot, FontStyle::SMALL);
OLED::printNumber(getHandleTemperature(0) % 10, 1, FontStyle::SMALL);
break;
case 7: // Max Temp Limit in °C
OLED::printNumber(TipThermoModel::getTipMaxInC(), 6, FontStyle::SMALL);
break;
case 8: // System Uptime
OLED::printNumber(xTaskGetTickCount() / TICKS_100MS, 8, FontStyle::SMALL);
break;
case 9: // Movement Timestamp
OLED::printNumber(lastMovementTime / TICKS_100MS, 8, FontStyle::SMALL);
break;
case 10: // Tip Resistance in Ω
OLED::printNumber(getTipResistanceX10() / 10, 6, FontStyle::SMALL); // large to pad over so that we cover ID left overs
OLED::print(SmallSymbolDot, FontStyle::SMALL);
OLED::printNumber(getTipResistanceX10() % 10, 1, FontStyle::SMALL);
break;
case 11: // Raw Tip in µV
OLED::printNumber(TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true), 8, FontStyle::SMALL);
break;
case 12: // Tip Cold Junction Compensation Offset in µV
OLED::printNumber(getSettingValue(SettingsOptions::CalibrationOffset), 8, FontStyle::SMALL);
break;
case 13: // High Water Mark for GUI
OLED::printNumber(uxTaskGetStackHighWaterMark(GUITaskHandle), 8, FontStyle::SMALL);
break;
case 14: // High Water Mark for Movement Task
OLED::printNumber(uxTaskGetStackHighWaterMark(MOVTaskHandle), 8, FontStyle::SMALL);
break;
case 15: // High Water Mark for PID Task
OLED::printNumber(uxTaskGetStackHighWaterMark(PIDTaskHandle), 8, FontStyle::SMALL);
break;
break;
#ifdef HALL_SENSOR
case 16: // Raw Hall Effect Value
{
int16_t hallEffectStrength = getRawHallEffect();
if (hallEffectStrength < 0) {
hallEffectStrength = -hallEffectStrength;
}
OLED::printNumber(hallEffectStrength, 6, FontStyle::SMALL);
} break;
case 16: // Raw Hall Effect Value
{
int16_t hallEffectStrength = getRawHallEffect();
if (hallEffectStrength < 0) {
hallEffectStrength = -hallEffectStrength;
}
OLED::printNumber(hallEffectStrength, 6, FontStyle::SMALL);
} break;
#endif
default:
break;
}
OLED::refresh();
b = getButtonState();
if (b == BUTTON_B_SHORT) {
return;
} else if (b == BUTTON_F_SHORT) {
screen++;
#ifdef HALL_SENSOR
screen = screen % 17;
#else
screen = screen % 16;
#endif
}
GUIDelay();
default:
break;
}
if (buttons == BUTTON_B_SHORT) {
cxt->transitionMode = TransitionAnimation::Down;
return OperatingMode::HomeScreen;
} else if (buttons == BUTTON_F_SHORT) {
cxt->scratch_state.state1++;
#ifdef HALL_SENSOR
cxt->scratch_state.state1 = cxt->scratch_state.state1 % 17;
#else
cxt->scratch_state.state1 = cxt->scratch_state.state1 % 16;
#endif
}
return OperatingMode::DebugMenuReadout; // Stay in debug menu
}

View File

@@ -2,14 +2,10 @@
#include "Buttons.hpp"
#include "OperatingModes.h"
#define MOVEMENT_INACTIVITY_TIME (60 * configTICK_RATE_HZ)
#define BUTTON_INACTIVITY_TIME (60 * configTICK_RATE_HZ)
uint8_t buttonAF[sizeof(buttonA)];
uint8_t buttonBF[sizeof(buttonB)];
uint8_t disconnectedTipF[sizeof(disconnectedTip)];
extern OperatingMode currentMode;
bool showExitMenuTransition = false;
uint8_t buttonAF[sizeof(buttonA)];
uint8_t buttonBF[sizeof(buttonB)];
uint8_t disconnectedTipF[sizeof(disconnectedTip)];
bool showExitMenuTransition = false;
void renderHomeScreenAssets(void) {
@@ -24,59 +20,50 @@ void renderHomeScreenAssets(void) {
}
}
void handleButtons(bool *buttonLockout) {
ButtonState buttons = getButtonState();
if (buttons != BUTTON_NONE) {
OLED::setDisplayState(OLED::DisplayState::ON);
}
if (buttons != BUTTON_NONE && *buttonLockout) {
buttons = BUTTON_NONE;
OperatingMode handleHomeButtons(const ButtonState buttons, guiContext *cxt) {
if (buttons != BUTTON_NONE && cxt->scratch_state.state1 == 0) {
return OperatingMode::HomeScreen; // Ignore button press
} else {
*buttonLockout = false;
cxt->scratch_state.state1 = 1;
}
switch (buttons) {
case BUTTON_NONE:
// Do nothing
break;
case BUTTON_BOTH:
// Not used yet
// In multi-language this might be used to reset language on a long hold
// or some such
break;
case BUTTON_B_LONG:
// Show the version information
showDebugMenu();
cxt->transitionMode = TransitionAnimation::Up;
return OperatingMode::DebugMenuReadout;
break;
case BUTTON_F_LONG:
#ifdef PROFILE_SUPPORT
if (!isTipDisconnected()) {
gui_solderingProfileMode(); // enter profile mode
*buttonLockout = true;
cxt->transitionMode = TransitionAnimation::Left;
return OperatingMode::SolderingProfile;
} else {
return OperatingMode::HomeScreen;
}
#else
gui_solderingTempAdjust();
saveSettings();
cxt->transitionMode = TransitionAnimation::Left;
return OperatingMode::TemperatureAdjust;
#endif
break;
case BUTTON_F_SHORT:
if (!isTipDisconnected()) {
gui_solderingMode(0); // enter soldering mode
*buttonLockout = true;
cxt->transitionMode = TransitionAnimation::Left;
return OperatingMode::Soldering;
}
break;
case BUTTON_B_SHORT:
currentMode = OperatingMode::settings;
enterSettingsMenu(); // enter the settings menu
{
OLED::useSecondaryFramebuffer(true);
showExitMenuTransition = true;
}
*buttonLockout = true;
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::SettingsMenu;
break;
default:
break;
}
return OperatingMode::HomeScreen;
}
void drawDetailedHomeScreen(uint32_t tipTemp) {
@@ -181,55 +168,22 @@ void drawSimplifiedHomeScreen(uint32_t tipTemp) {
}
}
}
void drawHomeScreen(bool buttonLockout) {
OperatingMode drawHomeScreen(const ButtonState buttons, guiContext *cxt) {
for (;;) {
currentMode = OperatingMode::idle;
handleButtons(&buttonLockout);
currentTempTargetDegC = 0; // ensure tip is off
getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
uint32_t tipTemp = TipThermoModel::getTipInC();
currentTempTargetDegC = 0; // ensure tip is off
getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
uint32_t tipTemp = TipThermoModel::getTipInC();
// Preemptively turn the display on. Turn it off if and only if
// the tip temperature is below 50 degrees C *and* motion sleep
// detection is enabled *and* there has been no activity (movement or
// button presses) in a while.
// This is zero cost really as state is only changed on display updates
OLED::setDisplayState(OLED::DisplayState::ON);
if ((tipTemp < 50) && getSettingValue(SettingsOptions::Sensitivity) &&
(((xTaskGetTickCount() - lastMovementTime) > MOVEMENT_INACTIVITY_TIME) && ((xTaskGetTickCount() - lastButtonTime) > BUTTON_INACTIVITY_TIME))) {
OLED::setDisplayState(OLED::DisplayState::OFF);
setStatusLED(LED_OFF);
} else {
OLED::setDisplayState(OLED::DisplayState::ON);
if (tipTemp > 55) {
setStatusLED(LED_COOLING_STILL_HOT);
} else {
setStatusLED(LED_STANDBY);
}
}
// Clear the lcd buffer
OLED::clearScreen();
if (OLED::getRotation()) {
OLED::setCursor(50, 0);
} else {
OLED::setCursor(-1, 0);
}
if (getSettingValue(SettingsOptions::DetailedIDLE)) {
drawDetailedHomeScreen(tipTemp);
} else {
drawSimplifiedHomeScreen(tipTemp);
}
if (showExitMenuTransition) {
OLED::useSecondaryFramebuffer(false);
OLED::transitionSecondaryFramebuffer(false);
showExitMenuTransition = false;
} else {
OLED::refresh();
GUIDelay();
}
// Setup LCD Cursor location
if (OLED::getRotation()) {
OLED::setCursor(50, 0);
} else {
OLED::setCursor(-1, 0);
}
if (getSettingValue(SettingsOptions::DetailedIDLE)) {
drawDetailedHomeScreen(tipTemp);
} else {
drawSimplifiedHomeScreen(tipTemp);
}
return handleHomeButtons(buttons, cxt);
}

View File

@@ -3,6 +3,3 @@
//
#include "OperatingModes.h"
// Global variables
OperatingMode currentMode = OperatingMode::idle;

View File

@@ -24,29 +24,64 @@ extern "C" {
#include "pd.h"
#endif
// Exposed modes
enum OperatingMode {
idle = 0,
soldering = 1,
boost = 2,
sleeping = 3,
settings = 4,
debug = 5
enum class OperatingMode {
StartupLogo = 0, // Showing the startup logo
CJCCalibration, // Cold Junction Calibration
StartupWarnings, // Startup checks and warnings
InitialisationDone, // Special state we use just before we to home screen at first startup. Allows jumping to extra startup states
HomeScreen, // Home/Idle screen that is the main launchpad to other modes
Soldering, // Main soldering operating mode
SolderingProfile, // Soldering by following a profile, used for reflow for example
Sleeping, // Sleep state holds iron at lower sleep temp
Hibernating, // Like sleeping but keeps heater fully off until woken
SettingsMenu, // Settings Menu
DebugMenuReadout, // Debug metrics
TemperatureAdjust, // Set point temperature adjustment
UsbPDDebug, // USB PD debugging information
ThermalRunaway, // Thermal Runaway warning state.
};
enum class TransitionAnimation {
None = 0,
Right = 1,
Left = 2,
Down = 3,
Up = 4,
};
// Generic context struct used for gui functions to be able to retain state
struct guiContext {
TickType_t viewEnterTime; // Set to ticks when this view state was first entered
OperatingMode previousMode;
TransitionAnimation transitionMode;
// Below is scratch state, this is retained over re-draws but blown away on state change
struct scratch {
uint16_t state1; // 16 bit state scratch
uint16_t state2; // 16 bit state scratch
uint32_t state3; // 32 bit state scratch
uint32_t state4; // 32 bit state scratch
uint16_t state5; // 16 bit state scratch
uint16_t state6; // 16 bit state scratch
} scratch_state;
};
// Main functions
void performCJCC(void); // Used to calibrate the Cold Junction offset
void gui_solderingTempAdjust(void); // For adjusting the setpoint temperature of the iron
int gui_SolderingSleepingMode(bool stayOff, bool autoStarted); // Sleep mode
void gui_solderingMode(uint8_t jumpToSleep); // Main mode for hot pointy tool
void gui_solderingProfileMode(); // Profile mode for hot likely-not-so-pointy tool
void showDebugMenu(void); // Debugging values
void showPDDebug(void); // Debugging menu that shows PD adaptor info
void showWarnings(void); // Shows user warnings if required
void drawHomeScreen(bool buttonLockout) __attribute__((noreturn)); // IDLE / Home screen
void renderHomeScreenAssets(void); // Called to act as start delay and used to render out flipped images for home screen graphics
OperatingMode gui_SolderingSleepingMode(const ButtonState buttons, guiContext *cxt); // Sleep mode
OperatingMode gui_solderingMode(const ButtonState buttons, guiContext *cxt); // Main mode for hot pointy tool
OperatingMode gui_solderingTempAdjust(const ButtonState buttons, guiContext *cxt); // For adjusting the setpoint temperature of the iron
OperatingMode drawHomeScreen(const ButtonState buttons, guiContext *cxt); // IDLE / Home screen
OperatingMode gui_SettingsMenu(const ButtonState buttons, guiContext *cxt); //
OperatingMode gui_solderingProfileMode(const ButtonState buttons, guiContext *cxt); // Profile mode for hot likely-not-so-pointy tool
OperatingMode performCJCC(const ButtonState buttons, guiContext *cxt); // Used to calibrate the Cold Junction offset
OperatingMode showDebugMenu(const ButtonState buttons, guiContext *cxt); // Debugging values
OperatingMode showPDDebug(const ButtonState buttons, guiContext *cxt); // Debugging menu that shows PD adaptor info
OperatingMode showWarnings(const ButtonState buttons, guiContext *cxt); // Shows user warnings if required
// Common helpers
int8_t getPowerSourceNumber(void); // Returns number ID of power source
TemperatureType_t getTipTemp(void); // Returns temperature of the tip in *C/*F (based on user settings)
int8_t getPowerSourceNumber(void); // Returns number ID of power source
void renderHomeScreenAssets(void); // Called to act as start delay and used to render out flipped images for home screen graphics
extern bool heaterThermalRunaway;
#endif

View File

@@ -0,0 +1,275 @@
#include "OperatingModes.h"
#include "ScrollMessage.hpp"
#define HELP_TEXT_TIMEOUT_TICKS (TICKS_SECOND * 3)
/*
* The settings menu is the most complex bit of GUI code we have
* The menu consists of a two tier menu
* Main menu -> Categories
* Secondary menu -> Settings
*
* For each entry in the menu
*/
/**
* Prints two small lines (or one line for CJK) of short description for
* setting items and prepares cursor after it.
* @param settingsItemIndex Index of the setting item.
* @param cursorCharPosition Custom cursor char position to set after printing
* description.
*/
static void printShortDescription(SettingsItemIndex settingsItemIndex, uint16_t cursorCharPosition) {
// print short description (default single line, explicit double line)
uint8_t shortDescIndex = static_cast<uint8_t>(settingsItemIndex);
OLED::printWholeScreen(translatedString(Tr->SettingsShortNames[shortDescIndex]));
// prepare cursor for value
// make room for scroll indicator
OLED::setCursor(cursorCharPosition * FONT_12_WIDTH - 2, 0);
}
// Render a menu, based on the position given
// This will either draw the menu item, or the help text depending on how long its been since button press
void render_menu(const menuitem *item, guiContext *cxt) {
// If recent interaction or not help text draw the entry
if ((xTaskGetTickCount() - lastButtonTime < HELP_TEXT_TIMEOUT_TICKS) || item->description == 0) {
if (item->shortDescriptionSize > 0) {
printShortDescription(item->shortDescriptionIndex, item->shortDescriptionSize);
}
item->draw();
} else {
uint16_t *isRenderingHelp = &(cxt->scratch_state.state6);
*isRenderingHelp = 1;
// Draw description
const char *description = translatedString(Tr->SettingsDescriptions[item->description - 1]);
drawScrollingText(description, (xTaskGetTickCount() - lastButtonTime) - HELP_TEXT_TIMEOUT_TICKS);
}
}
uint16_t getMenuLength(const menuitem *menu, const uint16_t stop) {
// walk this menu to find the length
uint16_t counter = 0;
for (uint16_t pos = 0; pos < stop; pos++) {
// End of list
if (menu[pos].draw == nullptr) {
return counter;
}
// Otherwise increment for each visible item (null == always, or if not check function)
if (menu[pos].isVisible == nullptr || menu[pos].isVisible()) {
counter++;
}
}
return counter;
}
OperatingMode moveToNextEntry(guiContext *cxt) {
uint16_t *mainEntry = &(cxt->scratch_state.state1);
uint16_t *subEntry = &(cxt->scratch_state.state2);
uint16_t *currentMenuLength = &(cxt->scratch_state.state5);
uint16_t *isRenderingHelp = &(cxt->scratch_state.state6);
if (*isRenderingHelp) {
*isRenderingHelp = 0;
} else {
*currentMenuLength = 0; // Reset menu length
// Scroll down
// We can increment freely _once_
cxt->transitionMode = TransitionAnimation::Down;
if (*subEntry == 0) {
(*mainEntry) += 1;
if (rootSettingsMenu[*mainEntry].draw == nullptr) {
// We are off the end of the menu now
saveSettings();
cxt->transitionMode = TransitionAnimation::Left;
return OperatingMode::HomeScreen;
}
// Check if visible
if (rootSettingsMenu[*mainEntry].isVisible != nullptr && !rootSettingsMenu[*mainEntry].isVisible()) {
// We need to move on as this one isn't visible
return moveToNextEntry(cxt);
}
} else {
(*subEntry) += 1;
// If the new entry is null, we need to exit
if (subSettingsMenus[*mainEntry][(*subEntry) - 1].draw == nullptr) {
(*subEntry) = 0; // Reset back to the main menu
cxt->transitionMode = TransitionAnimation::Left;
// Have to break early to avoid the below check underflowing
return OperatingMode::SettingsMenu;
}
// Check if visible
if (subSettingsMenus[*mainEntry][(*subEntry) - 1].isVisible != nullptr && !subSettingsMenus[*mainEntry][(*subEntry) - 1].isVisible()) {
// We need to move on as this one isn't visible
return moveToNextEntry(cxt);
}
}
}
return OperatingMode::SettingsMenu;
}
OperatingMode gui_SettingsMenu(const ButtonState buttons, guiContext *cxt) {
// Render out the current settings menu
// State 1 -> Root menu
// State 2 -> Sub entry
// Draw main entry if sub-entry is 0, otherwise draw sub-entry
uint16_t *mainEntry = &(cxt->scratch_state.state1);
uint16_t *subEntry = &(cxt->scratch_state.state2);
uint32_t *autoRepeatAcceleration = &(cxt->scratch_state.state3);
uint32_t *autoRepeatTimer = &(cxt->scratch_state.state4);
uint16_t *currentMenuLength = &(cxt->scratch_state.state5);
uint16_t *isRenderingHelp = &(cxt->scratch_state.state6);
const menuitem *currentMenu;
// Draw the currently on screen item
uint16_t currentScreen;
if (*subEntry == 0) {
// Drawing main menu
currentMenu = rootSettingsMenu;
currentScreen = *mainEntry;
} else {
// Drawing sub menu
currentMenu = subSettingsMenus[*mainEntry];
currentScreen = (*subEntry) - 1;
}
render_menu(&(currentMenu[currentScreen]), cxt);
// Update the cached menu length if unknown
if (*currentMenuLength == 0) {
// We walk the current menu to find the length
*currentMenuLength = getMenuLength(currentMenu, 128 /* Max length of any menu*/);
}
if (*isRenderingHelp == 0) {
// Draw scroll
// Get virtual pos by counting entries from start to _here_
uint16_t currentVirtualPosition = getMenuLength(currentMenu, currentScreen + 1);
if (currentVirtualPosition > 0) {
currentVirtualPosition--;
}
// The height of the indicator is screen res height / total menu entries
uint8_t indicatorHeight = OLED_HEIGHT / *currentMenuLength;
if (indicatorHeight == 0) {
indicatorHeight = 1; // always at least 1 pixel
}
uint16_t position = (OLED_HEIGHT * (uint16_t)currentVirtualPosition) / *currentMenuLength;
bool showScrollbar = true;
// Store if its the last option for this setting
bool isLastOptionForSetting = false;
if ((int)currentMenu[currentScreen].autoSettingOption < (int)SettingsOptions::SettingsOptionsLength) {
isLastOptionForSetting = isLastSettingValue(currentMenu[currentScreen].autoSettingOption);
}
// Last settings menu entry, reset scroll show back so it flashes
if (isLastOptionForSetting) {
showScrollbar = false;
}
// Or Flash it
showScrollbar |= (xTaskGetTickCount() % (TICKS_SECOND / 4) < (TICKS_SECOND / 8));
if (showScrollbar) {
OLED::drawScrollIndicator((uint8_t)position, indicatorHeight);
}
}
// Now handle user button input
auto callIncrementHandler = [&]() {
if (currentMenu[currentScreen].incrementHandler != nullptr) {
currentMenu[currentScreen].incrementHandler();
} else if ((int)currentMenu[currentScreen].autoSettingOption < (int)SettingsOptions::SettingsOptionsLength) {
nextSettingValue(currentMenu[currentScreen].autoSettingOption);
}
return false;
};
//
OperatingMode newMode = OperatingMode::SettingsMenu;
switch (buttons) {
case BUTTON_NONE:
(*autoRepeatAcceleration) = 0; // reset acceleration
(*autoRepeatTimer) = 0; // reset acceleration
break;
case BUTTON_BOTH:
if (*subEntry == 0) {
saveSettings();
cxt->transitionMode = TransitionAnimation::Left;
return OperatingMode::HomeScreen;
} else {
cxt->transitionMode = TransitionAnimation::Left;
*subEntry = 0;
return OperatingMode::SettingsMenu;
}
break;
case BUTTON_F_LONG:
if (xTaskGetTickCount() + (*autoRepeatAcceleration) > (*autoRepeatTimer) + PRESS_ACCEL_INTERVAL_MAX) {
callIncrementHandler();
// Update the check for if its the last version
bool isLastOptionForSetting = false;
if ((int)currentMenu[currentScreen].autoSettingOption < (int)SettingsOptions::SettingsOptionsLength) {
isLastOptionForSetting = isLastSettingValue(currentMenu[currentScreen].autoSettingOption);
}
if (isLastOptionForSetting) {
(*autoRepeatTimer) = TICKS_SECOND * 2;
} else {
(*autoRepeatTimer) = 0;
}
(*autoRepeatTimer) += xTaskGetTickCount();
(*autoRepeatAcceleration) += PRESS_ACCEL_STEP;
*currentMenuLength = 0; // Reset incase menu visible changes
}
break;
case BUTTON_F_SHORT:
// Increment setting
if (*isRenderingHelp) {
*isRenderingHelp = 0;
} else {
*currentMenuLength = 0; // Reset incase menu visible changes
if (*subEntry == 0) {
// In a root menu, if its null handler we enter the menu
if (currentMenu[currentScreen].incrementHandler != nullptr) {
currentMenu[currentScreen].incrementHandler();
} else {
(*subEntry) += 1;
cxt->transitionMode = TransitionAnimation::Right;
}
} else {
callIncrementHandler();
}
}
break;
case BUTTON_B_LONG:
if (xTaskGetTickCount() + (*autoRepeatAcceleration) > (*autoRepeatTimer) + PRESS_ACCEL_INTERVAL_MAX) {
(*autoRepeatTimer) = xTaskGetTickCount();
(*autoRepeatAcceleration) += PRESS_ACCEL_STEP;
} else {
break;
}
/* Fall through*/
case BUTTON_B_SHORT:
// Increment menu item
newMode = moveToNextEntry(cxt);
break;
default:
break;
}
if ((PRESS_ACCEL_INTERVAL_MAX - (*autoRepeatAcceleration)) < PRESS_ACCEL_INTERVAL_MIN) {
(*autoRepeatAcceleration) = PRESS_ACCEL_INTERVAL_MAX - PRESS_ACCEL_INTERVAL_MIN;
}
// Otherwise we stay put for next render iteration
return newMode;
}

View File

@@ -1,56 +1,95 @@
#include "HUB238.hpp"
#include "OperatingModes.h"
void showWarnings(void) {
OperatingMode showWarnings(const ButtonState buttons, guiContext *cxt) {
// Display alert if settings were reset
if (settingsWereReset) {
warnUser(translatedString(Tr->SettingsResetMessage), 10 * TICKS_SECOND);
}
#ifdef DEVICE_HAS_VALIDATION_SUPPORT
if (getDeviceValidationStatus()) {
// Warn user this device might be counterfeit
warnUser(translatedString(Tr->DeviceFailedValidationWarning), 10 * TICKS_SECOND);
}
#endif
#ifndef NO_WARN_MISSING
// We also want to alert if accel or pd is not detected / not responding
// In this case though, we dont want to nag the user _too_ much
// So only show first 2 times
while (DetectedAccelerometerVersion == AccelType::Scanning) {
osDelay(5);
resetWatchdog();
}
// Display alert if accelerometer is not detected
if (DetectedAccelerometerVersion == AccelType::None) {
if (getSettingValue(SettingsOptions::AccelMissingWarningCounter) < 2) {
nextSettingValue(SettingsOptions::AccelMissingWarningCounter);
saveSettings();
warnUser(translatedString(Tr->NoAccelerometerMessage), 10 * TICKS_SECOND);
switch (cxt->scratch_state.state1) {
case 0: // Settings reset warning
if (settingsWereReset) {
if (warnUser(translatedString(Tr->SettingsResetMessage), buttons)) {
settingsWereReset = false;
cxt->scratch_state.state1 = 1;
}
} else {
cxt->scratch_state.state1 = 1;
}
}
break;
case 1: // Device validations
#ifdef DEVICE_HAS_VALIDATION_SUPPORT
if (getDeviceValidationStatus()) {
// Warn user this device might be counterfeit
if (warnUser(translatedString(Tr->DeviceFailedValidationWarning), buttons)) {
cxt->scratch_state.state1 = 2;
}
} else {
cxt->scratch_state.state1 = 2;
}
#else
cxt->scratch_state.state1 = 2;
#endif
break;
case 2: // Accelerometer detection
if (DetectedAccelerometerVersion == AccelType::Scanning) {
break;
}
// Display alert if accelerometer is not detected
if (DetectedAccelerometerVersion == AccelType::None) {
if (getSettingValue(SettingsOptions::AccelMissingWarningCounter) < 2) {
if (warnUser(translatedString(Tr->NoAccelerometerMessage), buttons)) {
cxt->scratch_state.state1 = 3;
nextSettingValue(SettingsOptions::AccelMissingWarningCounter);
saveSettings();
}
} else {
cxt->scratch_state.state1 = 3;
}
} else {
cxt->scratch_state.state1 = 3;
}
break;
case 3:
#ifdef POW_PD
// We expect pd to be present
resetWatchdog();
if (!USBPowerDelivery::fusbPresent()) {
if (getSettingValue(SettingsOptions::PDMissingWarningCounter) < 2) {
nextSettingValue(SettingsOptions::PDMissingWarningCounter);
saveSettings();
warnUser(translatedString(Tr->NoPowerDeliveryMessage), 10 * TICKS_SECOND);
// We expect pd to be present
if (!USBPowerDelivery::fusbPresent()) {
if (getSettingValue(SettingsOptions::PDMissingWarningCounter) < 2) {
if (warnUser(translatedString(Tr->NoPowerDeliveryMessage), buttons)) {
nextSettingValue(SettingsOptions::PDMissingWarningCounter);
saveSettings();
cxt->scratch_state.state1 = 4;
}
} else {
cxt->scratch_state.state1 = 4;
}
} else {
cxt->scratch_state.state1 = 4;
}
}
#endif /*POW_PD*/
#else
#if POW_PD_EXT == 1
if (!hub238_probe()) {
if (getSettingValue(SettingsOptions::PDMissingWarningCounter) < 2) {
nextSettingValue(SettingsOptions::PDMissingWarningCounter);
saveSettings();
warnUser(translatedString(Tr->NoPowerDeliveryMessage), 10 * TICKS_SECOND);
if (!hub238_probe()) {
if (getSettingValue(SettingsOptions::PDMissingWarningCounter) < 2) {
if (warnUser(translatedString(Tr->NoPowerDeliveryMessage), buttons)) {
cxt->scratch_state.state1 = 4;
nextSettingValue(SettingsOptions::PDMissingWarningCounter);
saveSettings();
}
} else {
cxt->scratch_state.state1 = 4;
}
} else {
cxt->scratch_state.state1 = 4;
}
}
#else
cxt->scratch_state.state1 = 4;
#endif /*POW_PD_EXT==1*/
// If tip looks to be shorted, yell at user and dont auto dismiss
if (isTipShorted()) {
warnUser(translatedString(Tr->WarningTipShorted), portMAX_DELAY);
#endif /*POW_PD*/
break;
default:
// We are off the end, warnings done
return OperatingMode::StartupLogo;
}
#endif /*NO_WARN_MISSING*/
return OperatingMode::StartupWarnings; // Stay in warnings
}

View File

@@ -1,64 +1,70 @@
#include "OperatingModes.h"
extern OperatingMode currentMode;
int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) {
#ifndef NO_SLEEP_MODE
OperatingMode gui_SolderingSleepingMode(const ButtonState buttons, guiContext *cxt) {
#ifdef NO_SLEEP_MODE
return OperatingMode::Soldering;
#endif
// Drop to sleep temperature and display until movement or button press
currentMode = OperatingMode::sleeping;
for (;;) {
// user moved or pressed a button, go back to soldering
// If in the first two seconds we disable this to let accelerometer warm up
// user moved or pressed a button, go back to soldering
// If in the first two seconds we disable this to let accelerometer warm up
#ifdef POW_DC
if (checkForUnderVoltage()) {
// return non-zero on error
return 1;
}
#endif
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = stayOff ? 0 : TipThermoModel::convertFtoC(min(getSettingValue(SettingsOptions::SleepTemp), getSettingValue(SettingsOptions::SolderingTemp)));
} else {
currentTempTargetDegC = stayOff ? 0 : min(getSettingValue(SettingsOptions::SleepTemp), getSettingValue(SettingsOptions::SolderingTemp));
}
// draw the lcd
TemperatureType_t tipTemp = getTipTemp();
OLED::clearScreen();
OLED::setCursor(0, 0);
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
OLED::print(translatedString(Tr->SleepingAdvancedString), FontStyle::SMALL);
OLED::setCursor(0, 8);
OLED::print(translatedString(Tr->SleepingTipAdvancedString), FontStyle::SMALL);
OLED::printNumber(tipTemp, 3, FontStyle::SMALL);
OLED::printSymbolDeg(FontStyle::SMALL);
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
printVoltage();
OLED::print(SmallSymbolVolts, FontStyle::SMALL);
} else {
OLED::print(translatedString(Tr->SleepingSimpleString), FontStyle::LARGE);
OLED::printNumber(tipTemp, 3, FontStyle::LARGE);
OLED::printSymbolDeg(FontStyle::EXTRAS);
}
OLED::refresh();
GUIDelay();
if (!shouldBeSleeping(autoStarted)) {
return 0;
}
if (shouldShutdown()) {
// shutdown
currentTempTargetDegC = 0;
// we want to exit soldering mode
return 1;
}
if (checkForUnderVoltage()) {
return OperatingMode::HomeScreen; // return non-zero on error
}
#endif
return 0;
if (cxt->scratch_state.state4) {
// Hibernating mode
currentTempTargetDegC = 0;
} else {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(min(getSettingValue(SettingsOptions::SleepTemp), getSettingValue(SettingsOptions::SolderingTemp)));
} else {
currentTempTargetDegC = min(getSettingValue(SettingsOptions::SleepTemp), getSettingValue(SettingsOptions::SolderingTemp));
}
}
// draw the lcd
uint16_t tipTemp = getSettingValue(SettingsOptions::TemperatureInF) ? TipThermoModel::getTipInF() : TipThermoModel::getTipInC();
OLED::clearScreen();
OLED::setCursor(0, 0);
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
OLED::print(translatedString(Tr->SleepingAdvancedString), FontStyle::SMALL);
OLED::setCursor(0, 8);
OLED::print(translatedString(Tr->SleepingTipAdvancedString), FontStyle::SMALL);
OLED::printNumber(tipTemp, 3, FontStyle::SMALL);
if (getSettingValue(SettingsOptions::TemperatureInF)) {
OLED::print(SmallSymbolDegF, FontStyle::SMALL);
} else {
OLED::print(SmallSymbolDegC, FontStyle::SMALL);
}
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
printVoltage();
OLED::print(SmallSymbolVolts, FontStyle::SMALL);
} else {
OLED::print(translatedString(Tr->SleepingSimpleString), FontStyle::LARGE);
OLED::printNumber(tipTemp, 3, FontStyle::LARGE);
OLED::printSymbolDeg(FontStyle::EXTRAS);
}
OLED::refresh();
GUIDelay();
if (!shouldBeSleeping()) {
return cxt->previousMode;
}
if (shouldShutdown()) {
// shutdown
currentTempTargetDegC = 0;
return OperatingMode::HomeScreen;
}
if (cxt->scratch_state.state4) {
return OperatingMode::Hibernating;
} else {
return OperatingMode::Sleeping;
}
}

View File

@@ -1,10 +1,62 @@
#include "OperatingModes.h"
#include "SolderingCommon.h"
// State 1 = button locking
// State 2 = boost mode
// State 3 = buzzer timer
extern OperatingMode currentMode;
void gui_solderingMode(uint8_t jumpToSleep) {
OperatingMode handleSolderingButtons(const ButtonState buttons, guiContext *cxt) {
if (cxt->scratch_state.state1 == 1) {
// Buttons are currently locked
if (buttons == BUTTON_F_LONG) {
if (getSettingValue(SettingsOptions::BoostTemp) && (getSettingValue(SettingsOptions::LockingMode) == 1)) {
cxt->scratch_state.state2 = 1;
}
} else if (buttons == BUTTON_BOTH_LONG) {
// Unlocking
if (warnUser(translatedString(Tr->UnlockingKeysString), buttons)) {
cxt->scratch_state.state1 = 0;
}
} else if (buttons != BUTTON_NONE) {
// Do nothing and display a lock warning
warnUser(translatedString(Tr->WarningKeysLockedString), buttons);
}
return OperatingMode::Soldering;
}
// otherwise we are unlocked
switch (buttons) {
case BUTTON_NONE:
cxt->scratch_state.state2 = 0;
break;
case BUTTON_BOTH:
/*Fall through*/
case BUTTON_B_LONG:
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::HomeScreen;
case BUTTON_F_LONG:
// if boost mode is enabled turn it on
if (getSettingValue(SettingsOptions::BoostTemp)) {
cxt->scratch_state.state2 = 1;
}
break;
case BUTTON_F_SHORT:
case BUTTON_B_SHORT:
cxt->transitionMode = TransitionAnimation::Left;
return OperatingMode::TemperatureAdjust;
case BUTTON_BOTH_LONG:
if (getSettingValue(SettingsOptions::LockingMode) != 0) {
// Lock buttons
if (warnUser(translatedString(Tr->LockingKeysString), buttons)) {
cxt->scratch_state.state1 = 1;
}
}
break;
default:
break;
}
return OperatingMode::Soldering;
}
OperatingMode gui_solderingMode(const ButtonState buttons, guiContext *cxt) {
/*
* * Soldering (gui_solderingMode)
* -> Main loop where we draw temp, and animations
@@ -19,98 +71,58 @@ void gui_solderingMode(uint8_t jumpToSleep) {
* --> Double button to exit
* --> Long hold double button to toggle key lock
*/
bool boostModeOn = false;
bool buttonsLocked = false;
bool converged = false;
currentMode = OperatingMode::soldering;
TickType_t buzzerEnd = 0;
if (jumpToSleep) {
if (gui_SolderingSleepingMode(jumpToSleep == 2, true) == 1) {
lastButtonTime = xTaskGetTickCount();
return; // If the function returns non-0 then exit
// Update the setpoints for the temperature
if (cxt->scratch_state.state2) {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::BoostTemp));
} else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::BoostTemp));
}
} else {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::SolderingTemp));
} else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::SolderingTemp));
}
}
for (;;) {
ButtonState buttons = getButtonState();
if (buttonsLocked && (getSettingValue(SettingsOptions::LockingMode) != 0)) { // If buttons locked
switch (buttons) {
case BUTTON_NONE:
boostModeOn = false;
break;
case BUTTON_BOTH_LONG:
// Unlock buttons
buttonsLocked = false;
warnUser(translatedString(Tr->UnlockingKeysString), TICKS_SECOND);
break;
case BUTTON_F_LONG:
// if boost mode is enabled turn it on
if (getSettingValue(SettingsOptions::BoostTemp) && (getSettingValue(SettingsOptions::LockingMode) == 1)) {
boostModeOn = true;
currentMode = OperatingMode::boost;
}
break;
// fall through
case BUTTON_BOTH:
case BUTTON_B_LONG:
case BUTTON_F_SHORT:
case BUTTON_B_SHORT:
// Do nothing and display a lock warning
warnUser(translatedString(Tr->WarningKeysLockedString), TICKS_SECOND / 2);
break;
default:
break;
}
} else { // Button not locked
switch (buttons) {
case BUTTON_NONE:
// stay
boostModeOn = false;
currentMode = OperatingMode::soldering;
break;
case BUTTON_BOTH:
case BUTTON_B_LONG:
return; // exit on back long hold
case BUTTON_F_LONG:
// if boost mode is enabled turn it on
if (getSettingValue(SettingsOptions::BoostTemp)) {
boostModeOn = true;
currentMode = OperatingMode::boost;
}
break;
case BUTTON_F_SHORT:
case BUTTON_B_SHORT: {
uint16_t oldTemp = getSettingValue(SettingsOptions::SolderingTemp);
gui_solderingTempAdjust(); // goto adjust temp mode
if (oldTemp != getSettingValue(SettingsOptions::SolderingTemp)) {
saveSettings(); // only save on change
}
} break;
case BUTTON_BOTH_LONG:
if (getSettingValue(SettingsOptions::LockingMode) != 0) {
// Lock buttons
buttonsLocked = true;
warnUser(translatedString(Tr->LockingKeysString), TICKS_SECOND);
}
break;
default:
break;
}
// Update status
int error = currentTempTargetDegC - TipThermoModel::getTipInC();
if (error >= -10 && error <= 10) {
// converged
if (!cxt->scratch_state.state5) {
setBuzzer(true);
cxt->scratch_state.state3 = xTaskGetTickCount() + TICKS_SECOND / 3;
cxt->scratch_state.state5 = true;
}
// else we update the screen information
setStatusLED(LED_HOT);
} else {
setStatusLED(LED_HEATING);
cxt->scratch_state.state5 = false;
}
if (cxt->scratch_state.state3 != 0 && xTaskGetTickCount() >= cxt->scratch_state.state3) {
setBuzzer(false);
}
OLED::clearScreen();
// Draw in the screen details
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
// Draw in the screen details
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
if (OLED::getRotation()) {
OLED::setCursor(50, 0);
} else {
OLED::setCursor(-1, 0);
}
gui_drawTipTemp(true, FontStyle::LARGE);
if (cxt->scratch_state.state2) { // Boost mode is on
if (OLED::getRotation()) {
OLED::setCursor(50, 0);
OLED::setCursor(34, 0);
} else {
OLED::setCursor(-1, 0);
OLED::setCursor(50, 0);
}
gui_drawTipTemp(true, FontStyle::LARGE);
OLED::print(LargeSymbolPlus, FontStyle::LARGE);
} else {
#ifndef NO_SLEEP_MODE
if (getSettingValue(SettingsOptions::Sensitivity) && getSettingValue(SettingsOptions::SleepTime)) {
if (OLED::getRotation()) {
@@ -121,69 +133,43 @@ void gui_solderingMode(uint8_t jumpToSleep) {
printCountdownUntilSleep(getSleepTimeout());
}
#endif
if (boostModeOn) {
if (OLED::getRotation()) {
OLED::setCursor(38, 8);
} else {
OLED::setCursor(55, 8);
}
OLED::print(SmallSymbolPlus, FontStyle::SMALL);
if (OLED::getRotation()) {
OLED::setCursor(32, 8);
} else {
if (OLED::getRotation()) {
OLED::setCursor(32, 8);
} else {
OLED::setCursor(47, 8);
}
OLED::print(PowerSourceNames[getPowerSourceNumber()], FontStyle::SMALL, 2);
OLED::setCursor(47, 8);
}
detailedPowerStatus();
} else {
basicSolderingStatus(boostModeOn);
OLED::print(PowerSourceNames[getPowerSourceNumber()], FontStyle::SMALL, 2);
}
OLED::refresh();
// Update the setpoints for the temperature
if (boostModeOn) {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::BoostTemp));
} else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::BoostTemp));
}
} else {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::SolderingTemp));
} else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::SolderingTemp));
}
}
detailedPowerStatus();
if (checkExitSoldering()) {
setBuzzer(false);
return;
}
// Update status
int error = currentTempTargetDegC - TipThermoModel::getTipInC();
if (error >= -10 && error <= 10) {
// converged
if (!converged) {
setBuzzer(true);
buzzerEnd = xTaskGetTickCount() + TICKS_SECOND / 3;
converged = true;
}
setStatusLED(LED_HOT);
} else {
setStatusLED(LED_HEATING);
converged = false;
}
if (buzzerEnd != 0 && xTaskGetTickCount() >= buzzerEnd) {
setBuzzer(false);
}
// slow down ui update rate
GUIDelay();
} else {
basicSolderingStatus(cxt->scratch_state.state2);
}
// Check if we should bail due to undervoltage for example
if (checkExitSoldering()) {
setBuzzer(false);
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::HomeScreen;
}
#ifdef NO_SLEEP_MODE
if (shouldShutdown()) {
// shutdown
currentTempTargetDegC = 0;
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::HomeScreen;
}
#endif
if (shouldBeSleeping()) {
return OperatingMode::Sleeping;
}
if (heaterThermalRunaway) {
currentTempTargetDegC = 0; // heater control off
heaterThermalRunaway = false;
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::ThermalRunaway;
}
return handleSolderingButtons(buttons, cxt);
}

View File

@@ -2,222 +2,212 @@
#include "OperatingModes.h"
#include "SolderingCommon.h"
extern OperatingMode currentMode;
void gui_solderingProfileMode() {
OperatingMode gui_solderingProfileMode(const ButtonState buttons, guiContext *cxt) {
/*
* * Soldering (gui_solderingMode)
* * Soldering
* -> Main loop where we draw temp, and animations
* PID control
* --> Long hold back button to exit
* --> Double button to exit
*/
currentMode = OperatingMode::soldering;
TickType_t buzzerEnd = 0;
uint16_t tipTemp = 0;
bool waitForRelease = true;
TickType_t phaseStartTime = xTaskGetTickCount();
uint16_t tipTemp = 0;
uint8_t profilePhase = 0;
uint16_t phaseElapsedSeconds = 0;
uint16_t phaseTotalSeconds = 0;
uint16_t phaseStartTemp = 0;
uint16_t phaseEndTemp = getSettingValue(SettingsOptions::ProfilePreheatTemp);
// If this is during init, start at preheat
if (cxt->scratch_state.state1 == 0) {
cxt->scratch_state.state5 = getSettingValue(SettingsOptions::ProfilePreheatTemp);
}
uint16_t phaseTicksPerDegree = TICKS_SECOND / getSettingValue(SettingsOptions::ProfilePreheatSpeed);
uint16_t profileCurrentTargetTemp = 0;
for (;;) {
ButtonState buttons = getButtonState();
if (buttons) {
if (waitForRelease) {
buttons = BUTTON_NONE;
}
} else {
waitForRelease = false;
}
switch (buttons) {
case BUTTON_NONE:
break;
case BUTTON_BOTH:
case BUTTON_B_LONG:
return; // exit on back long hold
case BUTTON_F_LONG:
case BUTTON_F_SHORT:
case BUTTON_B_SHORT:
// Not used yet
break;
default:
break;
}
tipTemp = getTipTemp();
// if start temp is unknown (preheat), we're setting it now
if (phaseStartTemp == 0) {
phaseStartTemp = tipTemp;
// if this is hotter than the preheat temperature, we should fail
if (phaseStartTemp >= 55) {
warnUser(translatedString(Tr->TooHotToStartProfileWarning), 10 * TICKS_SECOND);
return;
}
}
phaseElapsedSeconds = (xTaskGetTickCount() - phaseStartTime) / TICKS_SECOND;
// have we finished this phase?
if (phaseElapsedSeconds >= phaseTotalSeconds && tipTemp == phaseEndTemp) {
profilePhase++;
phaseStartTemp = phaseEndTemp;
phaseStartTime = xTaskGetTickCount();
phaseElapsedSeconds = 0;
if (profilePhase > getSettingValue(SettingsOptions::ProfilePhases)) {
// done with all phases, lets go to cooldown
phaseTotalSeconds = 0;
phaseEndTemp = 0;
phaseTicksPerDegree = TICKS_SECOND / getSettingValue(SettingsOptions::ProfileCooldownSpeed);
} else {
// set up next phase
switch (profilePhase) {
case 1:
phaseTotalSeconds = getSettingValue(SettingsOptions::ProfilePhase1Duration);
phaseEndTemp = getSettingValue(SettingsOptions::ProfilePhase1Temp);
break;
case 2:
phaseTotalSeconds = getSettingValue(SettingsOptions::ProfilePhase2Duration);
phaseEndTemp = getSettingValue(SettingsOptions::ProfilePhase2Temp);
break;
case 3:
phaseTotalSeconds = getSettingValue(SettingsOptions::ProfilePhase3Duration);
phaseEndTemp = getSettingValue(SettingsOptions::ProfilePhase3Temp);
break;
case 4:
phaseTotalSeconds = getSettingValue(SettingsOptions::ProfilePhase4Duration);
phaseEndTemp = getSettingValue(SettingsOptions::ProfilePhase4Temp);
break;
case 5:
phaseTotalSeconds = getSettingValue(SettingsOptions::ProfilePhase5Duration);
phaseEndTemp = getSettingValue(SettingsOptions::ProfilePhase5Temp);
break;
default:
break;
}
if (phaseStartTemp < phaseEndTemp) {
phaseTicksPerDegree = (phaseTotalSeconds * TICKS_SECOND) / (phaseEndTemp - phaseStartTemp);
} else {
phaseTicksPerDegree = (phaseTotalSeconds * TICKS_SECOND) / (phaseStartTemp - phaseEndTemp);
}
}
}
// cooldown phase done?
if (profilePhase > getSettingValue(SettingsOptions::ProfilePhases)) {
if (TipThermoModel::getTipInC() < 55) {
// we're done, let the buzzer beep too
setStatusLED(LED_STANDBY);
if (buzzerEnd == 0) {
setBuzzer(true);
buzzerEnd = xTaskGetTickCount() + TICKS_SECOND / 3;
}
}
}
// determine current target temp
if (phaseStartTemp < phaseEndTemp) {
if (profileCurrentTargetTemp < phaseEndTemp) {
profileCurrentTargetTemp = phaseStartTemp + ((xTaskGetTickCount() - phaseStartTime) / phaseTicksPerDegree);
}
} else {
if (profileCurrentTargetTemp > phaseEndTemp) {
profileCurrentTargetTemp = phaseStartTemp - ((xTaskGetTickCount() - phaseStartTime) / phaseTicksPerDegree);
}
}
OLED::clearScreen();
// Draw in the screen details
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
// print temperature
if (OLED::getRotation()) {
OLED::setCursor(48, 0);
} else {
OLED::setCursor(0, 0);
}
OLED::printNumber(tipTemp, 3, FontStyle::SMALL);
OLED::print(SmallSymbolSlash, FontStyle::SMALL);
OLED::printNumber(profileCurrentTargetTemp, 3, FontStyle::SMALL);
OLED::printSymbolDeg(FontStyle::SMALL);
// print phase
if (profilePhase > 0 && profilePhase <= getSettingValue(SettingsOptions::ProfilePhases)) {
if (OLED::getRotation()) {
OLED::setCursor(36, 0);
} else {
OLED::setCursor(55, 0);
}
OLED::printNumber(profilePhase, 1, FontStyle::SMALL);
}
// print time progress / preheat / cooldown
if (OLED::getRotation()) {
OLED::setCursor(42, 8);
} else {
OLED::setCursor(0, 8);
}
if (profilePhase == 0) {
OLED::print(translatedString(Tr->ProfilePreheatString), FontStyle::SMALL);
} else if (profilePhase > getSettingValue(SettingsOptions::ProfilePhases)) {
OLED::print(translatedString(Tr->ProfileCooldownString), FontStyle::SMALL);
} else {
OLED::printNumber(phaseElapsedSeconds / 60, 1, FontStyle::SMALL);
OLED::print(SmallSymbolColon, FontStyle::SMALL);
OLED::printNumber(phaseElapsedSeconds % 60, 2, FontStyle::SMALL, false);
OLED::print(SmallSymbolSlash, FontStyle::SMALL);
// blink if we can't keep up with the time goal
if (phaseElapsedSeconds < phaseTotalSeconds + 2 || (xTaskGetTickCount() / TICKS_SECOND) % 2 == 0) {
OLED::printNumber(phaseTotalSeconds / 60, 1, FontStyle::SMALL);
OLED::print(SmallSymbolColon, FontStyle::SMALL);
OLED::printNumber(phaseTotalSeconds % 60, 2, FontStyle::SMALL, false);
}
}
detailedPowerStatus();
} else {
basicSolderingStatus(false);
}
OLED::refresh();
// Update the setpoints for the temperature
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(profileCurrentTargetTemp);
} else {
currentTempTargetDegC = profileCurrentTargetTemp;
}
if (checkExitSoldering() || (buzzerEnd != 0 && xTaskGetTickCount() >= buzzerEnd)) {
setBuzzer(false);
return;
}
// Update LED status
if (profilePhase == 0) {
setStatusLED(LED_HEATING);
} else if (profilePhase > getSettingValue(SettingsOptions::ProfilePhases)) {
setStatusLED(LED_COOLING_STILL_HOT);
} else {
setStatusLED(LED_HOT);
}
// slow down ui update rate
GUIDelay();
switch (buttons) {
case BUTTON_BOTH:
case BUTTON_B_LONG:
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::HomeScreen; // exit on back long hold
case BUTTON_F_LONG:
case BUTTON_F_SHORT:
case BUTTON_B_SHORT:
case BUTTON_NONE:
// Not used yet
break;
default:
break;
}
if (getSettingValue(SettingsOptions::TemperatureInF)) {
tipTemp = TipThermoModel::getTipInF();
} else {
tipTemp = TipThermoModel::getTipInC();
}
// If time of entering is unknown; then we start now
if (cxt->scratch_state.state3 == 0) {
cxt->scratch_state.state3 = xTaskGetTickCount();
}
// if start temp is unknown (preheat), we're setting it now
if (cxt->scratch_state.state6 == 0) {
cxt->scratch_state.state6 = tipTemp;
// if this is hotter than the preheat temperature, we should fail
if (cxt->scratch_state.state6 >= 55) {
warnUser(translatedString(Tr->TooHotToStartProfileWarning), buttons);
return OperatingMode::HomeScreen;
}
}
uint16_t phaseElapsedSeconds = (xTaskGetTickCount() - cxt->scratch_state.state3) / TICKS_SECOND;
// have we finished this phase?
if (phaseElapsedSeconds >= cxt->scratch_state.state2 && tipTemp == cxt->scratch_state.state5) {
cxt->scratch_state.state1++;
cxt->scratch_state.state6 = cxt->scratch_state.state5;
cxt->scratch_state.state3 = xTaskGetTickCount();
phaseElapsedSeconds = 0;
if (cxt->scratch_state.state1 > getSettingValue(SettingsOptions::ProfilePhases)) {
// done with all phases, lets go to cooldown
cxt->scratch_state.state2 = 0;
cxt->scratch_state.state5 = 0;
phaseTicksPerDegree = TICKS_SECOND / getSettingValue(SettingsOptions::ProfileCooldownSpeed);
} else {
// set up next phase
switch (cxt->scratch_state.state1) {
case 1:
cxt->scratch_state.state2 = getSettingValue(SettingsOptions::ProfilePhase1Duration);
cxt->scratch_state.state5 = getSettingValue(SettingsOptions::ProfilePhase1Temp);
break;
case 2:
cxt->scratch_state.state2 = getSettingValue(SettingsOptions::ProfilePhase2Duration);
cxt->scratch_state.state5 = getSettingValue(SettingsOptions::ProfilePhase2Temp);
break;
case 3:
cxt->scratch_state.state2 = getSettingValue(SettingsOptions::ProfilePhase3Duration);
cxt->scratch_state.state5 = getSettingValue(SettingsOptions::ProfilePhase3Temp);
break;
case 4:
cxt->scratch_state.state2 = getSettingValue(SettingsOptions::ProfilePhase4Duration);
cxt->scratch_state.state5 = getSettingValue(SettingsOptions::ProfilePhase4Temp);
break;
case 5:
cxt->scratch_state.state2 = getSettingValue(SettingsOptions::ProfilePhase5Duration);
cxt->scratch_state.state5 = getSettingValue(SettingsOptions::ProfilePhase5Temp);
break;
default:
break;
}
if (cxt->scratch_state.state6 < cxt->scratch_state.state5) {
phaseTicksPerDegree = (cxt->scratch_state.state2 * TICKS_SECOND) / (cxt->scratch_state.state5 - cxt->scratch_state.state6);
} else {
phaseTicksPerDegree = (cxt->scratch_state.state2 * TICKS_SECOND) / (cxt->scratch_state.state6 - cxt->scratch_state.state5);
}
}
}
// cooldown phase done?
if (cxt->scratch_state.state1 > getSettingValue(SettingsOptions::ProfilePhases)) {
if (TipThermoModel::getTipInC() < 55) {
// we're done, let the buzzer beep too
setStatusLED(LED_STANDBY);
if (cxt->scratch_state.state4 == 0) {
setBuzzer(true);
cxt->scratch_state.state4 = xTaskGetTickCount() + TICKS_SECOND / 3;
}
}
}
// determine current target temp
if (cxt->scratch_state.state6 < cxt->scratch_state.state5) {
if (profileCurrentTargetTemp < cxt->scratch_state.state5) {
profileCurrentTargetTemp = cxt->scratch_state.state6 + ((xTaskGetTickCount() - cxt->viewEnterTime) / phaseTicksPerDegree);
}
} else {
if (profileCurrentTargetTemp > cxt->scratch_state.state5) {
profileCurrentTargetTemp = cxt->scratch_state.state6 - ((xTaskGetTickCount() - cxt->viewEnterTime) / phaseTicksPerDegree);
}
}
// Draw in the screen details
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
// print temperature
if (OLED::getRotation()) {
OLED::setCursor(48, 0);
} else {
OLED::setCursor(0, 0);
}
OLED::printNumber(tipTemp, 3, FontStyle::SMALL);
OLED::print(SmallSymbolSlash, FontStyle::SMALL);
OLED::printNumber(profileCurrentTargetTemp, 3, FontStyle::SMALL);
if (getSettingValue(SettingsOptions::TemperatureInF)) {
OLED::print(SmallSymbolDegF, FontStyle::SMALL);
} else {
OLED::print(SmallSymbolDegC, FontStyle::SMALL);
}
// print phase
if (cxt->scratch_state.state1 > 0 && cxt->scratch_state.state1 <= getSettingValue(SettingsOptions::ProfilePhases)) {
if (OLED::getRotation()) {
OLED::setCursor(36, 0);
} else {
OLED::setCursor(55, 0);
}
OLED::printNumber(cxt->scratch_state.state1, 1, FontStyle::SMALL);
}
// print time progress / preheat / cooldown
if (OLED::getRotation()) {
OLED::setCursor(42, 8);
} else {
OLED::setCursor(0, 8);
}
if (cxt->scratch_state.state1 == 0) {
OLED::print(translatedString(Tr->ProfilePreheatString), FontStyle::SMALL);
} else if (cxt->scratch_state.state1 > getSettingValue(SettingsOptions::ProfilePhases)) {
OLED::print(translatedString(Tr->ProfileCooldownString), FontStyle::SMALL);
} else {
OLED::printNumber(phaseElapsedSeconds / 60, 1, FontStyle::SMALL);
OLED::print(SmallSymbolColon, FontStyle::SMALL);
OLED::printNumber(phaseElapsedSeconds % 60, 2, FontStyle::SMALL, false);
OLED::print(SmallSymbolSlash, FontStyle::SMALL);
// blink if we can't keep up with the time goal
if (phaseElapsedSeconds < cxt->scratch_state.state2 + 2 || (xTaskGetTickCount() / TICKS_SECOND) % 2 == 0) {
OLED::printNumber(cxt->scratch_state.state2 / 60, 1, FontStyle::SMALL);
OLED::print(SmallSymbolColon, FontStyle::SMALL);
OLED::printNumber(cxt->scratch_state.state2 % 60, 2, FontStyle::SMALL, false);
}
}
detailedPowerStatus();
} else {
basicSolderingStatus(false);
}
// Update the setpoints for the temperature
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(profileCurrentTargetTemp);
} else {
currentTempTargetDegC = profileCurrentTargetTemp;
}
if (checkExitSoldering() || (cxt->scratch_state.state4 != 0 && xTaskGetTickCount() >= cxt->scratch_state.state4)) {
setBuzzer(false);
return OperatingMode::HomeScreen;
}
if (heaterThermalRunaway) {
currentTempTargetDegC = 0; // heater control off
heaterThermalRunaway = false;
return OperatingMode::ThermalRunaway;
}
// Update LED status
if (cxt->scratch_state.state1 == 0) {
setStatusLED(LED_HEATING);
} else if (cxt->scratch_state.state1 > getSettingValue(SettingsOptions::ProfilePhases)) {
setStatusLED(LED_COOLING_STILL_HOT);
} else {
setStatusLED(LED_HOT);
}
return OperatingMode::SolderingProfile;
}

View File

@@ -1,120 +1,106 @@
#include "OperatingModes.h"
void gui_solderingTempAdjust(void) {
TickType_t lastChange = xTaskGetTickCount();
currentTempTargetDegC = 0; // Turn off heater while adjusting temp
TickType_t autoRepeatTimer = 0;
uint8_t autoRepeatAcceleration = 0;
#ifndef PROFILE_SUPPORT
bool waitForRelease = false;
ButtonState buttons = getButtonState();
OperatingMode gui_solderingTempAdjust(const ButtonState buttonIn, guiContext *cxt) {
if (buttons != BUTTON_NONE) {
// Temp adjust entered by long-pressing F button.
waitForRelease = true;
currentTempTargetDegC = 0; // Turn off heater while adjusting temp
uint16_t *waitForRelease = &(cxt->scratch_state.state1);
uint32_t *autoRepeatTimer = &(cxt->scratch_state.state3);
uint16_t *autoRepeatAcceleration = &(cxt->scratch_state.state2);
ButtonState buttons = buttonIn;
if (*waitForRelease == 0) {
// When we first enter we wait for the user to release buttons before enabling changes
if (buttons != BUTTON_NONE) {
buttons = BUTTON_NONE;
} else {
(*waitForRelease)++;
}
}
#else
ButtonState buttons;
#endif
for (;;) {
OLED::setCursor(0, 0);
OLED::clearScreen();
buttons = getButtonState();
if (buttons) {
lastChange = xTaskGetTickCount();
#ifndef PROFILE_SUPPORT
if (waitForRelease) {
buttons = BUTTON_NONE;
}
} else {
waitForRelease = false;
#endif
}
int16_t delta = 0;
switch (buttons) {
case BUTTON_NONE:
// stay
autoRepeatAcceleration = 0;
break;
case BUTTON_BOTH:
// exit
return;
break;
case BUTTON_B_LONG:
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration > PRESS_ACCEL_INTERVAL_MAX) {
delta = -getSettingValue(SettingsOptions::TempChangeLongStep);
autoRepeatTimer = xTaskGetTickCount();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_B_SHORT:
delta = -getSettingValue(SettingsOptions::TempChangeShortStep);
break;
case BUTTON_F_LONG:
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration > PRESS_ACCEL_INTERVAL_MAX) {
delta = getSettingValue(SettingsOptions::TempChangeLongStep);
autoRepeatTimer = xTaskGetTickCount();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_F_SHORT:
delta = getSettingValue(SettingsOptions::TempChangeShortStep);
break;
default:
break;
}
if ((PRESS_ACCEL_INTERVAL_MAX - autoRepeatAcceleration) < PRESS_ACCEL_INTERVAL_MIN) {
autoRepeatAcceleration = PRESS_ACCEL_INTERVAL_MAX - PRESS_ACCEL_INTERVAL_MIN;
}
// If buttons are flipped; flip the delta
if (getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled)) {
delta = -delta;
}
if (delta != 0) {
// constrain between the set temp limits, i.e. 10-450 C
int16_t newTemp = getSettingValue(SettingsOptions::SolderingTemp);
newTemp += delta;
// Round to nearest increment of delta
delta = abs(delta);
newTemp = (newTemp / delta) * delta;
OLED::setCursor(0, 0);
if (getSettingValue(SettingsOptions::TemperatureInF)) {
if (newTemp > MAX_TEMP_F) {
newTemp = MAX_TEMP_F;
}
if (newTemp < MIN_TEMP_F) {
newTemp = MIN_TEMP_F;
}
} else {
if (newTemp > MAX_TEMP_C) {
newTemp = MAX_TEMP_C;
}
if (newTemp < MIN_TEMP_C) {
newTemp = MIN_TEMP_C;
}
}
setSettingValue(SettingsOptions::SolderingTemp, (uint16_t)newTemp);
int16_t delta = 0;
switch (buttons) {
case BUTTON_NONE:
// stay
(*autoRepeatAcceleration) = 0;
break;
case BUTTON_BOTH:
// exit
saveSettings();
cxt->transitionMode = TransitionAnimation::Right;
return cxt->previousMode;
case BUTTON_B_LONG:
if (xTaskGetTickCount() - (*autoRepeatTimer) + (*autoRepeatAcceleration) > PRESS_ACCEL_INTERVAL_MAX) {
delta = -getSettingValue(SettingsOptions::TempChangeLongStep);
(*autoRepeatTimer) = xTaskGetTickCount();
(*autoRepeatAcceleration) += PRESS_ACCEL_STEP;
}
if (xTaskGetTickCount() - lastChange > (TICKS_SECOND * 2)) {
return; // exit if user just doesn't press anything for a bit
break;
case BUTTON_B_SHORT:
delta = -getSettingValue(SettingsOptions::TempChangeShortStep);
break;
case BUTTON_F_LONG:
if (xTaskGetTickCount() - (*autoRepeatTimer) + (*autoRepeatAcceleration) > PRESS_ACCEL_INTERVAL_MAX) {
delta = getSettingValue(SettingsOptions::TempChangeLongStep);
(*autoRepeatTimer) = xTaskGetTickCount();
(*autoRepeatAcceleration) += PRESS_ACCEL_STEP;
}
if (OLED::getRotation()) {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolPlus : LargeSymbolMinus, FontStyle::LARGE);
} else {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolMinus : LargeSymbolPlus, FontStyle::LARGE);
}
OLED::print(LargeSymbolSpace, FontStyle::LARGE);
OLED::printNumber(getSettingValue(SettingsOptions::SolderingTemp), 3, FontStyle::LARGE);
OLED::printSymbolDeg(FontStyle::EXTRAS);
OLED::print(LargeSymbolSpace, FontStyle::LARGE);
if (OLED::getRotation()) {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolMinus : LargeSymbolPlus, FontStyle::LARGE);
} else {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolPlus : LargeSymbolMinus, FontStyle::LARGE);
}
OLED::refresh();
GUIDelay();
break;
case BUTTON_F_SHORT:
delta = getSettingValue(SettingsOptions::TempChangeShortStep);
break;
default:
break;
}
if ((PRESS_ACCEL_INTERVAL_MAX - (*autoRepeatAcceleration)) < PRESS_ACCEL_INTERVAL_MIN) {
(*autoRepeatAcceleration) = PRESS_ACCEL_INTERVAL_MAX - PRESS_ACCEL_INTERVAL_MIN;
}
// If buttons are flipped; flip the delta
if (getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled)) {
delta = -delta;
}
if (delta != 0) {
// constrain between the set temp limits, i.e. 10-450 C
int16_t newTemp = getSettingValue(SettingsOptions::SolderingTemp);
newTemp += delta;
// Round to nearest increment of delta
delta = abs(delta);
newTemp = (newTemp / delta) * delta;
if (getSettingValue(SettingsOptions::TemperatureInF)) {
if (newTemp > MAX_TEMP_F) {
newTemp = MAX_TEMP_F;
} else if (newTemp < MIN_TEMP_F) {
newTemp = MIN_TEMP_F;
}
} else {
if (newTemp > MAX_TEMP_C) {
newTemp = MAX_TEMP_C;
} else if (newTemp < MIN_TEMP_C) {
newTemp = MIN_TEMP_C;
}
}
setSettingValue(SettingsOptions::SolderingTemp, (uint16_t)newTemp);
}
if (OLED::getRotation()) {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolPlus : LargeSymbolMinus, FontStyle::LARGE);
} else {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolMinus : LargeSymbolPlus, FontStyle::LARGE);
}
OLED::print(LargeSymbolSpace, FontStyle::LARGE);
OLED::printNumber(getSettingValue(SettingsOptions::SolderingTemp), 3, FontStyle::LARGE);
OLED::printSymbolDeg(FontStyle::EXTRAS);
OLED::print(LargeSymbolSpace, FontStyle::LARGE);
if (OLED::getRotation()) {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolMinus : LargeSymbolPlus, FontStyle::LARGE);
} else {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? LargeSymbolPlus : LargeSymbolMinus, FontStyle::LARGE);
}
if (xTaskGetTickCount() - lastButtonTime > (TICKS_SECOND * 3)) {
saveSettings();
cxt->transitionMode = TransitionAnimation::Right;
return cxt->previousMode; // exit if user just doesn't press anything for a bit
}
return OperatingMode::TemperatureAdjust; // Stay in temp adjust
}

View File

@@ -2,93 +2,85 @@
#ifdef POW_PD
#ifdef HAS_POWER_DEBUG_MENU
void showPDDebug(void) {
OperatingMode showPDDebug(const ButtonState buttons, guiContext *cxt) {
// Print out the USB-PD state
// Basically this is like the Debug menu, but instead we want to print out the PD status
uint8_t screen = 0;
ButtonState b;
for (;;) {
OLED::clearScreen(); // Ensure the buffer starts clean
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(SmallSymbolPDDebug, FontStyle::SMALL); // Print Title
OLED::setCursor(0, 8); // second line
if (screen == 0) {
// Print the PD state machine
OLED::print(SmallSymbolState, FontStyle::SMALL);
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
OLED::printNumber(USBPowerDelivery::getStateNumber(), 2, FontStyle::SMALL, true);
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
// Also print vbus mod status
if (USBPowerDelivery::fusbPresent()) {
if (USBPowerDelivery::negotiationComplete() || (xTaskGetTickCount() > (TICKS_SECOND * 10))) {
if (!USBPowerDelivery::isVBUSConnected()) {
OLED::print(SmallSymbolNoVBus, FontStyle::SMALL);
} else {
OLED::print(SmallSymbolVBus, FontStyle::SMALL);
}
uint16_t *screen = &(cxt->scratch_state.state1);
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(SmallSymbolPDDebug, FontStyle::SMALL); // Print Title
OLED::setCursor(0, 8); // second line
if ((*screen) == 0) {
// Print the PD state machine
OLED::print(SmallSymbolState, FontStyle::SMALL);
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
OLED::printNumber(USBPowerDelivery::getStateNumber(), 2, FontStyle::SMALL, true);
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
// Also print vbus mod status
if (USBPowerDelivery::fusbPresent()) {
if (USBPowerDelivery::negotiationComplete() || (xTaskGetTickCount() > (TICKS_SECOND * 10))) {
if (!USBPowerDelivery::isVBUSConnected()) {
OLED::print(SmallSymbolNoVBus, FontStyle::SMALL);
} else {
OLED::print(SmallSymbolVBus, FontStyle::SMALL);
}
}
}
} else {
// Print out the Proposed power options one by one
auto lastCaps = USBPowerDelivery::getLastSeenCapabilities();
if (((*screen) - 1) < 11) {
int voltage_mv = 0;
int min_voltage = 0;
int current_a_x100 = 0;
int wattage = 0;
if ((lastCaps[(*screen) - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCaps[(*screen) - 1])); // voltage in mV units
current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCaps[(*screen) - 1]); // current in 10mA units
} else if (((lastCaps[(*screen) - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED) && ((lastCaps[(*screen) - 1] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS)) {
voltage_mv = PD_PAV2MV(PD_APDO_AVS_MAX_VOLTAGE_GET(lastCaps[(*screen) - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps[(*screen) - 1]));
// Last value is wattage
wattage = PD_APDO_AVS_MAX_POWER_GET(lastCaps[(*screen) - 1]);
} else if (((lastCaps[(*screen) - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED) && ((lastCaps[(*screen) - 1] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS)) {
voltage_mv = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCaps[(*screen) - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps[(*screen) - 1]));
current_a_x100 = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCaps[(*screen) - 1])); // max current in 10mA units
}
// Skip not used entries
if (voltage_mv == 0) {
(*screen) += 1;
} else {
// print out this entry of the proposal
OLED::printNumber(*screen, 2, FontStyle::SMALL, true); // print the entry number
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
if (min_voltage > 0) {
OLED::printNumber(min_voltage / 1000, 2, FontStyle::SMALL, true); // print the voltage
OLED::print(SmallSymbolMinus, FontStyle::SMALL);
}
OLED::printNumber(voltage_mv / 1000, 2, FontStyle::SMALL, true); // print the voltage
OLED::print(SmallSymbolVolts, FontStyle::SMALL);
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
if (wattage) {
OLED::printNumber(wattage, 3, FontStyle::SMALL, true); // print the current in 0.1A res
OLED::print(SmallSymbolWatts, FontStyle::SMALL);
} else {
OLED::printNumber(current_a_x100 / 100, 2, FontStyle::SMALL, true); // print the current in 0.1A res
OLED::print(SmallSymbolDot, FontStyle::SMALL);
OLED::printNumber(current_a_x100 % 100, 2, FontStyle::SMALL, false); // print the current in 0.1A res
OLED::print(SmallSymbolAmps, FontStyle::SMALL);
}
}
} else {
// Print out the Proposed power options one by one
auto lastCaps = USBPowerDelivery::getLastSeenCapabilities();
if ((screen - 1) < 11) {
int voltage_mv = 0;
int min_voltage = 0;
int current_a_x100 = 0;
int wattage = 0;
if ((lastCaps[screen - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCaps[screen - 1])); // voltage in mV units
current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCaps[screen - 1]); // current in 10mA units
} else if (((lastCaps[screen - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED) && ((lastCaps[screen - 1] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS)) {
voltage_mv = PD_PAV2MV(PD_APDO_AVS_MAX_VOLTAGE_GET(lastCaps[screen - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps[screen - 1]));
// Last value is wattage
wattage = PD_APDO_AVS_MAX_POWER_GET(lastCaps[screen - 1]);
} else if (((lastCaps[screen - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED) && ((lastCaps[screen - 1] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS)) {
voltage_mv = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCaps[screen - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps[screen - 1]));
current_a_x100 = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCaps[screen - 1])); // max current in 10mA units
}
// Skip not used entries
if (voltage_mv == 0) {
screen++;
} else {
// print out this entry of the proposal
OLED::printNumber(screen, 2, FontStyle::SMALL, true); // print the entry number
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
if (min_voltage > 0) {
OLED::printNumber(min_voltage / 1000, 2, FontStyle::SMALL, true); // print the voltage
OLED::print(SmallSymbolMinus, FontStyle::SMALL);
}
OLED::printNumber(voltage_mv / 1000, 2, FontStyle::SMALL, true); // print the voltage
OLED::print(SmallSymbolVolts, FontStyle::SMALL);
OLED::print(SmallSymbolSpace, FontStyle::SMALL);
if (wattage) {
OLED::printNumber(wattage, 3, FontStyle::SMALL, true); // print the current in 0.1A res
OLED::print(SmallSymbolWatts, FontStyle::SMALL);
} else {
OLED::printNumber(current_a_x100 / 100, 2, FontStyle::SMALL, true); // print the current in 0.1A res
OLED::print(SmallSymbolDot, FontStyle::SMALL);
OLED::printNumber(current_a_x100 % 100, 2, FontStyle::SMALL, false); // print the current in 0.1A res
OLED::print(SmallSymbolAmps, FontStyle::SMALL);
}
}
} else {
screen = 0;
}
(*screen) = 0;
}
OLED::refresh();
b = getButtonState();
if (b == BUTTON_B_SHORT) {
return;
} else if (b == BUTTON_F_SHORT) {
screen++;
}
GUIDelay();
}
if (buttons == BUTTON_B_SHORT) {
return OperatingMode::InitialisationDone;
} else if (buttons == BUTTON_F_SHORT) {
(*screen) += 1;
}
return OperatingMode::UsbPDDebug;
}
#endif
#endif

View File

@@ -2,7 +2,7 @@
#include "OperatingModes.h"
#if POW_PD_EXT == 1
#ifdef HAS_POWER_DEBUG_MENU
void showPDDebug(void) {
OperatingMode showPDDebug(const ButtonState buttons, guiContext *cxt) {
// Print out the USB-PD state
// Basically this is like the Debug menu, but instead we want to print out the PD status
uint8_t screen = 0;
@@ -44,13 +44,14 @@ void showPDDebug(void) {
OLED::refresh();
b = getButtonState();
if (b == BUTTON_B_SHORT) {
return;
return OperatingMode::InitialisationDone;
} else if (b == BUTTON_F_SHORT) {
screen++;
}
GUIDelay();
}
return OperatingMode::UsbPDDebug;
}
#endif
#endif

View File

@@ -1,5 +1,6 @@
#include "OperatingModeUtilities.h"
#include "OperatingModes.h"
#include "SolderingCommon.h"
#include "TipThermoModel.h"
void gui_drawTipTemp(bool symbol, const FontStyle font) {

View File

@@ -1,18 +1,19 @@
#ifndef OPERATING_MODE_UTILITIES_H_
#define OPERATING_MODE_UTILITIES_H_
#include "Buttons.hpp"
#include "OLED.hpp"
#include <stdbool.h>
void GUIDelay(); //
bool checkForUnderVoltage(void); //
uint32_t getSleepTimeout(void); //
bool shouldBeSleeping(bool inAutoStart); //
bool shouldShutdown(void); //
void gui_drawTipTemp(bool symbol, const FontStyle font); //
void printVoltage(void); //
void warnUser(const char *warning, const TickType_t timeout); //
void gui_drawBatteryIcon(void); //
bool checkForUnderVoltage(void); //
uint16_t min(uint16_t a, uint16_t b); //
void printCountdownUntilSleep(int sleepThres); //
void GUIDelay(); //
bool checkForUnderVoltage(void); //
uint32_t getSleepTimeout(void); //
bool shouldBeSleeping(); //
bool shouldShutdown(void); //
void gui_drawTipTemp(bool symbol, const FontStyle font); //
void printVoltage(void); //
bool warnUser(const char *warning, const ButtonState buttons); //
void gui_drawBatteryIcon(void); //
bool checkForUnderVoltage(void); //
uint16_t min(uint16_t a, uint16_t b); //
void printCountdownUntilSleep(int sleepThres); //
#endif

View File

@@ -1,8 +1,12 @@
#include "Buttons.hpp"
#include "OperatingModeUtilities.h"
void warnUser(const char *warning, const TickType_t timeout) {
#include "OperatingModes.h"
bool warnUser(const char *warning, const ButtonState buttons) {
OLED::clearScreen();
OLED::printWholeScreen(warning);
OLED::refresh();
waitForButtonPressOrTimeout(timeout);
// Also timeout after 5 seconds
if ((xTaskGetTickCount() - lastButtonTime) > TICKS_SECOND * 5) {
return true;
}
return buttons != BUTTON_NONE;
}

View File

@@ -4,6 +4,7 @@
#include "SolderingCommon.h"
#include "OperatingModes.h"
#include "Types.h"
#include "configuration.h"
#include "history.hpp"
@@ -106,30 +107,8 @@ bool checkExitSoldering(void) {
}
}
#endif
#ifdef NO_SLEEP_MODE
// No sleep mode, but still want shutdown timeout
if (shouldShutdown()) {
// shutdown
currentTempTargetDegC = 0;
lastMovementTime = xTaskGetTickCount(); // We manually move the movement time to now such that shutdown timer is reset
return true; // we want to exit soldering mode
}
#endif
if (shouldBeSleeping(false)) {
if (gui_SolderingSleepingMode(false, false)) {
return true; // If the function returns non-0 then exit
}
}
// If we have tripped thermal runaway, turn off heater and show warning
if (heaterThermalRunaway) {
currentTempTargetDegC = 0; // heater control off
warnUser(translatedString(Tr->WarningThermalRunaway), 10 * TICKS_SECOND);
heaterThermalRunaway = false;
return true;
}
return false;
}

View File

@@ -1,8 +1,11 @@
#ifndef SOLDERING_COMMON_H
#define SOLDERING_COMMON_H
#include "Types.h"
#include <stdint.h>
#ifndef SOLDERING_COMMON_H_
#define SOLDERING_COMMON_H_
void detailedPowerStatus();
void basicSolderingStatus(bool boostModeOn);
bool checkExitSoldering();
void detailedPowerStatus();
void basicSolderingStatus(bool boostModeOn);
bool checkExitSoldering();
TemperatureType_t getTipTemp(void);
#endif //SOLDERING_COMMON_H
#endif // SOLDERING_COMMON_H_

View File

@@ -17,4 +17,4 @@ void printCountdownUntilSleep(int sleepThres) {
OLED::print(SmallSymbolSeconds, FontStyle::SMALL);
}
}
#endif
#endif

View File

@@ -4,15 +4,13 @@
TickType_t lastHallEffectSleepStart = 0;
extern TickType_t lastMovementTime;
bool shouldBeSleeping(bool inAutoStart) {
bool shouldBeSleeping() {
#ifndef NO_SLEEP_MODE
// Return true if the iron should be in sleep mode
if (getSettingValue(SettingsOptions::Sensitivity) && getSettingValue(SettingsOptions::SleepTime)) {
if (inAutoStart) {
// In auto start we are asleep until movement
if (lastMovementTime == 0 && lastButtonTime == 0) {
return true;
}
// In auto start we are asleep until movement
if (lastMovementTime == 0 && lastButtonTime == 0) {
return true;
}
if (lastMovementTime > 0 || lastButtonTime > 0) {
if (((xTaskGetTickCount() - lastMovementTime) > getSleepTimeout()) && ((xTaskGetTickCount() - lastButtonTime) > getSleepTimeout())) {

View File

@@ -16,6 +16,12 @@
#include "power.hpp"
#include "task.h"
#ifdef POW_PD
#if POW_PD == 1
#include "USBPD.h"
#endif
#endif
static TickType_t powerPulseWaitUnit = 25 * TICKS_100MS; // 2.5 s
static TickType_t powerPulseDurationUnit = (5 * TICKS_100MS) / 2; // 250 ms
TaskHandle_t pidTaskNotification = NULL;
@@ -38,7 +44,9 @@ void startPIDTask(void const *argument __unused) {
currentTempTargetDegC = 0; // Force start with no output (off). If in sleep / soldering this will
// be over-ridden rapidly
pidTaskNotification = xTaskGetCurrentTaskHandle();
pidTaskNotification = xTaskGetCurrentTaskHandle();
TemperatureType_t PIDTempTarget = 0;
// Pre-seed the adc filters
for (int i = 0; i < 32; i++) {
@@ -51,6 +59,17 @@ void startPIDTask(void const *argument __unused) {
resetWatchdog();
ulTaskNotifyTake(pdTRUE, 2000);
}
// Wait for PD if its in the middle of negotiation
#ifdef POW_PD
#if POW_PD == 1
// This is an FUSB based PD capable device
// Wait up to 3 seconds for USB-PD to settle
while (USBPowerDelivery::negotiationInProgress() && xTaskGetTickCount() < (TICKS_SECOND * 3)) {
resetWatchdog();
ulTaskNotifyTake(pdTRUE, TICKS_100MS);
}
#endif
#endif
int32_t x10WattsOut = 0;