370 lines
12 KiB
C++
370 lines
12 KiB
C++
// By Ben V. Brown - V2.0 of the TS100 firmware
|
|
#include <MMA8652FC.hpp>
|
|
#include <gui.hpp>
|
|
#include <main.hpp>
|
|
#include "LIS2DH12.hpp"
|
|
#include <history.hpp>
|
|
#include <power.hpp>
|
|
#include "Settings.h"
|
|
#include "Translation.h"
|
|
#include "cmsis_os.h"
|
|
#include "stdlib.h"
|
|
#include "stm32f1xx_hal.h"
|
|
#include "string.h"
|
|
#include "TipThermoModel.h"
|
|
uint8_t PCBVersion = 0;
|
|
// File local variables
|
|
uint32_t currentTempTargetDegC = 0; // Current temperature target in C
|
|
uint8_t accelInit = 0;
|
|
uint32_t lastMovementTime = 0;
|
|
|
|
bool settingsWereReset = false;
|
|
// FreeRTOS variables
|
|
|
|
osThreadId GUITaskHandle;
|
|
static const size_t GUITaskStackSize = 1024 / 4;
|
|
uint32_t GUITaskBuffer[GUITaskStackSize];
|
|
osStaticThreadDef_t GUITaskControlBlock;
|
|
|
|
osThreadId PIDTaskHandle;
|
|
static const size_t PIDTaskStackSize = 512 / 4;
|
|
uint32_t PIDTaskBuffer[PIDTaskStackSize];
|
|
osStaticThreadDef_t PIDTaskControlBlock;
|
|
osThreadId MOVTaskHandle;
|
|
static const size_t MOVTaskStackSize = 512 / 4;
|
|
uint32_t MOVTaskBuffer[MOVTaskStackSize];
|
|
osStaticThreadDef_t MOVTaskControlBlock;
|
|
|
|
static TaskHandle_t pidTaskNotification = NULL;
|
|
|
|
void startGUITask(void const *argument);
|
|
void startPIDTask(void const *argument);
|
|
void startMOVTask(void const *argument);
|
|
// End FreeRTOS
|
|
|
|
static const int maxPowerIdleTicks = 1000;
|
|
static const int powerPulseTicks = 50;
|
|
static const int x10PowerPulseWatts = 3;
|
|
|
|
// Main sets up the hardware then hands over to the FreeRTOS kernel
|
|
int main(void) {
|
|
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
|
|
*/
|
|
HAL_Init();
|
|
Setup_HAL(); // Setup all the HAL objects
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
setTipX10Watts(0); // force tip off
|
|
FRToSI2C::init(&hi2c1);
|
|
OLED::initialize(); // start up the LCD
|
|
OLED::setFont(0); // default to bigger font
|
|
// Testing for which accelerometer is mounted
|
|
uint8_t buffer[1];
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
if (HAL_I2C_Mem_Read(&hi2c1, 29 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT, buffer, 1,
|
|
1000) == HAL_OK) {
|
|
PCBVersion = 1;
|
|
MMA8652FC::initalize(); // this sets up the I2C registers
|
|
} else if (HAL_I2C_Mem_Read(&hi2c1, 25 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT,
|
|
buffer, 1, 1000) == HAL_OK) {
|
|
PCBVersion = 2;
|
|
// Setup the ST Accelerometer
|
|
LIS2DH12::initalize(); // startup the accelerometer
|
|
} else {
|
|
PCBVersion = 3;
|
|
systemSettings.SleepTime = 0;
|
|
systemSettings.ShutdownTime = 0; // No accel -> disable sleep
|
|
systemSettings.sensitivity = 0;
|
|
}
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
settingsWereReset = restoreSettings(); // load the settings from flash
|
|
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
|
|
/* Create the thread(s) */
|
|
/* definition and creation of GUITask */
|
|
|
|
osThreadStaticDef(GUITask, startGUITask, osPriorityBelowNormal, 0,
|
|
GUITaskStackSize, GUITaskBuffer, &GUITaskControlBlock);
|
|
GUITaskHandle = osThreadCreate(osThread(GUITask), NULL);
|
|
|
|
/* definition and creation of PIDTask */
|
|
osThreadStaticDef(PIDTask, startPIDTask, osPriorityRealtime, 0,
|
|
PIDTaskStackSize, PIDTaskBuffer, &PIDTaskControlBlock);
|
|
PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL);
|
|
|
|
if (PCBVersion < 3) {
|
|
osThreadStaticDef(MOVTask, startMOVTask, osPriorityNormal, 0,
|
|
MOVTaskStackSize, MOVTaskBuffer, &MOVTaskControlBlock);
|
|
MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL);
|
|
}
|
|
|
|
/* Start scheduler */
|
|
osKernelStart();
|
|
|
|
/* We should never get here as control is now taken by the scheduler */
|
|
while (1) {
|
|
}
|
|
}
|
|
|
|
/* StartPIDTask function */
|
|
void startPIDTask(void const *argument __unused) {
|
|
/*
|
|
* We take the current tip temperature & evaluate the next step for the tip
|
|
* control PWM.
|
|
*/
|
|
setTipX10Watts(0); // disable the output driver if the output is set to be off
|
|
|
|
#ifdef MODEL_TS80
|
|
//Set power management code to the tip resistance in ohms * 10
|
|
|
|
TickType_t lastPowerPulse = 0;
|
|
#else
|
|
|
|
#endif
|
|
history<int32_t, PID_TIM_HZ> tempError = { { 0 }, 0, 0 };
|
|
currentTempTargetDegC = 0; // Force start with no output (off). If in sleep / soldering this will
|
|
// be over-ridden rapidly
|
|
pidTaskNotification = xTaskGetCurrentTaskHandle();
|
|
uint32_t PIDTempTarget = 0;
|
|
for (;;) {
|
|
|
|
if (ulTaskNotifyTake(pdTRUE, 2000)) {
|
|
// This is a call to block this thread until the ADC does its samples
|
|
int32_t x10WattsOut = 0;
|
|
// Do the reading here to keep the temp calculations churning along
|
|
uint32_t currentTipTempInC = TipThermoModel::getTipInC(true);
|
|
PIDTempTarget = currentTempTargetDegC;
|
|
if (PIDTempTarget) {
|
|
// Cap the max set point to 450C
|
|
if (PIDTempTarget > (450)) {
|
|
//Maximum allowed output
|
|
PIDTempTarget = (450);
|
|
}
|
|
//Safety check that not aiming higher than current tip can measure
|
|
if (PIDTempTarget > TipThermoModel::getTipMaxInC()) {
|
|
PIDTempTarget = TipThermoModel::getTipMaxInC();
|
|
}
|
|
// Convert the current tip to degree's C
|
|
|
|
// As we get close to our target, temp noise causes the system
|
|
// to be unstable. Use a rolling average to dampen it.
|
|
// We overshoot by roughly 1 degree C.
|
|
// This helps stabilize the display.
|
|
int32_t tError = PIDTempTarget - currentTipTempInC + 1;
|
|
tError = tError > INT16_MAX ? INT16_MAX : tError;
|
|
tError = tError < INT16_MIN ? INT16_MIN : tError;
|
|
tempError.update(tError);
|
|
|
|
// Now for the PID!
|
|
|
|
// P term - total power needed to hit target temp next cycle.
|
|
// thermal mass = 1690 milliJ/*C for my tip.
|
|
// = Watts*Seconds to raise Temp from room temp to +100*C, divided by 100*C.
|
|
// we divide milliWattsNeeded by 20 to let the I term dominate near the set point.
|
|
// This is necessary because of the temp noise and thermal lag in the system.
|
|
// Once we have feed-forward temp estimation we should be able to better tune this.
|
|
|
|
int32_t x10WattsNeeded = tempToX10Watts(tError);
|
|
// tempError.average());
|
|
// note that milliWattsNeeded is sometimes negative, this counters overshoot
|
|
// from I term's inertia.
|
|
x10WattsOut += x10WattsNeeded;
|
|
|
|
// I term - energy needed to compensate for heat loss.
|
|
// We track energy put into the system over some window.
|
|
// Assuming the temp is stable, energy in = energy transfered.
|
|
// (If it isn't, P will dominate).
|
|
x10WattsOut += x10WattHistory.average();
|
|
|
|
// D term - use sudden temp change to counter fast cooling/heating.
|
|
// In practice, this provides an early boost if temp is dropping
|
|
// and counters extra power if the iron is no longer losing temp.
|
|
// basically: temp - lastTemp
|
|
// Unfortunately, our temp signal is too noisy to really help.
|
|
|
|
}
|
|
#ifdef MODEL_TS80
|
|
//If its a TS80, we want to have the option of using an occasional pulse to keep the power bank on
|
|
if (((xTaskGetTickCount() - lastPowerPulse) > maxPowerIdleTicks)
|
|
&& (x10WattsOut < x10PowerPulseWatts)) {
|
|
x10WattsOut = x10PowerPulseWatts;
|
|
}
|
|
if (((xTaskGetTickCount() - lastPowerPulse)
|
|
> (maxPowerIdleTicks + powerPulseTicks))
|
|
&& (x10WattsOut >= x10PowerPulseWatts)) {
|
|
lastPowerPulse = xTaskGetTickCount();
|
|
}
|
|
#endif
|
|
//Secondary safety check to forcefully disable header when within ADC noise of top of ADC
|
|
if (getTipRawTemp(0) > (0x7FFF - 150)) {
|
|
x10WattsOut = 0;
|
|
}
|
|
if (systemSettings.powerLimitEnable
|
|
&& x10WattsOut > (systemSettings.powerLimit * 10)) {
|
|
setTipX10Watts(systemSettings.powerLimit * 10);
|
|
} else {
|
|
setTipX10Watts(x10WattsOut);
|
|
}
|
|
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
} else {
|
|
//ADC interrupt timeout
|
|
setTipPWM(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define MOVFilter 8
|
|
void startMOVTask(void const *argument __unused) {
|
|
OLED::setRotation(true);
|
|
|
|
#ifdef MODEL_TS80
|
|
startQC(systemSettings.voltageDiv);
|
|
while (pidTaskNotification == 0)
|
|
osDelay(30); // To ensure we return after idealQCVoltage/tip resistance
|
|
|
|
seekQC((systemSettings.cutoutSetting) ? 120 : 90,
|
|
systemSettings.voltageDiv); // this will move the QC output to the preferred voltage to start with
|
|
|
|
#else
|
|
osDelay(250); // wait for accelerometer to stabilize
|
|
#endif
|
|
|
|
OLED::setRotation(systemSettings.OrientationMode & 1);
|
|
lastMovementTime = 0;
|
|
int16_t datax[MOVFilter] = { 0 };
|
|
int16_t datay[MOVFilter] = { 0 };
|
|
int16_t dataz[MOVFilter] = { 0 };
|
|
uint8_t currentPointer = 0;
|
|
int16_t tx = 0, ty = 0, tz = 0;
|
|
int32_t avgx = 0, avgy = 0, avgz = 0;
|
|
if (systemSettings.sensitivity > 9)
|
|
systemSettings.sensitivity = 9;
|
|
#ifdef ACCELDEBUG
|
|
uint32_t max = 0;
|
|
#endif
|
|
Orientation rotation = ORIENTATION_FLAT;
|
|
for (;;) {
|
|
int32_t threshold = 1500 + (9 * 200);
|
|
threshold -= systemSettings.sensitivity * 200; // 200 is the step size
|
|
|
|
if (PCBVersion == 2) {
|
|
LIS2DH12::getAxisReadings(tx, ty, tz);
|
|
rotation = LIS2DH12::getOrientation();
|
|
} else if (PCBVersion == 1) {
|
|
MMA8652FC::getAxisReadings(tx, ty, tz);
|
|
rotation = MMA8652FC::getOrientation();
|
|
}
|
|
if (systemSettings.OrientationMode == 2) {
|
|
if (rotation != ORIENTATION_FLAT) {
|
|
OLED::setRotation(rotation == ORIENTATION_LEFT_HAND); // link the data through
|
|
}
|
|
}
|
|
datax[currentPointer] = (int32_t) tx;
|
|
datay[currentPointer] = (int32_t) ty;
|
|
dataz[currentPointer] = (int32_t) tz;
|
|
if (!accelInit)
|
|
{
|
|
for (uint8_t i = currentPointer + 1; i < MOVFilter; i++) {
|
|
datax[i] = (int32_t) tx;
|
|
datay[i] = (int32_t) ty;
|
|
dataz[i] = (int32_t) tz;
|
|
}
|
|
accelInit = 1;
|
|
}
|
|
currentPointer = (currentPointer + 1) % MOVFilter;
|
|
avgx = avgy = avgz = 0;
|
|
// calculate averages
|
|
for (uint8_t i = 0; i < MOVFilter; i++) {
|
|
avgx += datax[i];
|
|
avgy += datay[i];
|
|
avgz += dataz[i];
|
|
}
|
|
avgx /= MOVFilter;
|
|
avgy /= MOVFilter;
|
|
avgz /= MOVFilter;
|
|
|
|
// Sum the deltas
|
|
int32_t error = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
|
|
// So now we have averages, we want to look if these are different by more
|
|
// than the threshold
|
|
|
|
// If error has occurred then we update the tick timer
|
|
if (error > threshold) {
|
|
lastMovementTime = xTaskGetTickCount();
|
|
}
|
|
|
|
osDelay(100); // Slow down update rate
|
|
#ifdef MODEL_TS80
|
|
seekQC((systemSettings.cutoutSetting) ? 120 : 90,
|
|
systemSettings.voltageDiv); // Run the QC seek again if we have drifted too much
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#define FLASH_LOGOADDR \
|
|
(0x8000000 | 0xF800) /*second last page of flash set aside for logo image*/
|
|
|
|
/* The header value is (0xAA,0x55,0xF0,0x0D) but is stored in little endian 16
|
|
* bits words on the flash */
|
|
const uint8_t LOGO_HEADER_VALUE[] = { 0x55, 0xAA, 0x0D, 0xF0 };
|
|
|
|
bool showBootLogoIfavailable() {
|
|
uint8_t *header = (uint8_t*) (FLASH_LOGOADDR);
|
|
|
|
// check if the header is correct.
|
|
for (int i = 0; i < 4; i++) {
|
|
if (header[i] != LOGO_HEADER_VALUE[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
OLED::drawAreaSwapped(0, 0, 96, 16, (uint8_t*) (FLASH_LOGOADDR + 4));
|
|
OLED::refresh();
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Catch the IRQ that says that the conversion is done on the temperature
|
|
* readings coming in Once these have come in we can unblock the PID so that it
|
|
* runs again
|
|
*/
|
|
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc) {
|
|
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
|
if (hadc == &hadc1) {
|
|
if (pidTaskNotification) {
|
|
vTaskNotifyGiveFromISR(pidTaskNotification,
|
|
&xHigherPriorityTaskWoken);
|
|
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
|
}
|
|
}
|
|
}
|
|
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
|
|
FRToSI2C::CpltCallback();
|
|
}
|
|
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
|
|
FRToSI2C::CpltCallback();
|
|
}
|
|
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
|
|
FRToSI2C::CpltCallback();
|
|
}
|
|
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c __unused) {
|
|
asm("bkpt");
|
|
|
|
FRToSI2C::CpltCallback();
|
|
}
|
|
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
|
|
//asm("bkpt");
|
|
|
|
FRToSI2C::CpltCallback();
|
|
}
|
|
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
|
|
FRToSI2C::CpltCallback();
|
|
}
|
|
void vApplicationStackOverflowHook(xTaskHandle *pxTask __unused,
|
|
signed portCHAR *pcTaskName __unused) {
|
|
asm("bkpt");
|
|
// We dont have a good way to handle a stack overflow at this point in time
|
|
NVIC_SystemReset();
|
|
}
|