1
0
forked from me/IronOS
Files
IronOS/source/Core/BSP/Magic/IRQ.cpp
Ben V. Brown c56772a779 Slow down I2C
2022-04-18 20:09:07 +10:00

209 lines
7.0 KiB
C++

/*
* IRQ.c
*
* Created on: 30 May 2020
* Author: Ralim
*/
#include "IRQ.h"
#include "Pins.h"
#include "configuration.h"
#include "expMovingAverage.h"
extern "C" {
#include "bflb_platform.h"
#include "bl702_adc.h"
#include "bl702_glb.h"
#include "bl702_pwm.h"
#include "bl702_timer.h"
#include "hal_adc.h"
#include "hal_clock.h"
#include "hal_pwm.h"
#include "hal_timer.h"
}
#define ADC_Filter_Weight 32
expMovingAverage<uint16_t, ADC_Filter_Weight> ADC_Vin;
expMovingAverage<uint16_t, ADC_Filter_Weight> ADC_Temp;
expMovingAverage<uint16_t, ADC_Filter_Weight> ADC_Tip;
void adc_fifo_irq(void) {
if (ADC_GetIntStatus(ADC_INT_FIFO_READY) == SET) {
// Read out all entries in the fifo
const uint8_t cnt = ADC_Get_FIFO_Count();
for (uint8_t i = 0; i < cnt; i++) {
const uint32_t reading = ADC_Read_FIFO();
// As per manual, 26 bit reading; lowest 16 are the ADC
uint16_t sample = reading & 0xFFFF;
uint8_t source = (reading >> 21) & 0b11111;
switch (source) {
case TMP36_ADC_CHANNEL:
ADC_Temp.update(sample);
break;
case TIP_TEMP_ADC_CHANNEL:
ADC_Tip.update(sample);
break;
case VIN_ADC_CHANNEL:
ADC_Vin.update(sample);
break;
case 0: // 0 turns up when an invalid reading is taken
break;
default:
// MSG((char *)"ADC Invalid chan %d\r\n", source);
break;
}
}
// MSG((char *)"ADC Reading %d %d %d\r\n", ADC_Temp.average(), ADC_Vin.average(), ADC_Tip.average());
// Clear IRQ
ADC_IntClr(ADC_INT_FIFO_READY);
}
}
const ADC_Chan_Type adc_tip_pos_chans[] = {TIP_TEMP_ADC_CHANNEL};
const ADC_Chan_Type adc_tip_neg_chans[] = {ADC_CHAN_GND};
static_assert(sizeof(adc_tip_pos_chans) == sizeof(adc_tip_neg_chans));
// TODO Do we need to do the stop+start here or can we hot-write the config
void start_adc_tip(void) {
// Reconfigure the ADC to measure the tip temp
// Single channel input mode
// The ADC has a 32 sample FiFo; we set this up to fire and interrupt at 16 samples
// Then using that IRQ to know that sampling is done and can be stored
ADC_Stop();
ADC_Scan_Channel_Config(adc_tip_pos_chans, adc_tip_neg_chans, 1, ENABLE);
ADC_Start();
}
const ADC_Chan_Type adc_misc_pos_chans[] = {TMP36_ADC_CHANNEL, VIN_ADC_CHANNEL};
const ADC_Chan_Type adc_misc_neg_chans[] = {ADC_CHAN_GND, ADC_CHAN_GND};
static_assert(sizeof(adc_misc_pos_chans) == sizeof(adc_misc_neg_chans));
void start_adc_misc(void) {
// Reconfigure the ADC to measure all other inputs in scan mode when we are not measuring the tip
ADC_Stop();
ADC_Scan_Channel_Config(adc_misc_pos_chans, adc_misc_neg_chans, 2, ENABLE);
ADC_Start();
}
static bool fastPWM;
static void switchToSlowPWM(void);
static void switchToFastPWM(void);
volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 200;
volatile bool lastPeriodWasFast = false;
// Timer 0 is used to co-ordinate the ADC and the output PWM
void timer0_irq_callback(struct device *dev, void *args, uint32_t size, uint32_t state) {
if (state == TIMER_EVENT_COMP0) {
// MSG((char *)"timer event comp0! \r\n");
// Used to start the ADC
start_adc_tip();
} else if (state == TIMER_EVENT_COMP1) {
// MSG((char *)"timer event comp1! \r\n");
// Used to turn tip off at set point in cycle
} else if (state == TIMER_EVENT_COMP2) {
start_adc_misc();
// This occurs at timer rollover, so if we want to turn on the output PWM; we do so
if (PWMSafetyTimer) {
PWMSafetyTimer--;
if (lastPeriodWasFast != fastPWM) {
if (fastPWM) {
switchToFastPWM();
} else {
switchToSlowPWM();
}
}
// Update trigger for the end point of the PWM cycle
if (pendingPWM > 0) {
TIMER_SetCompValue(TIMER_CH0, TIMER_COMP_ID_1, pendingPWM - 1);
// Turn on output
} else {
TIMER_SetCompValue(TIMER_CH0, TIMER_COMP_ID_1, 0);
// Leave output off
}
}
// unblock the PID controller thread
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
if (pidTaskNotification) {
vTaskNotifyGiveFromISR(pidTaskNotification, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}
// MSG((char *)"timer event comp2! \r\n");
}
}
void switchToFastPWM(void) {
fastPWM = true;
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
TIMER_SetCompValue(TIMER_CH0, TIMER_COMP_ID_2, totalPWM);
// ~10Hz
TIMER_SetCompValue(TIMER_CH0, TIMER_COMP_ID_0, powerPWM + holdoffTicks);
// Set divider to 11
uint32_t tmpVal = BL_RD_REG(TIMER_BASE, TIMER_TCDR);
tmpVal = BL_SET_REG_BITS_VAL(tmpVal, TIMER_TCDR2, 11);
BL_WR_REG(TIMER_BASE, TIMER_TCDR, tmpVal);
}
void switchToSlowPWM(void) {
// 5Hz
fastPWM = false;
totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2;
TIMER_SetCompValue(TIMER_CH0, TIMER_COMP_ID_2, totalPWM);
// Adjust ADC
TIMER_SetCompValue(TIMER_CH0, TIMER_COMP_ID_0, powerPWM + (holdoffTicks / 2));
// Set divider to 22
uint32_t tmpVal = BL_RD_REG(TIMER_BASE, TIMER_TCDR);
tmpVal = BL_SET_REG_BITS_VAL(tmpVal, TIMER_TCDR2, 22);
BL_WR_REG(TIMER_BASE, TIMER_TCDR, tmpVal);
}
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
PWMSafetyTimer = 10; // This is decremented in the handler for PWM so that the tip pwm is
// disabled if the PID task is not scheduled often enough.
pendingPWM = pulse;
fastPWM = shouldUseFastModePWM;
MSG((char *)"PWM Output %d, %d\r\n", pulse, (int)shouldUseFastModePWM);
}
extern osThreadId POWTaskHandle;
// void EXTI5_9_IRQHandler(void) {
// // #if POW_PD
// // if (RESET != exti_interrupt_flag_get(EXTI_5)) {
// // exti_interrupt_flag_clear(EXTI_5);
// // if (POWTaskHandle != nullptr) {
// // BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// // xTaskNotifyFromISR(POWTaskHandle, 1, eSetBits, &xHigherPriorityTaskWoken);
// // /* Force a context switch if xHigherPriorityTaskWoken is now set to pdTRUE.
// // The macro used to do this is dependent on the port and may be called
// // portEND_SWITCHING_ISR. */
// // portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
// // }
// // }
// // #endif
// }
bool getFUS302IRQLow() {
// Return true if the IRQ line is still held low
return false;
// return (RESET == gpio_input_bit_get(FUSB302_IRQ_GPIO_Port, FUSB302_IRQ_Pin));
}
uint16_t getADCHandleTemp(uint8_t sample) { return ADC_Temp.average() >> 1; }
uint16_t getADCVin(uint8_t sample) { return ADC_Vin.average() >> 1; }
// Returns either average or instant value. When sample is set the samples from the injected ADC are copied to the filter and then the raw reading is returned
uint16_t getTipRawTemp(uint8_t sample) { return ADC_Tip.average() >> 2; }