1
0
forked from me/IronOS
Files
IronOS/workspace/TS100/src/Setup.c
Ben V. Brown 873eb2a1e9 Move to latest HAL release trying to get I2C DMA to be more reliable, and known good point.
Cleans up some redundant calls as well to make some flash room.
2018-12-16 18:13:59 +11:00

459 lines
15 KiB
C

/*
* Setup.c
*
* Created on: 29Aug.,2017
* Author: Ben V. Brown
*/
#include "Setup.h"
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc1;
I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_rx;
DMA_HandleTypeDef hdma_i2c1_tx;
IWDG_HandleTypeDef hiwdg;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
uint16_t ADCReadings[64]; // room for 32 lots of the pair of readings
// Functions
static void SystemClock_Config(void);
static void MX_ADC1_Init(void);
static void MX_I2C1_Init(void);
static void MX_IWDG_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
static void MX_GPIO_Init(void);
static void MX_ADC2_Init(void);
void Setup_HAL() {
SystemClock_Config();
__HAL_AFIO_REMAP_SWJ_DISABLE()
;
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C1_Init();
MX_ADC1_Init();
MX_ADC2_Init();
MX_TIM3_Init();
MX_TIM2_Init();
MX_IWDG_Init();
HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint32_t*) ADCReadings, 64); // start DMA of normal readings
HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
}
// channel 0 -> temperature sensor, 1-> VIN
uint16_t getADC(uint8_t channel) {
uint32_t sum = 0;
for (uint8_t i = 0; i < 32; i++)
sum += ADCReadings[channel + (i * 2)];
return sum >> 2;
}
/** System Clock Configuration
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType =
RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM
// 2,3,4,5,6,7,12,13,14
RCC_ClkInitStruct.APB2CLKDivider =
RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection =
RCC_ADCPCLK2_DIV6; // 6 or 8 are the only non overclocked options
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}
/* ADC1 init function */
static void MX_ADC1_Init(void) {
ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig;
ADC_InjectionConfTypeDef sConfigInjected;
/**Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 2;
HAL_ADC_Init(&hadc1);
/**Configure the ADC multi-mode
*/
multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
/**Configure Regular Channel
*/
sConfig.Channel = TMP36_ADC1_CHANNEL;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Regular Channel
*/
sConfig.Channel = VIN_ADC1_CHANNEL;
sConfig.Rank = 2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Injected Channel
*/
// F in = 10.66 MHz
/*
* Injected time is 1 delay clock + (12 adc cycles*4)+4*sampletime =~217
* clocks = 0.2ms Charge time is 0.016 uS ideally So Sampling time must be >=
* 0.016uS 1/10.66MHz is 0.09uS, so 1 CLK is *should* be enough
* */
sConfigInjected.InjectedChannel = TIP_TEMP_ADC1_CHANNEL;
sConfigInjected.InjectedRank = 1;
sConfigInjected.InjectedNbrOfConversion = 4;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
sConfigInjected.AutoInjectedConv = DISABLE;
sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
sConfigInjected.InjectedOffset = 0;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.InjectedRank = 2;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedRank = 3;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedRank = 4;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
SET_BIT(hadc1.Instance->CR1, (ADC_CR1_JEOCIE)); // Enable end of injected conv irq
// Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
;
}
/* ADC2 init function */
static void MX_ADC2_Init(void) {
ADC_ChannelConfTypeDef sConfig;
ADC_InjectionConfTypeDef sConfigInjected;
/**Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 2;
HAL_ADC_Init(&hadc2);
/**Configure Regular Channel
*/
sConfig.Channel = TIP_TEMP_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = VIN_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
/**Configure Injected Channel
*/
sConfigInjected.InjectedChannel = TIP_TEMP_ADC2_CHANNEL;
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1;
sConfigInjected.InjectedNbrOfConversion = 4;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
sConfigInjected.AutoInjectedConv = DISABLE;
sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
sConfigInjected.InjectedOffset = 0;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_3;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_4;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
// Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK)
;
}
/* I2C1 init function */
static void MX_I2C1_Init(void) {
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 50000;
// OLED doesnt handle >100k when its asleep (off).
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
HAL_I2C_Init(&hi2c1);
}
/* IWDG init function */
static void MX_IWDG_Init(void) {
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
hiwdg.Init.Reload = 100;
HAL_IWDG_Init(&hiwdg);
}
/* TIM3 init function */
static void MX_TIM3_Init(void) {
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim3.Instance = TIM3;
htim3.Init.Prescaler = 4;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 100; // 10 Khz PWM freq
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 4mhz before div
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&htim3);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim3);
HAL_TIM_OC_Init(&htim3);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 50;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL);
GPIO_InitTypeDef GPIO_InitStruct;
/**TIM3 GPIO Configuration
PWM_Out_Pin ------> TIM3_CH1
*/
GPIO_InitStruct.Pin = PWM_Out_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct);
#ifdef MODEL_TS100
// Remap TIM3_CH1 to be on pB4
__HAL_AFIO_REMAP_TIM3_PARTIAL();
#else
// No re-map required
#endif
HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL);
}
/* TIM3 init function */
static void MX_TIM2_Init(void) {
/*
* We use the channel 1 to trigger the ADC at end of PWM period
* And we use the channel 4 as the PWM modulation source using Interrupts
* */
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
// Timer 2 is fairly slow as its being used to run the PWM and trigger the ADC
// in the PWM off time.
htim2.Instance = TIM2;
htim2.Init.Prescaler = 785; // pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
// The input is 1mhz after the div/4, so divide this by 785 to give around 4Hz output change rate
//Trade off is the slower the PWM output the slower we can respond and we gain temperature accuracy in settling time,
//But it increases the time delay between the heat cycle and the measurement and calculate cycle
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 255 + 60;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 4mhz before divide
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&htim2);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim2);
HAL_TIM_OC_Init(&htim2);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 255 + 50; //255 is the largest time period of the drive signal, and the 50 offsets this around 5ms afterwards
/*
* It takes 4 milliseconds for output to be stable after PWM turns off.
* Assume ADC samples in 0.5ms
* We need to set this to 100% + 4.5ms
* */
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
HAL_TIM_Base_Start_IT(&htim2);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
HAL_TIM_PWM_Start_IT(&htim2, TIM_CHANNEL_4);
HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void) {
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE()
;
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
* Free pins are configured automatically as Analog
PB0 ------> ADCx_IN8
PB1 ------> ADCx_IN9
*/
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE()
;
__HAL_RCC_GPIOA_CLK_ENABLE()
;
__HAL_RCC_GPIOB_CLK_ENABLE()
;
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
/*Configure GPIO pins : PD0 PD1 */
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure peripheral I/O remapping */
__HAL_AFIO_REMAP_PD01_ENABLE()
;
//^ remap XTAL so that pins can be analog (all input buffers off).
// reduces power consumption
/*
* Configure All pins as analog by default
*/
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 |
GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
#ifdef MODEL_TS100
GPIO_PIN_3 |
#endif
GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 |
GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 |
GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
#ifdef MODEL_TS100
/* Pull USB lines low to disable, pull down debug too*/
GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_13, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_14, GPIO_PIN_RESET);
#else
/* TS80 */
/* Leave USB lines open circuit*/
#endif
/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
GPIO_InitStruct.Pin = KEY_B_Pin | KEY_A_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OLED_RESET_Pin */
GPIO_InitStruct.Pin = OLED_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
// Pull down LCD reset
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(30);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
}