* Clean up handling of addresses * Update SC7A20.hpp * Try remapped Accel readings * Fake LIS setup? * Refining build options
2440 lines
95 KiB
C
2440 lines
95 KiB
C
/*
|
|
* FreeRTOS Kernel V10.3.1
|
|
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* http://www.FreeRTOS.org
|
|
* http://aws.amazon.com/freertos
|
|
*
|
|
* 1 tab == 4 spaces!
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
all the API functions to use the MPU wrappers. That should only be done when
|
|
task.h is included from an application file. */
|
|
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
|
#include "FreeRTOS.h"
|
|
#include "queue.h"
|
|
#include "task.h"
|
|
|
|
|
|
#if (configUSE_CO_ROUTINES == 1)
|
|
#include "croutine.h"
|
|
#endif
|
|
|
|
/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
|
|
because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
|
|
for the header files above, but not in this file, in order to generate the
|
|
correct privileged Vs unprivileged linkage and placement. */
|
|
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
|
|
|
|
/* Constants used with the cRxLock and cTxLock structure members. */
|
|
#define queueUNLOCKED ((int8_t)-1)
|
|
#define queueLOCKED_UNMODIFIED ((int8_t)0)
|
|
|
|
/* When the Queue_t structure is used to represent a base queue its pcHead and
|
|
pcTail members are used as pointers into the queue storage area. When the
|
|
Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
|
|
not necessary, and the pcHead pointer is set to NULL to indicate that the
|
|
structure instead holds a pointer to the mutex holder (if any). Map alternative
|
|
names to the pcHead and structure member to ensure the readability of the code
|
|
is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
|
|
a union as their usage is mutually exclusive dependent on what the queue is
|
|
being used for. */
|
|
#define uxQueueType pcHead
|
|
#define queueQUEUE_IS_MUTEX NULL
|
|
|
|
typedef struct QueuePointers {
|
|
int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
|
|
int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
|
|
} QueuePointers_t;
|
|
|
|
typedef struct SemaphoreData {
|
|
TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
|
|
UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
|
|
} SemaphoreData_t;
|
|
|
|
/* Semaphores do not actually store or copy data, so have an item size of
|
|
zero. */
|
|
#define queueSEMAPHORE_QUEUE_ITEM_LENGTH ((UBaseType_t)0)
|
|
#define queueMUTEX_GIVE_BLOCK_TIME ((TickType_t)0U)
|
|
|
|
#if (configUSE_PREEMPTION == 0)
|
|
/* If the cooperative scheduler is being used then a yield should not be
|
|
performed just because a higher priority task has been woken. */
|
|
#define queueYIELD_IF_USING_PREEMPTION()
|
|
#else
|
|
#define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
|
#endif
|
|
|
|
/*
|
|
* Definition of the queue used by the scheduler.
|
|
* Items are queued by copy, not reference. See the following link for the
|
|
* rationale: https://www.freertos.org/Embedded-RTOS-Queues.html
|
|
*/
|
|
typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
|
|
{
|
|
int8_t *pcHead; /*< Points to the beginning of the queue storage area. */
|
|
int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */
|
|
|
|
union {
|
|
QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
|
|
SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
|
|
} u;
|
|
|
|
List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
|
|
List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
|
|
|
|
volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
|
|
UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
|
|
UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
|
|
|
|
volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
|
|
volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
|
|
|
|
#if ((configSUPPORT_STATIC_ALLOCATION == 1) && (configSUPPORT_DYNAMIC_ALLOCATION == 1))
|
|
uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
|
|
#endif
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
struct QueueDefinition *pxQueueSetContainer;
|
|
#endif
|
|
|
|
#if (configUSE_TRACE_FACILITY == 1)
|
|
UBaseType_t uxQueueNumber;
|
|
uint8_t ucQueueType;
|
|
#endif
|
|
|
|
} xQUEUE;
|
|
|
|
/* The old xQUEUE name is maintained above then typedefed to the new Queue_t
|
|
name below to enable the use of older kernel aware debuggers. */
|
|
typedef xQUEUE Queue_t;
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* The queue registry is just a means for kernel aware debuggers to locate
|
|
* queue structures. It has no other purpose so is an optional component.
|
|
*/
|
|
#if (configQUEUE_REGISTRY_SIZE > 0)
|
|
|
|
/* The type stored within the queue registry array. This allows a name
|
|
to be assigned to each queue making kernel aware debugging a little
|
|
more user friendly. */
|
|
typedef struct QUEUE_REGISTRY_ITEM {
|
|
const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
QueueHandle_t xHandle;
|
|
} xQueueRegistryItem;
|
|
|
|
/* The old xQueueRegistryItem name is maintained above then typedefed to the
|
|
new xQueueRegistryItem name below to enable the use of older kernel aware
|
|
debuggers. */
|
|
typedef xQueueRegistryItem QueueRegistryItem_t;
|
|
|
|
/* The queue registry is simply an array of QueueRegistryItem_t structures.
|
|
The pcQueueName member of a structure being NULL is indicative of the
|
|
array position being vacant. */
|
|
PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[configQUEUE_REGISTRY_SIZE];
|
|
|
|
#endif /* configQUEUE_REGISTRY_SIZE */
|
|
|
|
/*
|
|
* Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
|
|
* prevent an ISR from adding or removing items to the queue, but does prevent
|
|
* an ISR from removing tasks from the queue event lists. If an ISR finds a
|
|
* queue is locked it will instead increment the appropriate queue lock count
|
|
* to indicate that a task may require unblocking. When the queue in unlocked
|
|
* these lock counts are inspected, and the appropriate action taken.
|
|
*/
|
|
static void prvUnlockQueue(Queue_t *const pxQueue) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Uses a critical section to determine if there is any data in a queue.
|
|
*
|
|
* @return pdTRUE if the queue contains no items, otherwise pdFALSE.
|
|
*/
|
|
static BaseType_t prvIsQueueEmpty(const Queue_t *pxQueue) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Uses a critical section to determine if there is any space in a queue.
|
|
*
|
|
* @return pdTRUE if there is no space, otherwise pdFALSE;
|
|
*/
|
|
static BaseType_t prvIsQueueFull(const Queue_t *pxQueue) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Copies an item into the queue, either at the front of the queue or the
|
|
* back of the queue.
|
|
*/
|
|
static BaseType_t prvCopyDataToQueue(Queue_t *const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Copies an item out of a queue.
|
|
*/
|
|
static void prvCopyDataFromQueue(Queue_t *const pxQueue, void *const pvBuffer) PRIVILEGED_FUNCTION;
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
/*
|
|
* Checks to see if a queue is a member of a queue set, and if so, notifies
|
|
* the queue set that the queue contains data.
|
|
*/
|
|
static BaseType_t prvNotifyQueueSetContainer(const Queue_t *const pxQueue) PRIVILEGED_FUNCTION;
|
|
#endif
|
|
|
|
/*
|
|
* Called after a Queue_t structure has been allocated either statically or
|
|
* dynamically to fill in the structure's members.
|
|
*/
|
|
static void prvInitialiseNewQueue(const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Mutexes are a special type of queue. When a mutex is created, first the
|
|
* queue is created, then prvInitialiseMutex() is called to configure the queue
|
|
* as a mutex.
|
|
*/
|
|
#if (configUSE_MUTEXES == 1)
|
|
static void prvInitialiseMutex(Queue_t *pxNewQueue) PRIVILEGED_FUNCTION;
|
|
#endif
|
|
|
|
#if (configUSE_MUTEXES == 1)
|
|
/*
|
|
* If a task waiting for a mutex causes the mutex holder to inherit a
|
|
* priority, but the waiting task times out, then the holder should
|
|
* disinherit the priority - but only down to the highest priority of any
|
|
* other tasks that are waiting for the same mutex. This function returns
|
|
* that priority.
|
|
*/
|
|
static UBaseType_t prvGetDisinheritPriorityAfterTimeout(const Queue_t *const pxQueue) PRIVILEGED_FUNCTION;
|
|
#endif
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* Macro to mark a queue as locked. Locking a queue prevents an ISR from
|
|
* accessing the queue event lists.
|
|
*/
|
|
#define prvLockQueue(pxQueue) \
|
|
taskENTER_CRITICAL(); \
|
|
{ \
|
|
if ((pxQueue)->cRxLock == queueUNLOCKED) { \
|
|
(pxQueue)->cRxLock = queueLOCKED_UNMODIFIED; \
|
|
} \
|
|
if ((pxQueue)->cTxLock == queueUNLOCKED) { \
|
|
(pxQueue)->cTxLock = queueLOCKED_UNMODIFIED; \
|
|
} \
|
|
} \
|
|
taskEXIT_CRITICAL()
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGenericReset(QueueHandle_t xQueue, BaseType_t xNewQueue) {
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
pxQueue->u.xQueue.pcTail = pxQueue->pcHead + (pxQueue->uxLength * pxQueue->uxItemSize); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
|
|
pxQueue->uxMessagesWaiting = (UBaseType_t)0U;
|
|
pxQueue->pcWriteTo = pxQueue->pcHead;
|
|
pxQueue->u.xQueue.pcReadFrom
|
|
= pxQueue->pcHead + ((pxQueue->uxLength - 1U) * pxQueue->uxItemSize); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
|
|
pxQueue->cRxLock = queueUNLOCKED;
|
|
pxQueue->cTxLock = queueUNLOCKED;
|
|
|
|
if (xNewQueue == pdFALSE) {
|
|
/* If there are tasks blocked waiting to read from the queue, then
|
|
the tasks will remain blocked as after this function exits the queue
|
|
will still be empty. If there are tasks blocked waiting to write to
|
|
the queue, then one should be unblocked as after this function exits
|
|
it will be possible to write to it. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)) != pdFALSE) {
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
/* Ensure the event queues start in the correct state. */
|
|
vListInitialise(&(pxQueue->xTasksWaitingToSend));
|
|
vListInitialise(&(pxQueue->xTasksWaitingToReceive));
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* A value is returned for calling semantic consistency with previous
|
|
versions. */
|
|
return pdPASS;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configSUPPORT_STATIC_ALLOCATION == 1)
|
|
|
|
QueueHandle_t xQueueGenericCreateStatic(const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType) {
|
|
Queue_t *pxNewQueue;
|
|
|
|
configASSERT(uxQueueLength > (UBaseType_t)0);
|
|
|
|
/* The StaticQueue_t structure and the queue storage area must be
|
|
supplied. */
|
|
configASSERT(pxStaticQueue != NULL);
|
|
|
|
/* A queue storage area should be provided if the item size is not 0, and
|
|
should not be provided if the item size is 0. */
|
|
configASSERT(!((pucQueueStorage != NULL) && (uxItemSize == 0)));
|
|
configASSERT(!((pucQueueStorage == NULL) && (uxItemSize != 0)));
|
|
|
|
#if (configASSERT_DEFINED == 1)
|
|
{
|
|
/* Sanity check that the size of the structure used to declare a
|
|
variable of type StaticQueue_t or StaticSemaphore_t equals the size of
|
|
the real queue and semaphore structures. */
|
|
volatile size_t xSize = sizeof(StaticQueue_t);
|
|
configASSERT(xSize == sizeof(Queue_t));
|
|
(void)xSize; /* Keeps lint quiet when configASSERT() is not defined. */
|
|
}
|
|
#endif /* configASSERT_DEFINED */
|
|
|
|
/* The address of a statically allocated queue was passed in, use it.
|
|
The address of a statically allocated storage area was also passed in
|
|
but is already set. */
|
|
pxNewQueue = (Queue_t *)pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
|
|
|
|
if (pxNewQueue != NULL) {
|
|
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
|
|
{
|
|
/* Queues can be allocated wither statically or dynamically, so
|
|
note this queue was allocated statically in case the queue is
|
|
later deleted. */
|
|
pxNewQueue->ucStaticallyAllocated = pdTRUE;
|
|
}
|
|
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
|
|
|
prvInitialiseNewQueue(uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue);
|
|
} else {
|
|
traceQUEUE_CREATE_FAILED(ucQueueType);
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
return pxNewQueue;
|
|
}
|
|
|
|
#endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
|
|
|
|
QueueHandle_t xQueueGenericCreate(const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType) {
|
|
Queue_t *pxNewQueue;
|
|
size_t xQueueSizeInBytes;
|
|
uint8_t *pucQueueStorage;
|
|
|
|
configASSERT(uxQueueLength > (UBaseType_t)0);
|
|
|
|
/* Allocate enough space to hold the maximum number of items that
|
|
can be in the queue at any time. It is valid for uxItemSize to be
|
|
zero in the case the queue is used as a semaphore. */
|
|
xQueueSizeInBytes = (size_t)(uxQueueLength * uxItemSize); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
|
/* Allocate the queue and storage area. Justification for MISRA
|
|
deviation as follows: pvPortMalloc() always ensures returned memory
|
|
blocks are aligned per the requirements of the MCU stack. In this case
|
|
pvPortMalloc() must return a pointer that is guaranteed to meet the
|
|
alignment requirements of the Queue_t structure - which in this case
|
|
is an int8_t *. Therefore, whenever the stack alignment requirements
|
|
are greater than or equal to the pointer to char requirements the cast
|
|
is safe. In other cases alignment requirements are not strict (one or
|
|
two bytes). */
|
|
pxNewQueue = (Queue_t *)pvPortMalloc(sizeof(Queue_t) + xQueueSizeInBytes); /*lint !e9087 !e9079 see comment above. */
|
|
|
|
if (pxNewQueue != NULL) {
|
|
/* Jump past the queue structure to find the location of the queue
|
|
storage area. */
|
|
pucQueueStorage = (uint8_t *)pxNewQueue;
|
|
pucQueueStorage += sizeof(Queue_t); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
|
|
|
|
#if (configSUPPORT_STATIC_ALLOCATION == 1)
|
|
{
|
|
/* Queues can be created either statically or dynamically, so
|
|
note this task was created dynamically in case it is later
|
|
deleted. */
|
|
pxNewQueue->ucStaticallyAllocated = pdFALSE;
|
|
}
|
|
#endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
|
|
prvInitialiseNewQueue(uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue);
|
|
} else {
|
|
traceQUEUE_CREATE_FAILED(ucQueueType);
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
return pxNewQueue;
|
|
}
|
|
|
|
#endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvInitialiseNewQueue(const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue) {
|
|
/* Remove compiler warnings about unused parameters should
|
|
configUSE_TRACE_FACILITY not be set to 1. */
|
|
(void)ucQueueType;
|
|
|
|
if (uxItemSize == (UBaseType_t)0) {
|
|
/* No RAM was allocated for the queue storage area, but PC head cannot
|
|
be set to NULL because NULL is used as a key to say the queue is used as
|
|
a mutex. Therefore just set pcHead to point to the queue as a benign
|
|
value that is known to be within the memory map. */
|
|
pxNewQueue->pcHead = (int8_t *)pxNewQueue;
|
|
} else {
|
|
/* Set the head to the start of the queue storage area. */
|
|
pxNewQueue->pcHead = (int8_t *)pucQueueStorage;
|
|
}
|
|
|
|
/* Initialise the queue members as described where the queue type is
|
|
defined. */
|
|
pxNewQueue->uxLength = uxQueueLength;
|
|
pxNewQueue->uxItemSize = uxItemSize;
|
|
(void)xQueueGenericReset(pxNewQueue, pdTRUE);
|
|
|
|
#if (configUSE_TRACE_FACILITY == 1)
|
|
{ pxNewQueue->ucQueueType = ucQueueType; }
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
{ pxNewQueue->pxQueueSetContainer = NULL; }
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
|
|
traceQUEUE_CREATE(pxNewQueue);
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_MUTEXES == 1)
|
|
|
|
static void prvInitialiseMutex(Queue_t *pxNewQueue) {
|
|
if (pxNewQueue != NULL) {
|
|
/* The queue create function will set all the queue structure members
|
|
correctly for a generic queue, but this function is creating a
|
|
mutex. Overwrite those members that need to be set differently -
|
|
in particular the information required for priority inheritance. */
|
|
pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
|
|
pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
|
|
|
|
/* In case this is a recursive mutex. */
|
|
pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
|
|
|
|
traceCREATE_MUTEX(pxNewQueue);
|
|
|
|
/* Start with the semaphore in the expected state. */
|
|
(void)xQueueGenericSend(pxNewQueue, NULL, (TickType_t)0U, queueSEND_TO_BACK);
|
|
} else {
|
|
traceCREATE_MUTEX_FAILED();
|
|
}
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ((configUSE_MUTEXES == 1) && (configSUPPORT_DYNAMIC_ALLOCATION == 1))
|
|
|
|
QueueHandle_t xQueueCreateMutex(const uint8_t ucQueueType) {
|
|
QueueHandle_t xNewQueue;
|
|
const UBaseType_t uxMutexLength = (UBaseType_t)1, uxMutexSize = (UBaseType_t)0;
|
|
|
|
xNewQueue = xQueueGenericCreate(uxMutexLength, uxMutexSize, ucQueueType);
|
|
prvInitialiseMutex((Queue_t *)xNewQueue);
|
|
|
|
return xNewQueue;
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ((configUSE_MUTEXES == 1) && (configSUPPORT_STATIC_ALLOCATION == 1))
|
|
|
|
QueueHandle_t xQueueCreateMutexStatic(const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue) {
|
|
QueueHandle_t xNewQueue;
|
|
const UBaseType_t uxMutexLength = (UBaseType_t)1, uxMutexSize = (UBaseType_t)0;
|
|
|
|
/* Prevent compiler warnings about unused parameters if
|
|
configUSE_TRACE_FACILITY does not equal 1. */
|
|
(void)ucQueueType;
|
|
|
|
xNewQueue = xQueueGenericCreateStatic(uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType);
|
|
prvInitialiseMutex((Queue_t *)xNewQueue);
|
|
|
|
return xNewQueue;
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ((configUSE_MUTEXES == 1) && (INCLUDE_xSemaphoreGetMutexHolder == 1))
|
|
|
|
TaskHandle_t xQueueGetMutexHolder(QueueHandle_t xSemaphore) {
|
|
TaskHandle_t pxReturn;
|
|
Queue_t *const pxSemaphore = (Queue_t *)xSemaphore;
|
|
|
|
/* This function is called by xSemaphoreGetMutexHolder(), and should not
|
|
be called directly. Note: This is a good way of determining if the
|
|
calling task is the mutex holder, but not a good way of determining the
|
|
identity of the mutex holder, as the holder may change between the
|
|
following critical section exiting and the function returning. */
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if (pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX) {
|
|
pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
|
|
} else {
|
|
pxReturn = NULL;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return pxReturn;
|
|
} /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
|
|
|
|
#endif
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ((configUSE_MUTEXES == 1) && (INCLUDE_xSemaphoreGetMutexHolder == 1))
|
|
|
|
TaskHandle_t xQueueGetMutexHolderFromISR(QueueHandle_t xSemaphore) {
|
|
TaskHandle_t pxReturn;
|
|
|
|
configASSERT(xSemaphore);
|
|
|
|
/* Mutexes cannot be used in interrupt service routines, so the mutex
|
|
holder should not change in an ISR, and therefore a critical section is
|
|
not required here. */
|
|
if (((Queue_t *)xSemaphore)->uxQueueType == queueQUEUE_IS_MUTEX) {
|
|
pxReturn = ((Queue_t *)xSemaphore)->u.xSemaphore.xMutexHolder;
|
|
} else {
|
|
pxReturn = NULL;
|
|
}
|
|
|
|
return pxReturn;
|
|
} /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
|
|
|
|
#endif
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_RECURSIVE_MUTEXES == 1)
|
|
|
|
BaseType_t xQueueGiveMutexRecursive(QueueHandle_t xMutex) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxMutex = (Queue_t *)xMutex;
|
|
|
|
configASSERT(pxMutex);
|
|
|
|
/* If this is the task that holds the mutex then xMutexHolder will not
|
|
change outside of this task. If this task does not hold the mutex then
|
|
pxMutexHolder can never coincidentally equal the tasks handle, and as
|
|
this is the only condition we are interested in it does not matter if
|
|
pxMutexHolder is accessed simultaneously by another task. Therefore no
|
|
mutual exclusion is required to test the pxMutexHolder variable. */
|
|
if (pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle()) {
|
|
traceGIVE_MUTEX_RECURSIVE(pxMutex);
|
|
|
|
/* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
|
|
the task handle, therefore no underflow check is required. Also,
|
|
uxRecursiveCallCount is only modified by the mutex holder, and as
|
|
there can only be one, no mutual exclusion is required to modify the
|
|
uxRecursiveCallCount member. */
|
|
(pxMutex->u.xSemaphore.uxRecursiveCallCount)--;
|
|
|
|
/* Has the recursive call count unwound to 0? */
|
|
if (pxMutex->u.xSemaphore.uxRecursiveCallCount == (UBaseType_t)0) {
|
|
/* Return the mutex. This will automatically unblock any other
|
|
task that might be waiting to access the mutex. */
|
|
(void)xQueueGenericSend(pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK);
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
} else {
|
|
/* The mutex cannot be given because the calling task is not the
|
|
holder. */
|
|
xReturn = pdFAIL;
|
|
|
|
traceGIVE_MUTEX_RECURSIVE_FAILED(pxMutex);
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_RECURSIVE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_RECURSIVE_MUTEXES == 1)
|
|
|
|
BaseType_t xQueueTakeMutexRecursive(QueueHandle_t xMutex, TickType_t xTicksToWait) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxMutex = (Queue_t *)xMutex;
|
|
|
|
configASSERT(pxMutex);
|
|
|
|
/* Comments regarding mutual exclusion as per those within
|
|
xQueueGiveMutexRecursive(). */
|
|
|
|
traceTAKE_MUTEX_RECURSIVE(pxMutex);
|
|
|
|
if (pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle()) {
|
|
(pxMutex->u.xSemaphore.uxRecursiveCallCount)++;
|
|
xReturn = pdPASS;
|
|
} else {
|
|
xReturn = xQueueSemaphoreTake(pxMutex, xTicksToWait);
|
|
|
|
/* pdPASS will only be returned if the mutex was successfully
|
|
obtained. The calling task may have entered the Blocked state
|
|
before reaching here. */
|
|
if (xReturn != pdFAIL) {
|
|
(pxMutex->u.xSemaphore.uxRecursiveCallCount)++;
|
|
} else {
|
|
traceTAKE_MUTEX_RECURSIVE_FAILED(pxMutex);
|
|
}
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_RECURSIVE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ((configUSE_COUNTING_SEMAPHORES == 1) && (configSUPPORT_STATIC_ALLOCATION == 1))
|
|
|
|
QueueHandle_t xQueueCreateCountingSemaphoreStatic(const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue) {
|
|
QueueHandle_t xHandle;
|
|
|
|
configASSERT(uxMaxCount != 0);
|
|
configASSERT(uxInitialCount <= uxMaxCount);
|
|
|
|
xHandle = xQueueGenericCreateStatic(uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE);
|
|
|
|
if (xHandle != NULL) {
|
|
((Queue_t *)xHandle)->uxMessagesWaiting = uxInitialCount;
|
|
|
|
traceCREATE_COUNTING_SEMAPHORE();
|
|
} else {
|
|
traceCREATE_COUNTING_SEMAPHORE_FAILED();
|
|
}
|
|
|
|
return xHandle;
|
|
}
|
|
|
|
#endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ((configUSE_COUNTING_SEMAPHORES == 1) && (configSUPPORT_DYNAMIC_ALLOCATION == 1))
|
|
|
|
QueueHandle_t xQueueCreateCountingSemaphore(const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount) {
|
|
QueueHandle_t xHandle;
|
|
|
|
configASSERT(uxMaxCount != 0);
|
|
configASSERT(uxInitialCount <= uxMaxCount);
|
|
|
|
xHandle = xQueueGenericCreate(uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE);
|
|
|
|
if (xHandle != NULL) {
|
|
((Queue_t *)xHandle)->uxMessagesWaiting = uxInitialCount;
|
|
|
|
traceCREATE_COUNTING_SEMAPHORE();
|
|
} else {
|
|
traceCREATE_COUNTING_SEMAPHORE_FAILED();
|
|
}
|
|
|
|
return xHandle;
|
|
}
|
|
|
|
#endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGenericSend(QueueHandle_t xQueue, const void *const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition) {
|
|
BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
|
|
TimeOut_t xTimeOut;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
configASSERT(!((pvItemToQueue == NULL) && (pxQueue->uxItemSize != (UBaseType_t)0U)));
|
|
configASSERT(!((xCopyPosition == queueOVERWRITE) && (pxQueue->uxLength != 1)));
|
|
#if ((INCLUDE_xTaskGetSchedulerState == 1) || (configUSE_TIMERS == 1))
|
|
{ configASSERT(!((xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) && (xTicksToWait != 0))); }
|
|
#endif
|
|
|
|
/*lint -save -e904 This function relaxes the coding standard somewhat to
|
|
allow return statements within the function itself. This is done in the
|
|
interest of execution time efficiency. */
|
|
for (;;) {
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* Is there room on the queue now? The running task must be the
|
|
highest priority task wanting to access the queue. If the head item
|
|
in the queue is to be overwritten then it does not matter if the
|
|
queue is full. */
|
|
if ((pxQueue->uxMessagesWaiting < pxQueue->uxLength) || (xCopyPosition == queueOVERWRITE)) {
|
|
traceQUEUE_SEND(pxQueue);
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
{
|
|
const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
|
|
|
|
xYieldRequired = prvCopyDataToQueue(pxQueue, pvItemToQueue, xCopyPosition);
|
|
|
|
if (pxQueue->pxQueueSetContainer != NULL) {
|
|
if ((xCopyPosition == queueOVERWRITE) && (uxPreviousMessagesWaiting != (UBaseType_t)0)) {
|
|
/* Do not notify the queue set as an existing item
|
|
was overwritten in the queue so the number of items
|
|
in the queue has not changed. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
} else if (prvNotifyQueueSetContainer(pxQueue) != pdFALSE) {
|
|
/* The queue is a member of a queue set, and posting
|
|
to the queue set caused a higher priority task to
|
|
unblock. A context switch is required. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
/* If there was a task waiting for data to arrive on the
|
|
queue then unblock it now. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The unblocked task has a priority higher than
|
|
our own so yield immediately. Yes it is ok to
|
|
do this from within the critical section - the
|
|
kernel takes care of that. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else if (xYieldRequired != pdFALSE) {
|
|
/* This path is a special case that will only get
|
|
executed if the task was holding multiple mutexes
|
|
and the mutexes were given back in an order that is
|
|
different to that in which they were taken. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
#else /* configUSE_QUEUE_SETS */
|
|
{
|
|
xYieldRequired = prvCopyDataToQueue(pxQueue, pvItemToQueue, xCopyPosition);
|
|
|
|
/* If there was a task waiting for data to arrive on the
|
|
queue then unblock it now. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The unblocked task has a priority higher than
|
|
our own so yield immediately. Yes it is ok to do
|
|
this from within the critical section - the kernel
|
|
takes care of that. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else if (xYieldRequired != pdFALSE) {
|
|
/* This path is a special case that will only get
|
|
executed if the task was holding multiple mutexes and
|
|
the mutexes were given back in an order that is
|
|
different to that in which they were taken. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
} else {
|
|
if (xTicksToWait == (TickType_t)0) {
|
|
/* The queue was full and no block time is specified (or
|
|
the block time has expired) so leave now. */
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Return to the original privilege level before exiting
|
|
the function. */
|
|
traceQUEUE_SEND_FAILED(pxQueue);
|
|
return errQUEUE_FULL;
|
|
} else if (xEntryTimeSet == pdFALSE) {
|
|
/* The queue was full and a block time was specified so
|
|
configure the timeout structure. */
|
|
vTaskInternalSetTimeOutState(&xTimeOut);
|
|
xEntryTimeSet = pdTRUE;
|
|
} else {
|
|
/* Entry time was already set. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Interrupts and other tasks can send to and receive from the queue
|
|
now the critical section has been exited. */
|
|
|
|
vTaskSuspendAll();
|
|
prvLockQueue(pxQueue);
|
|
|
|
/* Update the timeout state to see if it has expired yet. */
|
|
if (xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) == pdFALSE) {
|
|
if (prvIsQueueFull(pxQueue) != pdFALSE) {
|
|
traceBLOCKING_ON_QUEUE_SEND(pxQueue);
|
|
vTaskPlaceOnEventList(&(pxQueue->xTasksWaitingToSend), xTicksToWait);
|
|
|
|
/* Unlocking the queue means queue events can effect the
|
|
event list. It is possible that interrupts occurring now
|
|
remove this task from the event list again - but as the
|
|
scheduler is suspended the task will go onto the pending
|
|
ready last instead of the actual ready list. */
|
|
prvUnlockQueue(pxQueue);
|
|
|
|
/* Resuming the scheduler will move tasks from the pending
|
|
ready list into the ready list - so it is feasible that this
|
|
task is already in a ready list before it yields - in which
|
|
case the yield will not cause a context switch unless there
|
|
is also a higher priority task in the pending ready list. */
|
|
if (xTaskResumeAll() == pdFALSE) {
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
} else {
|
|
/* Try again. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
}
|
|
} else {
|
|
/* The timeout has expired. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
|
|
traceQUEUE_SEND_FAILED(pxQueue);
|
|
return errQUEUE_FULL;
|
|
}
|
|
} /*lint -restore */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGenericSendFromISR(QueueHandle_t xQueue, const void *const pvItemToQueue, BaseType_t *const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition) {
|
|
BaseType_t xReturn;
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
configASSERT(!((pvItemToQueue == NULL) && (pxQueue->uxItemSize != (UBaseType_t)0U)));
|
|
configASSERT(!((xCopyPosition == queueOVERWRITE) && (pxQueue->uxLength != 1)));
|
|
|
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
|
above the maximum system call priority are kept permanently enabled, even
|
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
|
assigned a priority above the configured maximum system call priority.
|
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
that have been assigned a priority at or (logically) below the maximum
|
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
More information (albeit Cortex-M specific) is provided on the following
|
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
|
/* Similar to xQueueGenericSend, except without blocking if there is no room
|
|
in the queue. Also don't directly wake a task that was blocked on a queue
|
|
read, instead return a flag to say whether a context switch is required or
|
|
not (i.e. has a task with a higher priority than us been woken by this
|
|
post). */
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{
|
|
if ((pxQueue->uxMessagesWaiting < pxQueue->uxLength) || (xCopyPosition == queueOVERWRITE)) {
|
|
const int8_t cTxLock = pxQueue->cTxLock;
|
|
const UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
|
|
|
|
traceQUEUE_SEND_FROM_ISR(pxQueue);
|
|
|
|
/* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
|
|
semaphore or mutex. That means prvCopyDataToQueue() cannot result
|
|
in a task disinheriting a priority and prvCopyDataToQueue() can be
|
|
called here even though the disinherit function does not check if
|
|
the scheduler is suspended before accessing the ready lists. */
|
|
(void)prvCopyDataToQueue(pxQueue, pvItemToQueue, xCopyPosition);
|
|
|
|
/* The event list is not altered if the queue is locked. This will
|
|
be done when the queue is unlocked later. */
|
|
if (cTxLock == queueUNLOCKED) {
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
{
|
|
if (pxQueue->pxQueueSetContainer != NULL) {
|
|
if ((xCopyPosition == queueOVERWRITE) && (uxPreviousMessagesWaiting != (UBaseType_t)0)) {
|
|
/* Do not notify the queue set as an existing item
|
|
was overwritten in the queue so the number of items
|
|
in the queue has not changed. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
} else if (prvNotifyQueueSetContainer(pxQueue) != pdFALSE) {
|
|
/* The queue is a member of a queue set, and posting
|
|
to the queue set caused a higher priority task to
|
|
unblock. A context switch is required. */
|
|
if (pxHigherPriorityTaskWoken != NULL) {
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority so
|
|
record that a context switch is required. */
|
|
if (pxHigherPriorityTaskWoken != NULL) {
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
#else /* configUSE_QUEUE_SETS */
|
|
{
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority so record that a
|
|
context switch is required. */
|
|
if (pxHigherPriorityTaskWoken != NULL) {
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Not used in this path. */
|
|
(void)uxPreviousMessagesWaiting;
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
} else {
|
|
/* Increment the lock count so the task that unlocks the queue
|
|
knows that data was posted while it was locked. */
|
|
pxQueue->cTxLock = (int8_t)(cTxLock + 1);
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
} else {
|
|
traceQUEUE_SEND_FROM_ISR_FAILED(pxQueue);
|
|
xReturn = errQUEUE_FULL;
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGiveFromISR(QueueHandle_t xQueue, BaseType_t *const pxHigherPriorityTaskWoken) {
|
|
BaseType_t xReturn;
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* Similar to xQueueGenericSendFromISR() but used with semaphores where the
|
|
item size is 0. Don't directly wake a task that was blocked on a queue
|
|
read, instead return a flag to say whether a context switch is required or
|
|
not (i.e. has a task with a higher priority than us been woken by this
|
|
post). */
|
|
|
|
configASSERT(pxQueue);
|
|
|
|
/* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
|
|
if the item size is not 0. */
|
|
configASSERT(pxQueue->uxItemSize == 0);
|
|
|
|
/* Normally a mutex would not be given from an interrupt, especially if
|
|
there is a mutex holder, as priority inheritance makes no sense for an
|
|
interrupts, only tasks. */
|
|
configASSERT(!((pxQueue->uxQueueType == queueQUEUE_IS_MUTEX) && (pxQueue->u.xSemaphore.xMutexHolder != NULL)));
|
|
|
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
|
above the maximum system call priority are kept permanently enabled, even
|
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
|
assigned a priority above the configured maximum system call priority.
|
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
that have been assigned a priority at or (logically) below the maximum
|
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
More information (albeit Cortex-M specific) is provided on the following
|
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{
|
|
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
|
|
|
/* When the queue is used to implement a semaphore no data is ever
|
|
moved through the queue but it is still valid to see if the queue 'has
|
|
space'. */
|
|
if (uxMessagesWaiting < pxQueue->uxLength) {
|
|
const int8_t cTxLock = pxQueue->cTxLock;
|
|
|
|
traceQUEUE_SEND_FROM_ISR(pxQueue);
|
|
|
|
/* A task can only have an inherited priority if it is a mutex
|
|
holder - and if there is a mutex holder then the mutex cannot be
|
|
given from an ISR. As this is the ISR version of the function it
|
|
can be assumed there is no mutex holder and no need to determine if
|
|
priority disinheritance is needed. Simply increase the count of
|
|
messages (semaphores) available. */
|
|
pxQueue->uxMessagesWaiting = uxMessagesWaiting + (UBaseType_t)1;
|
|
|
|
/* The event list is not altered if the queue is locked. This will
|
|
be done when the queue is unlocked later. */
|
|
if (cTxLock == queueUNLOCKED) {
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
{
|
|
if (pxQueue->pxQueueSetContainer != NULL) {
|
|
if (prvNotifyQueueSetContainer(pxQueue) != pdFALSE) {
|
|
/* The semaphore is a member of a queue set, and
|
|
posting to the queue set caused a higher priority
|
|
task to unblock. A context switch is required. */
|
|
if (pxHigherPriorityTaskWoken != NULL) {
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority so
|
|
record that a context switch is required. */
|
|
if (pxHigherPriorityTaskWoken != NULL) {
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
#else /* configUSE_QUEUE_SETS */
|
|
{
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority so record that a
|
|
context switch is required. */
|
|
if (pxHigherPriorityTaskWoken != NULL) {
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
} else {
|
|
/* Increment the lock count so the task that unlocks the queue
|
|
knows that data was posted while it was locked. */
|
|
pxQueue->cTxLock = (int8_t)(cTxLock + 1);
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
} else {
|
|
traceQUEUE_SEND_FROM_ISR_FAILED(pxQueue);
|
|
xReturn = errQUEUE_FULL;
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueReceive(QueueHandle_t xQueue, void *const pvBuffer, TickType_t xTicksToWait) {
|
|
BaseType_t xEntryTimeSet = pdFALSE;
|
|
TimeOut_t xTimeOut;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* Check the pointer is not NULL. */
|
|
configASSERT((pxQueue));
|
|
|
|
/* The buffer into which data is received can only be NULL if the data size
|
|
is zero (so no data is copied into the buffer. */
|
|
configASSERT(!(((pvBuffer) == NULL) && ((pxQueue)->uxItemSize != (UBaseType_t)0U)));
|
|
|
|
/* Cannot block if the scheduler is suspended. */
|
|
#if ((INCLUDE_xTaskGetSchedulerState == 1) || (configUSE_TIMERS == 1))
|
|
{ configASSERT(!((xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) && (xTicksToWait != 0))); }
|
|
#endif
|
|
|
|
/*lint -save -e904 This function relaxes the coding standard somewhat to
|
|
allow return statements within the function itself. This is done in the
|
|
interest of execution time efficiency. */
|
|
for (;;) {
|
|
taskENTER_CRITICAL();
|
|
{
|
|
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
|
|
|
/* Is there data in the queue now? To be running the calling task
|
|
must be the highest priority task wanting to access the queue. */
|
|
if (uxMessagesWaiting > (UBaseType_t)0) {
|
|
/* Data available, remove one item. */
|
|
prvCopyDataFromQueue(pxQueue, pvBuffer);
|
|
traceQUEUE_RECEIVE(pxQueue);
|
|
pxQueue->uxMessagesWaiting = uxMessagesWaiting - (UBaseType_t)1;
|
|
|
|
/* There is now space in the queue, were any tasks waiting to
|
|
post to the queue? If so, unblock the highest priority waiting
|
|
task. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)) != pdFALSE) {
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
} else {
|
|
if (xTicksToWait == (TickType_t)0) {
|
|
/* The queue was empty and no block time is specified (or
|
|
the block time has expired) so leave now. */
|
|
taskEXIT_CRITICAL();
|
|
traceQUEUE_RECEIVE_FAILED(pxQueue);
|
|
return errQUEUE_EMPTY;
|
|
} else if (xEntryTimeSet == pdFALSE) {
|
|
/* The queue was empty and a block time was specified so
|
|
configure the timeout structure. */
|
|
vTaskInternalSetTimeOutState(&xTimeOut);
|
|
xEntryTimeSet = pdTRUE;
|
|
} else {
|
|
/* Entry time was already set. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Interrupts and other tasks can send to and receive from the queue
|
|
now the critical section has been exited. */
|
|
|
|
vTaskSuspendAll();
|
|
prvLockQueue(pxQueue);
|
|
|
|
/* Update the timeout state to see if it has expired yet. */
|
|
if (xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) == pdFALSE) {
|
|
/* The timeout has not expired. If the queue is still empty place
|
|
the task on the list of tasks waiting to receive from the queue. */
|
|
if (prvIsQueueEmpty(pxQueue) != pdFALSE) {
|
|
traceBLOCKING_ON_QUEUE_RECEIVE(pxQueue);
|
|
vTaskPlaceOnEventList(&(pxQueue->xTasksWaitingToReceive), xTicksToWait);
|
|
prvUnlockQueue(pxQueue);
|
|
if (xTaskResumeAll() == pdFALSE) {
|
|
portYIELD_WITHIN_API();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
/* The queue contains data again. Loop back to try and read the
|
|
data. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
}
|
|
} else {
|
|
/* Timed out. If there is no data in the queue exit, otherwise loop
|
|
back and attempt to read the data. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
|
|
if (prvIsQueueEmpty(pxQueue) != pdFALSE) {
|
|
traceQUEUE_RECEIVE_FAILED(pxQueue);
|
|
return errQUEUE_EMPTY;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
} /*lint -restore */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueSemaphoreTake(QueueHandle_t xQueue, TickType_t xTicksToWait) {
|
|
BaseType_t xEntryTimeSet = pdFALSE;
|
|
TimeOut_t xTimeOut;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
#if (configUSE_MUTEXES == 1)
|
|
BaseType_t xInheritanceOccurred = pdFALSE;
|
|
#endif
|
|
|
|
/* Check the queue pointer is not NULL. */
|
|
configASSERT((pxQueue));
|
|
|
|
/* Check this really is a semaphore, in which case the item size will be
|
|
0. */
|
|
configASSERT(pxQueue->uxItemSize == 0);
|
|
|
|
/* Cannot block if the scheduler is suspended. */
|
|
#if ((INCLUDE_xTaskGetSchedulerState == 1) || (configUSE_TIMERS == 1))
|
|
{ configASSERT(!((xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) && (xTicksToWait != 0))); }
|
|
#endif
|
|
|
|
/*lint -save -e904 This function relaxes the coding standard somewhat to allow return
|
|
statements within the function itself. This is done in the interest
|
|
of execution time efficiency. */
|
|
for (;;) {
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* Semaphores are queues with an item size of 0, and where the
|
|
number of messages in the queue is the semaphore's count value. */
|
|
const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
|
|
|
|
/* Is there data in the queue now? To be running the calling task
|
|
must be the highest priority task wanting to access the queue. */
|
|
if (uxSemaphoreCount > (UBaseType_t)0) {
|
|
traceQUEUE_RECEIVE(pxQueue);
|
|
|
|
/* Semaphores are queues with a data size of zero and where the
|
|
messages waiting is the semaphore's count. Reduce the count. */
|
|
pxQueue->uxMessagesWaiting = uxSemaphoreCount - (UBaseType_t)1;
|
|
|
|
#if (configUSE_MUTEXES == 1)
|
|
{
|
|
if (pxQueue->uxQueueType == queueQUEUE_IS_MUTEX) {
|
|
/* Record the information required to implement
|
|
priority inheritance should it become necessary. */
|
|
pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_MUTEXES */
|
|
|
|
/* Check to see if other tasks are blocked waiting to give the
|
|
semaphore, and if so, unblock the highest priority such task. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)) != pdFALSE) {
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
} else {
|
|
if (xTicksToWait == (TickType_t)0) {
|
|
/* For inheritance to have occurred there must have been an
|
|
initial timeout, and an adjusted timeout cannot become 0, as
|
|
if it were 0 the function would have exited. */
|
|
#if (configUSE_MUTEXES == 1)
|
|
{ configASSERT(xInheritanceOccurred == pdFALSE); }
|
|
#endif /* configUSE_MUTEXES */
|
|
|
|
/* The semaphore count was 0 and no block time is specified
|
|
(or the block time has expired) so exit now. */
|
|
taskEXIT_CRITICAL();
|
|
traceQUEUE_RECEIVE_FAILED(pxQueue);
|
|
return errQUEUE_EMPTY;
|
|
} else if (xEntryTimeSet == pdFALSE) {
|
|
/* The semaphore count was 0 and a block time was specified
|
|
so configure the timeout structure ready to block. */
|
|
vTaskInternalSetTimeOutState(&xTimeOut);
|
|
xEntryTimeSet = pdTRUE;
|
|
} else {
|
|
/* Entry time was already set. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Interrupts and other tasks can give to and take from the semaphore
|
|
now the critical section has been exited. */
|
|
|
|
vTaskSuspendAll();
|
|
prvLockQueue(pxQueue);
|
|
|
|
/* Update the timeout state to see if it has expired yet. */
|
|
if (xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) == pdFALSE) {
|
|
/* A block time is specified and not expired. If the semaphore
|
|
count is 0 then enter the Blocked state to wait for a semaphore to
|
|
become available. As semaphores are implemented with queues the
|
|
queue being empty is equivalent to the semaphore count being 0. */
|
|
if (prvIsQueueEmpty(pxQueue) != pdFALSE) {
|
|
traceBLOCKING_ON_QUEUE_RECEIVE(pxQueue);
|
|
|
|
#if (configUSE_MUTEXES == 1)
|
|
{
|
|
if (pxQueue->uxQueueType == queueQUEUE_IS_MUTEX) {
|
|
taskENTER_CRITICAL();
|
|
{ xInheritanceOccurred = xTaskPriorityInherit(pxQueue->u.xSemaphore.xMutexHolder); }
|
|
taskEXIT_CRITICAL();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
vTaskPlaceOnEventList(&(pxQueue->xTasksWaitingToReceive), xTicksToWait);
|
|
prvUnlockQueue(pxQueue);
|
|
if (xTaskResumeAll() == pdFALSE) {
|
|
portYIELD_WITHIN_API();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
/* There was no timeout and the semaphore count was not 0, so
|
|
attempt to take the semaphore again. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
}
|
|
} else {
|
|
/* Timed out. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
|
|
/* If the semaphore count is 0 exit now as the timeout has
|
|
expired. Otherwise return to attempt to take the semaphore that is
|
|
known to be available. As semaphores are implemented by queues the
|
|
queue being empty is equivalent to the semaphore count being 0. */
|
|
if (prvIsQueueEmpty(pxQueue) != pdFALSE) {
|
|
#if (configUSE_MUTEXES == 1)
|
|
{
|
|
/* xInheritanceOccurred could only have be set if
|
|
pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
|
|
test the mutex type again to check it is actually a mutex. */
|
|
if (xInheritanceOccurred != pdFALSE) {
|
|
taskENTER_CRITICAL();
|
|
{
|
|
UBaseType_t uxHighestWaitingPriority;
|
|
|
|
/* This task blocking on the mutex caused another
|
|
task to inherit this task's priority. Now this task
|
|
has timed out the priority should be disinherited
|
|
again, but only as low as the next highest priority
|
|
task that is waiting for the same mutex. */
|
|
uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout(pxQueue);
|
|
vTaskPriorityDisinheritAfterTimeout(pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority);
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
}
|
|
#endif /* configUSE_MUTEXES */
|
|
|
|
traceQUEUE_RECEIVE_FAILED(pxQueue);
|
|
return errQUEUE_EMPTY;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
} /*lint -restore */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueuePeek(QueueHandle_t xQueue, void *const pvBuffer, TickType_t xTicksToWait) {
|
|
BaseType_t xEntryTimeSet = pdFALSE;
|
|
TimeOut_t xTimeOut;
|
|
int8_t *pcOriginalReadPosition;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* Check the pointer is not NULL. */
|
|
configASSERT((pxQueue));
|
|
|
|
/* The buffer into which data is received can only be NULL if the data size
|
|
is zero (so no data is copied into the buffer. */
|
|
configASSERT(!(((pvBuffer) == NULL) && ((pxQueue)->uxItemSize != (UBaseType_t)0U)));
|
|
|
|
/* Cannot block if the scheduler is suspended. */
|
|
#if ((INCLUDE_xTaskGetSchedulerState == 1) || (configUSE_TIMERS == 1))
|
|
{ configASSERT(!((xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) && (xTicksToWait != 0))); }
|
|
#endif
|
|
|
|
/*lint -save -e904 This function relaxes the coding standard somewhat to
|
|
allow return statements within the function itself. This is done in the
|
|
interest of execution time efficiency. */
|
|
for (;;) {
|
|
taskENTER_CRITICAL();
|
|
{
|
|
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
|
|
|
/* Is there data in the queue now? To be running the calling task
|
|
must be the highest priority task wanting to access the queue. */
|
|
if (uxMessagesWaiting > (UBaseType_t)0) {
|
|
/* Remember the read position so it can be reset after the data
|
|
is read from the queue as this function is only peeking the
|
|
data, not removing it. */
|
|
pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
|
|
|
|
prvCopyDataFromQueue(pxQueue, pvBuffer);
|
|
traceQUEUE_PEEK(pxQueue);
|
|
|
|
/* The data is not being removed, so reset the read pointer. */
|
|
pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
|
|
|
|
/* The data is being left in the queue, so see if there are
|
|
any other tasks waiting for the data. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority than this task. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
} else {
|
|
if (xTicksToWait == (TickType_t)0) {
|
|
/* The queue was empty and no block time is specified (or
|
|
the block time has expired) so leave now. */
|
|
taskEXIT_CRITICAL();
|
|
traceQUEUE_PEEK_FAILED(pxQueue);
|
|
return errQUEUE_EMPTY;
|
|
} else if (xEntryTimeSet == pdFALSE) {
|
|
/* The queue was empty and a block time was specified so
|
|
configure the timeout structure ready to enter the blocked
|
|
state. */
|
|
vTaskInternalSetTimeOutState(&xTimeOut);
|
|
xEntryTimeSet = pdTRUE;
|
|
} else {
|
|
/* Entry time was already set. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Interrupts and other tasks can send to and receive from the queue
|
|
now the critical section has been exited. */
|
|
|
|
vTaskSuspendAll();
|
|
prvLockQueue(pxQueue);
|
|
|
|
/* Update the timeout state to see if it has expired yet. */
|
|
if (xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) == pdFALSE) {
|
|
/* Timeout has not expired yet, check to see if there is data in the
|
|
queue now, and if not enter the Blocked state to wait for data. */
|
|
if (prvIsQueueEmpty(pxQueue) != pdFALSE) {
|
|
traceBLOCKING_ON_QUEUE_PEEK(pxQueue);
|
|
vTaskPlaceOnEventList(&(pxQueue->xTasksWaitingToReceive), xTicksToWait);
|
|
prvUnlockQueue(pxQueue);
|
|
if (xTaskResumeAll() == pdFALSE) {
|
|
portYIELD_WITHIN_API();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
/* There is data in the queue now, so don't enter the blocked
|
|
state, instead return to try and obtain the data. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
}
|
|
} else {
|
|
/* The timeout has expired. If there is still no data in the queue
|
|
exit, otherwise go back and try to read the data again. */
|
|
prvUnlockQueue(pxQueue);
|
|
(void)xTaskResumeAll();
|
|
|
|
if (prvIsQueueEmpty(pxQueue) != pdFALSE) {
|
|
traceQUEUE_PEEK_FAILED(pxQueue);
|
|
return errQUEUE_EMPTY;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
} /*lint -restore */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueReceiveFromISR(QueueHandle_t xQueue, void *const pvBuffer, BaseType_t *const pxHigherPriorityTaskWoken) {
|
|
BaseType_t xReturn;
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
configASSERT(!((pvBuffer == NULL) && (pxQueue->uxItemSize != (UBaseType_t)0U)));
|
|
|
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
|
above the maximum system call priority are kept permanently enabled, even
|
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
|
assigned a priority above the configured maximum system call priority.
|
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
that have been assigned a priority at or (logically) below the maximum
|
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
More information (albeit Cortex-M specific) is provided on the following
|
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{
|
|
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
|
|
|
/* Cannot block in an ISR, so check there is data available. */
|
|
if (uxMessagesWaiting > (UBaseType_t)0) {
|
|
const int8_t cRxLock = pxQueue->cRxLock;
|
|
|
|
traceQUEUE_RECEIVE_FROM_ISR(pxQueue);
|
|
|
|
prvCopyDataFromQueue(pxQueue, pvBuffer);
|
|
pxQueue->uxMessagesWaiting = uxMessagesWaiting - (UBaseType_t)1;
|
|
|
|
/* If the queue is locked the event list will not be modified.
|
|
Instead update the lock count so the task that unlocks the queue
|
|
will know that an ISR has removed data while the queue was
|
|
locked. */
|
|
if (cRxLock == queueUNLOCKED) {
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)) != pdFALSE) {
|
|
/* The task waiting has a higher priority than us so
|
|
force a context switch. */
|
|
if (pxHigherPriorityTaskWoken != NULL) {
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
/* Increment the lock count so the task that unlocks the queue
|
|
knows that data was removed while it was locked. */
|
|
pxQueue->cRxLock = (int8_t)(cRxLock + 1);
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
} else {
|
|
xReturn = pdFAIL;
|
|
traceQUEUE_RECEIVE_FROM_ISR_FAILED(pxQueue);
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueuePeekFromISR(QueueHandle_t xQueue, void *const pvBuffer) {
|
|
BaseType_t xReturn;
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
int8_t *pcOriginalReadPosition;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
configASSERT(!((pvBuffer == NULL) && (pxQueue->uxItemSize != (UBaseType_t)0U)));
|
|
configASSERT(pxQueue->uxItemSize != 0); /* Can't peek a semaphore. */
|
|
|
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
|
above the maximum system call priority are kept permanently enabled, even
|
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
|
assigned a priority above the configured maximum system call priority.
|
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
that have been assigned a priority at or (logically) below the maximum
|
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
More information (albeit Cortex-M specific) is provided on the following
|
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{
|
|
/* Cannot block in an ISR, so check there is data available. */
|
|
if (pxQueue->uxMessagesWaiting > (UBaseType_t)0) {
|
|
traceQUEUE_PEEK_FROM_ISR(pxQueue);
|
|
|
|
/* Remember the read position so it can be reset as nothing is
|
|
actually being removed from the queue. */
|
|
pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
|
|
prvCopyDataFromQueue(pxQueue, pvBuffer);
|
|
pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
|
|
|
|
xReturn = pdPASS;
|
|
} else {
|
|
xReturn = pdFAIL;
|
|
traceQUEUE_PEEK_FROM_ISR_FAILED(pxQueue);
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
UBaseType_t uxQueueMessagesWaiting(const QueueHandle_t xQueue) {
|
|
UBaseType_t uxReturn;
|
|
|
|
configASSERT(xQueue);
|
|
|
|
taskENTER_CRITICAL();
|
|
{ uxReturn = ((Queue_t *)xQueue)->uxMessagesWaiting; }
|
|
taskEXIT_CRITICAL();
|
|
|
|
return uxReturn;
|
|
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
UBaseType_t uxQueueSpacesAvailable(const QueueHandle_t xQueue) {
|
|
UBaseType_t uxReturn;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
|
|
taskENTER_CRITICAL();
|
|
{ uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting; }
|
|
taskEXIT_CRITICAL();
|
|
|
|
return uxReturn;
|
|
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
UBaseType_t uxQueueMessagesWaitingFromISR(const QueueHandle_t xQueue) {
|
|
UBaseType_t uxReturn;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
uxReturn = pxQueue->uxMessagesWaiting;
|
|
|
|
return uxReturn;
|
|
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vQueueDelete(QueueHandle_t xQueue) {
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
traceQUEUE_DELETE(pxQueue);
|
|
|
|
#if (configQUEUE_REGISTRY_SIZE > 0)
|
|
{ vQueueUnregisterQueue(pxQueue); }
|
|
#endif
|
|
|
|
#if ((configSUPPORT_DYNAMIC_ALLOCATION == 1) && (configSUPPORT_STATIC_ALLOCATION == 0))
|
|
{
|
|
/* The queue can only have been allocated dynamically - free it
|
|
again. */
|
|
vPortFree(pxQueue);
|
|
}
|
|
#elif ((configSUPPORT_DYNAMIC_ALLOCATION == 1) && (configSUPPORT_STATIC_ALLOCATION == 1))
|
|
{
|
|
/* The queue could have been allocated statically or dynamically, so
|
|
check before attempting to free the memory. */
|
|
if (pxQueue->ucStaticallyAllocated == (uint8_t)pdFALSE) {
|
|
vPortFree(pxQueue);
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#else
|
|
{
|
|
/* The queue must have been statically allocated, so is not going to be
|
|
deleted. Avoid compiler warnings about the unused parameter. */
|
|
(void)pxQueue;
|
|
}
|
|
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_TRACE_FACILITY == 1)
|
|
|
|
UBaseType_t uxQueueGetQueueNumber(QueueHandle_t xQueue) { return ((Queue_t *)xQueue)->uxQueueNumber; }
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_TRACE_FACILITY == 1)
|
|
|
|
void vQueueSetQueueNumber(QueueHandle_t xQueue, UBaseType_t uxQueueNumber) { ((Queue_t *)xQueue)->uxQueueNumber = uxQueueNumber; }
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_TRACE_FACILITY == 1)
|
|
|
|
uint8_t ucQueueGetQueueType(QueueHandle_t xQueue) { return ((Queue_t *)xQueue)->ucQueueType; }
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_MUTEXES == 1)
|
|
|
|
static UBaseType_t prvGetDisinheritPriorityAfterTimeout(const Queue_t *const pxQueue) {
|
|
UBaseType_t uxHighestPriorityOfWaitingTasks;
|
|
|
|
/* If a task waiting for a mutex causes the mutex holder to inherit a
|
|
priority, but the waiting task times out, then the holder should
|
|
disinherit the priority - but only down to the highest priority of any
|
|
other tasks that are waiting for the same mutex. For this purpose,
|
|
return the priority of the highest priority task that is waiting for the
|
|
mutex. */
|
|
if (listCURRENT_LIST_LENGTH(&(pxQueue->xTasksWaitingToReceive)) > 0U) {
|
|
uxHighestPriorityOfWaitingTasks = (UBaseType_t)configMAX_PRIORITIES - (UBaseType_t)listGET_ITEM_VALUE_OF_HEAD_ENTRY(&(pxQueue->xTasksWaitingToReceive));
|
|
} else {
|
|
uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
|
|
}
|
|
|
|
return uxHighestPriorityOfWaitingTasks;
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static BaseType_t prvCopyDataToQueue(Queue_t *const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition) {
|
|
BaseType_t xReturn = pdFALSE;
|
|
UBaseType_t uxMessagesWaiting;
|
|
|
|
/* This function is called from a critical section. */
|
|
|
|
uxMessagesWaiting = pxQueue->uxMessagesWaiting;
|
|
|
|
if (pxQueue->uxItemSize == (UBaseType_t)0) {
|
|
#if (configUSE_MUTEXES == 1)
|
|
{
|
|
if (pxQueue->uxQueueType == queueQUEUE_IS_MUTEX) {
|
|
/* The mutex is no longer being held. */
|
|
xReturn = xTaskPriorityDisinherit(pxQueue->u.xSemaphore.xMutexHolder);
|
|
pxQueue->u.xSemaphore.xMutexHolder = NULL;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_MUTEXES */
|
|
} else if (xPosition == queueSEND_TO_BACK) {
|
|
if (pvItemToQueue) {
|
|
(void)memcpy(
|
|
(void *)pxQueue->pcWriteTo, pvItemToQueue,
|
|
(size_t)pxQueue->uxItemSize); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to
|
|
memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
|
|
}
|
|
pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
|
|
if (pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
|
|
{
|
|
pxQueue->pcWriteTo = pxQueue->pcHead;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
(void)memcpy((void *)pxQueue->u.xQueue.pcReadFrom, pvItemToQueue,
|
|
(size_t)pxQueue->uxItemSize); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no
|
|
alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
|
|
pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
|
|
if (pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
|
|
{
|
|
pxQueue->u.xQueue.pcReadFrom = (pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize);
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
if (xPosition == queueOVERWRITE) {
|
|
if (uxMessagesWaiting > (UBaseType_t)0) {
|
|
/* An item is not being added but overwritten, so subtract
|
|
one from the recorded number of items in the queue so when
|
|
one is added again below the number of recorded items remains
|
|
correct. */
|
|
--uxMessagesWaiting;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
pxQueue->uxMessagesWaiting = uxMessagesWaiting + (UBaseType_t)1;
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvCopyDataFromQueue(Queue_t *const pxQueue, void *const pvBuffer) {
|
|
if (pxQueue->uxItemSize != (UBaseType_t)0) {
|
|
pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
|
|
if (pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
|
|
{
|
|
pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
(void)memcpy(
|
|
(void *)pvBuffer, (void *)pxQueue->u.xQueue.pcReadFrom,
|
|
(size_t)pxQueue->uxItemSize); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to
|
|
memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvUnlockQueue(Queue_t *const pxQueue) {
|
|
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
|
|
|
|
/* The lock counts contains the number of extra data items placed or
|
|
removed from the queue while the queue was locked. When a queue is
|
|
locked items can be added or removed, but the event lists cannot be
|
|
updated. */
|
|
taskENTER_CRITICAL();
|
|
{
|
|
int8_t cTxLock = pxQueue->cTxLock;
|
|
|
|
/* See if data was added to the queue while it was locked. */
|
|
while (cTxLock > queueLOCKED_UNMODIFIED) {
|
|
/* Data was posted while the queue was locked. Are any tasks
|
|
blocked waiting for data to become available? */
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
{
|
|
if (pxQueue->pxQueueSetContainer != NULL) {
|
|
if (prvNotifyQueueSetContainer(pxQueue) != pdFALSE) {
|
|
/* The queue is a member of a queue set, and posting to
|
|
the queue set caused a higher priority task to unblock.
|
|
A context switch is required. */
|
|
vTaskMissedYield();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
/* Tasks that are removed from the event list will get
|
|
added to the pending ready list as the scheduler is still
|
|
suspended. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority so record that a
|
|
context switch is required. */
|
|
vTaskMissedYield();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#else /* configUSE_QUEUE_SETS */
|
|
{
|
|
/* Tasks that are removed from the event list will get added to
|
|
the pending ready list as the scheduler is still suspended. */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority so record that
|
|
a context switch is required. */
|
|
vTaskMissedYield();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
|
|
--cTxLock;
|
|
}
|
|
|
|
pxQueue->cTxLock = queueUNLOCKED;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Do the same for the Rx lock. */
|
|
taskENTER_CRITICAL();
|
|
{
|
|
int8_t cRxLock = pxQueue->cRxLock;
|
|
|
|
while (cRxLock > queueLOCKED_UNMODIFIED) {
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)) != pdFALSE) {
|
|
vTaskMissedYield();
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
--cRxLock;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
pxQueue->cRxLock = queueUNLOCKED;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static BaseType_t prvIsQueueEmpty(const Queue_t *pxQueue) {
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if (pxQueue->uxMessagesWaiting == (UBaseType_t)0) {
|
|
xReturn = pdTRUE;
|
|
} else {
|
|
xReturn = pdFALSE;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueIsQueueEmptyFromISR(const QueueHandle_t xQueue) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
if (pxQueue->uxMessagesWaiting == (UBaseType_t)0) {
|
|
xReturn = pdTRUE;
|
|
} else {
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
return xReturn;
|
|
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static BaseType_t prvIsQueueFull(const Queue_t *pxQueue) {
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if (pxQueue->uxMessagesWaiting == pxQueue->uxLength) {
|
|
xReturn = pdTRUE;
|
|
} else {
|
|
xReturn = pdFALSE;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueIsQueueFullFromISR(const QueueHandle_t xQueue) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
configASSERT(pxQueue);
|
|
if (pxQueue->uxMessagesWaiting == pxQueue->uxLength) {
|
|
xReturn = pdTRUE;
|
|
} else {
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
return xReturn;
|
|
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_CO_ROUTINES == 1)
|
|
|
|
BaseType_t xQueueCRSend(QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* If the queue is already full we may have to block. A critical section
|
|
is required to prevent an interrupt removing something from the queue
|
|
between the check to see if the queue is full and blocking on the queue. */
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if (prvIsQueueFull(pxQueue) != pdFALSE) {
|
|
/* The queue is full - do we want to block or just leave without
|
|
posting? */
|
|
if (xTicksToWait > (TickType_t)0) {
|
|
/* As this is called from a coroutine we cannot block directly, but
|
|
return indicating that we need to block. */
|
|
vCoRoutineAddToDelayedList(xTicksToWait, &(pxQueue->xTasksWaitingToSend));
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_BLOCKED;
|
|
} else {
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_FULL;
|
|
}
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if (pxQueue->uxMessagesWaiting < pxQueue->uxLength) {
|
|
/* There is room in the queue, copy the data into the queue. */
|
|
prvCopyDataToQueue(pxQueue, pvItemToQueue, queueSEND_TO_BACK);
|
|
xReturn = pdPASS;
|
|
|
|
/* Were any co-routines waiting for data to become available? */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
/* In this instance the co-routine could be placed directly
|
|
into the ready list as we are within a critical section.
|
|
Instead the same pending ready list mechanism is used as if
|
|
the event were caused from within an interrupt. */
|
|
if (xCoRoutineRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The co-routine waiting has a higher priority so record
|
|
that a yield might be appropriate. */
|
|
xReturn = errQUEUE_YIELD;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
xReturn = errQUEUE_FULL;
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_CO_ROUTINES == 1)
|
|
|
|
BaseType_t xQueueCRReceive(QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* If the queue is already empty we may have to block. A critical section
|
|
is required to prevent an interrupt adding something to the queue
|
|
between the check to see if the queue is empty and blocking on the queue. */
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if (pxQueue->uxMessagesWaiting == (UBaseType_t)0) {
|
|
/* There are no messages in the queue, do we want to block or just
|
|
leave with nothing? */
|
|
if (xTicksToWait > (TickType_t)0) {
|
|
/* As this is a co-routine we cannot block directly, but return
|
|
indicating that we need to block. */
|
|
vCoRoutineAddToDelayedList(xTicksToWait, &(pxQueue->xTasksWaitingToReceive));
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_BLOCKED;
|
|
} else {
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_FULL;
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if (pxQueue->uxMessagesWaiting > (UBaseType_t)0) {
|
|
/* Data is available from the queue. */
|
|
pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
|
|
if (pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail) {
|
|
pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
--(pxQueue->uxMessagesWaiting);
|
|
(void)memcpy((void *)pvBuffer, (void *)pxQueue->u.xQueue.pcReadFrom, (unsigned)pxQueue->uxItemSize);
|
|
|
|
xReturn = pdPASS;
|
|
|
|
/* Were any co-routines waiting for space to become available? */
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)) == pdFALSE) {
|
|
/* In this instance the co-routine could be placed directly
|
|
into the ready list as we are within a critical section.
|
|
Instead the same pending ready list mechanism is used as if
|
|
the event were caused from within an interrupt. */
|
|
if (xCoRoutineRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)) != pdFALSE) {
|
|
xReturn = errQUEUE_YIELD;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
xReturn = pdFAIL;
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_CO_ROUTINES == 1)
|
|
|
|
BaseType_t xQueueCRSendFromISR(QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken) {
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* Cannot block within an ISR so if there is no space on the queue then
|
|
exit without doing anything. */
|
|
if (pxQueue->uxMessagesWaiting < pxQueue->uxLength) {
|
|
prvCopyDataToQueue(pxQueue, pvItemToQueue, queueSEND_TO_BACK);
|
|
|
|
/* We only want to wake one co-routine per ISR, so check that a
|
|
co-routine has not already been woken. */
|
|
if (xCoRoutinePreviouslyWoken == pdFALSE) {
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xCoRoutineRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE) {
|
|
return pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
return xCoRoutinePreviouslyWoken;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_CO_ROUTINES == 1)
|
|
|
|
BaseType_t xQueueCRReceiveFromISR(QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* We cannot block from an ISR, so check there is data available. If
|
|
not then just leave without doing anything. */
|
|
if (pxQueue->uxMessagesWaiting > (UBaseType_t)0) {
|
|
/* Copy the data from the queue. */
|
|
pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
|
|
if (pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail) {
|
|
pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
--(pxQueue->uxMessagesWaiting);
|
|
(void)memcpy((void *)pvBuffer, (void *)pxQueue->u.xQueue.pcReadFrom, (unsigned)pxQueue->uxItemSize);
|
|
|
|
if ((*pxCoRoutineWoken) == pdFALSE) {
|
|
if (listLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)) == pdFALSE) {
|
|
if (xCoRoutineRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)) != pdFALSE) {
|
|
*pxCoRoutineWoken = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
} else {
|
|
xReturn = pdFAIL;
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configQUEUE_REGISTRY_SIZE > 0)
|
|
|
|
void vQueueAddToRegistry(QueueHandle_t xQueue, const char *pcQueueName) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
{
|
|
UBaseType_t ux;
|
|
|
|
/* See if there is an empty space in the registry. A NULL name denotes
|
|
a free slot. */
|
|
for (ux = (UBaseType_t)0U; ux < (UBaseType_t)configQUEUE_REGISTRY_SIZE; ux++) {
|
|
if (xQueueRegistry[ux].pcQueueName == NULL) {
|
|
/* Store the information on this queue. */
|
|
xQueueRegistry[ux].pcQueueName = pcQueueName;
|
|
xQueueRegistry[ux].xHandle = xQueue;
|
|
|
|
traceQUEUE_REGISTRY_ADD(xQueue, pcQueueName);
|
|
break;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* configQUEUE_REGISTRY_SIZE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configQUEUE_REGISTRY_SIZE > 0)
|
|
|
|
const char *pcQueueGetName(QueueHandle_t xQueue) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
{
|
|
UBaseType_t ux;
|
|
const char *pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
|
/* Note there is nothing here to protect against another task adding or
|
|
removing entries from the registry while it is being searched. */
|
|
for (ux = (UBaseType_t)0U; ux < (UBaseType_t)configQUEUE_REGISTRY_SIZE; ux++) {
|
|
if (xQueueRegistry[ux].xHandle == xQueue) {
|
|
pcReturn = xQueueRegistry[ux].pcQueueName;
|
|
break;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
return pcReturn;
|
|
} /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
|
|
|
|
#endif /* configQUEUE_REGISTRY_SIZE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configQUEUE_REGISTRY_SIZE > 0)
|
|
|
|
void vQueueUnregisterQueue(QueueHandle_t xQueue) {
|
|
UBaseType_t ux;
|
|
|
|
/* See if the handle of the queue being unregistered in actually in the
|
|
registry. */
|
|
for (ux = (UBaseType_t)0U; ux < (UBaseType_t)configQUEUE_REGISTRY_SIZE; ux++) {
|
|
if (xQueueRegistry[ux].xHandle == xQueue) {
|
|
/* Set the name to NULL to show that this slot if free again. */
|
|
xQueueRegistry[ux].pcQueueName = NULL;
|
|
|
|
/* Set the handle to NULL to ensure the same queue handle cannot
|
|
appear in the registry twice if it is added, removed, then
|
|
added again. */
|
|
xQueueRegistry[ux].xHandle = (QueueHandle_t)0;
|
|
break;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
|
|
|
#endif /* configQUEUE_REGISTRY_SIZE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_TIMERS == 1)
|
|
|
|
void vQueueWaitForMessageRestricted(QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely) {
|
|
Queue_t *const pxQueue = xQueue;
|
|
|
|
/* This function should not be called by application code hence the
|
|
'Restricted' in its name. It is not part of the public API. It is
|
|
designed for use by kernel code, and has special calling requirements.
|
|
It can result in vListInsert() being called on a list that can only
|
|
possibly ever have one item in it, so the list will be fast, but even
|
|
so it should be called with the scheduler locked and not from a critical
|
|
section. */
|
|
|
|
/* Only do anything if there are no messages in the queue. This function
|
|
will not actually cause the task to block, just place it on a blocked
|
|
list. It will not block until the scheduler is unlocked - at which
|
|
time a yield will be performed. If an item is added to the queue while
|
|
the queue is locked, and the calling task blocks on the queue, then the
|
|
calling task will be immediately unblocked when the queue is unlocked. */
|
|
prvLockQueue(pxQueue);
|
|
if (pxQueue->uxMessagesWaiting == (UBaseType_t)0U) {
|
|
/* There is nothing in the queue, block for the specified period. */
|
|
vTaskPlaceOnEventListRestricted(&(pxQueue->xTasksWaitingToReceive), xTicksToWait, xWaitIndefinitely);
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
prvUnlockQueue(pxQueue);
|
|
}
|
|
|
|
#endif /* configUSE_TIMERS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ((configUSE_QUEUE_SETS == 1) && (configSUPPORT_DYNAMIC_ALLOCATION == 1))
|
|
|
|
QueueSetHandle_t xQueueCreateSet(const UBaseType_t uxEventQueueLength) {
|
|
QueueSetHandle_t pxQueue;
|
|
|
|
pxQueue = xQueueGenericCreate(uxEventQueueLength, (UBaseType_t)sizeof(Queue_t *), queueQUEUE_TYPE_SET);
|
|
|
|
return pxQueue;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
|
|
BaseType_t xQueueAddToSet(QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet) {
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if (((Queue_t *)xQueueOrSemaphore)->pxQueueSetContainer != NULL) {
|
|
/* Cannot add a queue/semaphore to more than one queue set. */
|
|
xReturn = pdFAIL;
|
|
} else if (((Queue_t *)xQueueOrSemaphore)->uxMessagesWaiting != (UBaseType_t)0) {
|
|
/* Cannot add a queue/semaphore to a queue set if there are already
|
|
items in the queue/semaphore. */
|
|
xReturn = pdFAIL;
|
|
} else {
|
|
((Queue_t *)xQueueOrSemaphore)->pxQueueSetContainer = xQueueSet;
|
|
xReturn = pdPASS;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
|
|
BaseType_t xQueueRemoveFromSet(QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet) {
|
|
BaseType_t xReturn;
|
|
Queue_t *const pxQueueOrSemaphore = (Queue_t *)xQueueOrSemaphore;
|
|
|
|
if (pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet) {
|
|
/* The queue was not a member of the set. */
|
|
xReturn = pdFAIL;
|
|
} else if (pxQueueOrSemaphore->uxMessagesWaiting != (UBaseType_t)0) {
|
|
/* It is dangerous to remove a queue from a set when the queue is
|
|
not empty because the queue set will still hold pending events for
|
|
the queue. */
|
|
xReturn = pdFAIL;
|
|
} else {
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* The queue is no longer contained in the set. */
|
|
pxQueueOrSemaphore->pxQueueSetContainer = NULL;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
xReturn = pdPASS;
|
|
}
|
|
|
|
return xReturn;
|
|
} /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
|
|
QueueSetMemberHandle_t xQueueSelectFromSet(QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait) {
|
|
QueueSetMemberHandle_t xReturn = NULL;
|
|
|
|
(void)xQueueReceive((QueueHandle_t)xQueueSet, &xReturn, xTicksToWait); /*lint !e961 Casting from one typedef to another is not redundant. */
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
|
|
QueueSetMemberHandle_t xQueueSelectFromSetFromISR(QueueSetHandle_t xQueueSet) {
|
|
QueueSetMemberHandle_t xReturn = NULL;
|
|
|
|
(void)xQueueReceiveFromISR((QueueHandle_t)xQueueSet, &xReturn, NULL); /*lint !e961 Casting from one typedef to another is not redundant. */
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
|
|
static BaseType_t prvNotifyQueueSetContainer(const Queue_t *const pxQueue) {
|
|
Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer;
|
|
BaseType_t xReturn = pdFALSE;
|
|
|
|
/* This function must be called form a critical section. */
|
|
|
|
configASSERT(pxQueueSetContainer);
|
|
configASSERT(pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength);
|
|
|
|
if (pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength) {
|
|
const int8_t cTxLock = pxQueueSetContainer->cTxLock;
|
|
|
|
traceQUEUE_SEND(pxQueueSetContainer);
|
|
|
|
/* The data copied is the handle of the queue that contains data. */
|
|
xReturn = prvCopyDataToQueue(pxQueueSetContainer, &pxQueue, queueSEND_TO_BACK);
|
|
|
|
if (cTxLock == queueUNLOCKED) {
|
|
if (listLIST_IS_EMPTY(&(pxQueueSetContainer->xTasksWaitingToReceive)) == pdFALSE) {
|
|
if (xTaskRemoveFromEventList(&(pxQueueSetContainer->xTasksWaitingToReceive)) != pdFALSE) {
|
|
/* The task waiting has a higher priority. */
|
|
xReturn = pdTRUE;
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
} else {
|
|
pxQueueSetContainer->cTxLock = (int8_t)(cTxLock + 1);
|
|
}
|
|
} else {
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|