* Create a typedef for temperatures * Quick parse replace temp types * Fixup for fast/slow PWM on PinecilV2 * Update PIDThread.cpp * Pinecil small tips need less smoothing * Remove incorrect comment * Remove unused function * Update PinecilV2 Tune as well
82 lines
2.8 KiB
C++
82 lines
2.8 KiB
C++
/*
|
|
* power.cpp
|
|
*
|
|
* Created on: 28 Oct, 2018
|
|
* Authors: Ben V. Brown, David Hilton <- Mostly David
|
|
*/
|
|
|
|
#include <BSP.h>
|
|
#include <Settings.h>
|
|
#include <power.hpp>
|
|
|
|
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample);
|
|
const int fastPWMChangeoverPoint = 128;
|
|
const int fastPWMChangeoverTolerance = 16;
|
|
|
|
expMovingAverage<uint32_t, wattHistoryFilter> x10WattHistory = {0};
|
|
|
|
bool shouldBeUsingFastPWMMode(const uint8_t pwmTicks) {
|
|
// Determine if we should use slow or fast PWM mode
|
|
// Crossover between modes set around the midpoint of the PWM control point
|
|
static bool lastPWMWasFast = true;
|
|
if (pwmTicks > (fastPWMChangeoverPoint + fastPWMChangeoverTolerance) && lastPWMWasFast) {
|
|
lastPWMWasFast = false;
|
|
} else if (pwmTicks < (fastPWMChangeoverPoint - fastPWMChangeoverTolerance) && !lastPWMWasFast) {
|
|
lastPWMWasFast = true;
|
|
}
|
|
return lastPWMWasFast;
|
|
}
|
|
|
|
void setTipX10Watts(int32_t mw) {
|
|
int32_t outputPWMLevel = X10WattsToPWM(mw, 1);
|
|
const bool shouldUseFastPWM = shouldBeUsingFastPWMMode(outputPWMLevel);
|
|
setTipPWM(outputPWMLevel, shouldUseFastPWM);
|
|
uint32_t actualMilliWatts = PWMToX10Watts(outputPWMLevel, 0);
|
|
|
|
x10WattHistory.update(actualMilliWatts);
|
|
}
|
|
|
|
uint32_t availableW10(uint8_t sample) {
|
|
// P = V^2 / R, v*v = v^2 * 100
|
|
// R = R*10
|
|
// P therefore is in V^2*100/R*10 = W*10.
|
|
uint32_t v = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), sample); // 100 = 10v
|
|
uint32_t tipResistance = getTipResistanceX10();
|
|
if (tipResistance == 0) {
|
|
return 100; // say 100 watt to force scale down
|
|
}
|
|
uint32_t availableWattsX10 = (v * v) / tipResistance;
|
|
// However, 100% duty cycle is not possible as there is a dead time while the ADC takes a reading
|
|
// Therefore need to scale available milliwats by this
|
|
|
|
// avMw=(AvMw*powerPWM)/totalPWM.
|
|
availableWattsX10 = availableWattsX10 * powerPWM;
|
|
availableWattsX10 /= totalPWM;
|
|
|
|
// availableMilliWattsX10 is now an accurate representation
|
|
return availableWattsX10;
|
|
}
|
|
uint8_t X10WattsToPWM(int32_t x10Watts, uint8_t sample) {
|
|
// Scale input x10Watts to the pwm range available
|
|
if (x10Watts <= 0) {
|
|
// keep the battery voltage updating the filter
|
|
getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), sample);
|
|
return 0;
|
|
}
|
|
|
|
// Calculate desired x10Watts as a percentage of availableW10
|
|
uint32_t pwm;
|
|
pwm = (powerPWM * x10Watts) / availableW10(sample);
|
|
if (pwm > powerPWM) {
|
|
// constrain to max PWM counter
|
|
pwm = powerPWM;
|
|
}
|
|
return pwm;
|
|
}
|
|
|
|
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample) {
|
|
uint32_t maxMW = availableW10(sample); // Get the milliwatts for the max pwm period
|
|
// Then convert pwm into percentage of powerPWM to get the percentage of the max mw
|
|
return (((uint32_t)pwm) * maxMW) / powerPWM;
|
|
}
|