1
0
forked from me/IronOS
Files
IronOS/source/Core/Src/power.cpp
Ben V. Brown c0a5e244b9 Temperature code updates (#1814)
* Create a typedef for temperatures

* Quick parse replace temp types

* Fixup for fast/slow PWM on PinecilV2

* Update PIDThread.cpp

* Pinecil small tips need less smoothing

* Remove incorrect comment

* Remove unused function

* Update PinecilV2 Tune as well
2023-09-22 10:19:50 +10:00

82 lines
2.8 KiB
C++

/*
* power.cpp
*
* Created on: 28 Oct, 2018
* Authors: Ben V. Brown, David Hilton <- Mostly David
*/
#include <BSP.h>
#include <Settings.h>
#include <power.hpp>
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample);
const int fastPWMChangeoverPoint = 128;
const int fastPWMChangeoverTolerance = 16;
expMovingAverage<uint32_t, wattHistoryFilter> x10WattHistory = {0};
bool shouldBeUsingFastPWMMode(const uint8_t pwmTicks) {
// Determine if we should use slow or fast PWM mode
// Crossover between modes set around the midpoint of the PWM control point
static bool lastPWMWasFast = true;
if (pwmTicks > (fastPWMChangeoverPoint + fastPWMChangeoverTolerance) && lastPWMWasFast) {
lastPWMWasFast = false;
} else if (pwmTicks < (fastPWMChangeoverPoint - fastPWMChangeoverTolerance) && !lastPWMWasFast) {
lastPWMWasFast = true;
}
return lastPWMWasFast;
}
void setTipX10Watts(int32_t mw) {
int32_t outputPWMLevel = X10WattsToPWM(mw, 1);
const bool shouldUseFastPWM = shouldBeUsingFastPWMMode(outputPWMLevel);
setTipPWM(outputPWMLevel, shouldUseFastPWM);
uint32_t actualMilliWatts = PWMToX10Watts(outputPWMLevel, 0);
x10WattHistory.update(actualMilliWatts);
}
uint32_t availableW10(uint8_t sample) {
// P = V^2 / R, v*v = v^2 * 100
// R = R*10
// P therefore is in V^2*100/R*10 = W*10.
uint32_t v = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), sample); // 100 = 10v
uint32_t tipResistance = getTipResistanceX10();
if (tipResistance == 0) {
return 100; // say 100 watt to force scale down
}
uint32_t availableWattsX10 = (v * v) / tipResistance;
// However, 100% duty cycle is not possible as there is a dead time while the ADC takes a reading
// Therefore need to scale available milliwats by this
// avMw=(AvMw*powerPWM)/totalPWM.
availableWattsX10 = availableWattsX10 * powerPWM;
availableWattsX10 /= totalPWM;
// availableMilliWattsX10 is now an accurate representation
return availableWattsX10;
}
uint8_t X10WattsToPWM(int32_t x10Watts, uint8_t sample) {
// Scale input x10Watts to the pwm range available
if (x10Watts <= 0) {
// keep the battery voltage updating the filter
getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), sample);
return 0;
}
// Calculate desired x10Watts as a percentage of availableW10
uint32_t pwm;
pwm = (powerPWM * x10Watts) / availableW10(sample);
if (pwm > powerPWM) {
// constrain to max PWM counter
pwm = powerPWM;
}
return pwm;
}
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample) {
uint32_t maxMW = availableW10(sample); // Get the milliwatts for the max pwm period
// Then convert pwm into percentage of powerPWM to get the percentage of the max mw
return (((uint32_t)pwm) * maxMW) / powerPWM;
}