1
0
forked from me/IronOS
Files
IronOS/source/Core/Threads/GUIThread.cpp
Aaronjamt 972d2fffac Allow preheating iron during boot logo
Autostart (if enabled) _before_ showing boot logo (rather than waiting for the entire animation to finish). Only heats if the boot logo is on but not infinite (and autostart is set to heat). Heats to sleep temperature or 75*C, whichever is lower, for safety (and if the iron can get to 75* by the time the logo disappears then this really doesn't matter much). This is purely a preheat if your iron is low-powered and takes a long time to warm and so if autostart is set to heat to soldering temperature, it will start heating the rest of the way once the boot logo disappears.
2022-07-29 10:53:21 -07:00

1184 lines
40 KiB
C++

/*
* GUIThread.cpp
*
* Created on: 19 Aug 2019
* Author: ralim
*/
extern "C" {
#include "FreeRTOSConfig.h"
}
#include "BootLogo.h"
#include "Buttons.hpp"
#include "I2CBB.hpp"
#include "LIS2DH12.hpp"
#include "MMA8652FC.hpp"
#include "OLED.hpp"
#include "Settings.h"
#include "TipThermoModel.h"
#include "Translation.h"
#include "cmsis_os.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
#include "power.hpp"
#include "settingsGUI.hpp"
#include "stdlib.h"
#include "string.h"
#if POW_PD
#include "USBPD.h"
#include "pd.h"
#endif
// File local variables
extern TickType_t lastMovementTime;
extern bool heaterThermalRunaway;
extern osThreadId GUITaskHandle;
extern osThreadId MOVTaskHandle;
extern osThreadId PIDTaskHandle;
static bool shouldBeSleeping(bool inAutoStart = false);
static bool shouldShutdown();
void showWarnings();
#define MOVEMENT_INACTIVITY_TIME (60 * configTICK_RATE_HZ)
#define BUTTON_INACTIVITY_TIME (60 * configTICK_RATE_HZ)
static TickType_t lastHallEffectSleepStart = 0;
static uint16_t min(uint16_t a, uint16_t b) {
if (a > b)
return b;
else
return a;
}
void warnUser(const char *warning, const int timeout) {
OLED::clearScreen();
OLED::printWholeScreen(warning);
OLED::refresh();
waitForButtonPressOrTimeout(timeout);
}
void printVoltage() {
uint32_t volt = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
OLED::printNumber(volt / 10, 2, FontStyle::SMALL);
OLED::print(SymbolDot, FontStyle::SMALL);
OLED::printNumber(volt % 10, 1, FontStyle::SMALL);
}
void GUIDelay() {
// Called in all UI looping tasks,
// This limits the re-draw rate to the LCD and also lets the DMA run
// As the gui task can very easily fill this bus with transactions, which will
// prevent the movement detection from running
vTaskDelay(5 * TICKS_10MS);
}
void gui_drawTipTemp(bool symbol, const FontStyle font) {
// Draw tip temp handling unit conversion & tolerance near setpoint
uint32_t Temp = 0;
if (getSettingValue(SettingsOptions::TemperatureInF)) {
Temp = TipThermoModel::getTipInF();
} else {
Temp = TipThermoModel::getTipInC();
}
OLED::printNumber(Temp, 3, font); // Draw the tip temp out
if (symbol) {
if (font == FontStyle::LARGE) {
// Big font, can draw nice symbols
if (getSettingValue(SettingsOptions::TemperatureInF))
OLED::drawSymbol(0);
else
OLED::drawSymbol(1);
} else {
// Otherwise fall back to chars
if (getSettingValue(SettingsOptions::TemperatureInF))
OLED::print(SymbolDegF, FontStyle::SMALL);
else
OLED::print(SymbolDegC, FontStyle::SMALL);
}
}
}
#ifdef POW_DC
// returns true if undervoltage has occured
static bool checkVoltageForExit() {
if (!getIsPoweredByDCIN()) {
return false;
}
uint16_t v = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
// Dont check for first 2 seconds while the ADC stabilizes and the DMA fills
// the buffer
if (xTaskGetTickCount() > (TICKS_SECOND * 2)) {
if ((v < lookupVoltageLevel())) {
currentTempTargetDegC = 0;
OLED::clearScreen();
OLED::setCursor(0, 0);
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
OLED::print(translatedString(Tr->UndervoltageString), FontStyle::SMALL);
OLED::setCursor(0, 8);
OLED::print(translatedString(Tr->InputVoltageString), FontStyle::SMALL);
printVoltage();
OLED::print(SymbolVolts, FontStyle::SMALL);
} else {
OLED::print(translatedString(Tr->UVLOWarningString), FontStyle::LARGE);
}
OLED::refresh();
GUIDelay();
waitForButtonPress();
return true;
}
}
return false;
}
#endif
static void gui_drawBatteryIcon() {
#if defined(POW_PD) || defined(POW_QC)
if (!getIsPoweredByDCIN()) {
// On TS80 we replace this symbol with the voltage we are operating on
// If <9V then show single digit, if not show dual small ones vertically stacked
uint8_t V = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
if (V % 10 >= 5)
V = V / 10 + 1; // round up
else
V = V / 10;
if (V >= 10) {
int16_t xPos = OLED::getCursorX();
OLED::printNumber(V / 10, 1, FontStyle::SMALL);
OLED::setCursor(xPos, 8);
OLED::printNumber(V % 10, 1, FontStyle::SMALL);
OLED::setCursor(xPos + 12, 0); // need to reset this as if we drew a wide char
} else {
OLED::printNumber(V, 1, FontStyle::LARGE);
}
return;
}
#endif
#ifdef POW_DC
if (getSettingValue(SettingsOptions::MinDCVoltageCells)) {
// User is on a lithium battery
// we need to calculate which of the 10 levels they are on
uint8_t cellCount = getSettingValue(SettingsOptions::MinDCVoltageCells) + 2;
uint32_t cellV = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0) / cellCount;
// Should give us approx cell voltage X10
// Range is 42 -> Minimum voltage setting (systemSettings.minVoltageCells) = 9 steps therefore we will use battery 0-9
if (cellV < getSettingValue(SettingsOptions::MinVoltageCells))
cellV = getSettingValue(SettingsOptions::MinVoltageCells);
cellV -= getSettingValue(SettingsOptions::MinVoltageCells); // Should leave us a number of 0-9
if (cellV > 9)
cellV = 9;
OLED::drawBattery(cellV + 1);
} else {
OLED::drawSymbol(15); // Draw the DC Logo
}
#endif
}
static void gui_solderingTempAdjust() {
TickType_t lastChange = xTaskGetTickCount();
currentTempTargetDegC = 0; // Turn off header while adjusting temp
TickType_t autoRepeatTimer = 0;
uint8_t autoRepeatAcceleration = 0;
bool waitForRelease = false;
ButtonState buttons = getButtonState();
if (buttons != BUTTON_NONE) {
// Temp adjust entered by long-pressing F button.
waitForRelease = true;
}
for (;;) {
OLED::setCursor(0, 0);
OLED::clearScreen();
buttons = getButtonState();
if (buttons) {
if (waitForRelease) {
buttons = BUTTON_NONE;
}
lastChange = xTaskGetTickCount();
} else {
waitForRelease = false;
}
int16_t delta = 0;
switch (buttons) {
case BUTTON_NONE:
// stay
autoRepeatAcceleration = 0;
break;
case BUTTON_BOTH:
// exit
return;
break;
case BUTTON_B_LONG:
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration > PRESS_ACCEL_INTERVAL_MAX) {
delta = -getSettingValue(SettingsOptions::TempChangeLongStep);
autoRepeatTimer = xTaskGetTickCount();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_B_SHORT:
delta = -getSettingValue(SettingsOptions::TempChangeShortStep);
break;
case BUTTON_F_LONG:
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration > PRESS_ACCEL_INTERVAL_MAX) {
delta = getSettingValue(SettingsOptions::TempChangeLongStep);
autoRepeatTimer = xTaskGetTickCount();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_F_SHORT:
delta = getSettingValue(SettingsOptions::TempChangeShortStep);
break;
default:
break;
}
if ((PRESS_ACCEL_INTERVAL_MAX - autoRepeatAcceleration) < PRESS_ACCEL_INTERVAL_MIN) {
autoRepeatAcceleration = PRESS_ACCEL_INTERVAL_MAX - PRESS_ACCEL_INTERVAL_MIN;
}
// If buttons are flipped; flip the delta
if (getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled)) {
delta = -delta;
}
if (delta != 0) {
// constrain between the set temp limits, i.e. 10-450 C
int16_t newTemp = getSettingValue(SettingsOptions::SolderingTemp);
newTemp += delta;
// Round to nearest increment of delta
delta = abs(delta);
newTemp = (newTemp / delta) * delta;
if (getSettingValue(SettingsOptions::TemperatureInF)) {
if (newTemp > MAX_TEMP_F)
newTemp = MAX_TEMP_F;
if (newTemp < MIN_TEMP_F)
newTemp = MIN_TEMP_F;
} else {
if (newTemp > MAX_TEMP_C)
newTemp = MAX_TEMP_C;
if (newTemp < MIN_TEMP_C)
newTemp = MIN_TEMP_C;
}
setSettingValue(SettingsOptions::SolderingTemp, (uint16_t)newTemp);
}
if (xTaskGetTickCount() - lastChange > (TICKS_SECOND * 2))
return; // exit if user just doesn't press anything for a bit
if (OLED::getRotation()) {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? SymbolPlus : SymbolMinus, FontStyle::LARGE);
} else {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? SymbolMinus : SymbolPlus, FontStyle::LARGE);
}
OLED::print(SymbolSpace, FontStyle::LARGE);
OLED::printNumber(getSettingValue(SettingsOptions::SolderingTemp), 3, FontStyle::LARGE);
if (getSettingValue(SettingsOptions::TemperatureInF))
OLED::drawSymbol(0);
else {
OLED::drawSymbol(1);
}
OLED::print(SymbolSpace, FontStyle::LARGE);
if (OLED::getRotation()) {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? SymbolMinus : SymbolPlus, FontStyle::LARGE);
} else {
OLED::print(getSettingValue(SettingsOptions::ReverseButtonTempChangeEnabled) ? SymbolPlus : SymbolMinus, FontStyle::LARGE);
}
OLED::refresh();
GUIDelay();
}
}
static bool shouldShutdown() {
if (getSettingValue(SettingsOptions::ShutdownTime)) { // only allow shutdown exit if time > 0
if (lastMovementTime) {
if (((TickType_t)(xTaskGetTickCount() - lastMovementTime)) > (TickType_t)(getSettingValue(SettingsOptions::ShutdownTime) * TICKS_MIN)) {
return true;
}
}
if (lastHallEffectSleepStart) {
if (((TickType_t)(xTaskGetTickCount() - lastHallEffectSleepStart)) > (TickType_t)(getSettingValue(SettingsOptions::ShutdownTime) * TICKS_MIN)) {
return true;
}
}
}
if (getButtonState() == BUTTON_B_LONG) { // allow also if back button is pressed long
return true;
}
return false;
}
static int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) {
// Drop to sleep temperature and display until movement or button press
for (;;) {
// user moved or pressed a button, go back to soldering
// If in the first two seconds we disable this to let accelerometer warm up
#ifdef POW_DC
if (checkVoltageForExit())
return 1; // return non-zero on error
#endif
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = stayOff ? 0 : TipThermoModel::convertFtoC(min(getSettingValue(SettingsOptions::SleepTemp), getSettingValue(SettingsOptions::SolderingTemp)));
} else {
currentTempTargetDegC = stayOff ? 0 : min(getSettingValue(SettingsOptions::SleepTemp), getSettingValue(SettingsOptions::SolderingTemp));
}
// draw the lcd
uint16_t tipTemp;
if (getSettingValue(SettingsOptions::TemperatureInF))
tipTemp = TipThermoModel::getTipInF();
else {
tipTemp = TipThermoModel::getTipInC();
}
OLED::clearScreen();
OLED::setCursor(0, 0);
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
OLED::print(translatedString(Tr->SleepingAdvancedString), FontStyle::SMALL);
OLED::setCursor(0, 8);
OLED::print(translatedString(Tr->SleepingTipAdvancedString), FontStyle::SMALL);
OLED::printNumber(tipTemp, 3, FontStyle::SMALL);
if (getSettingValue(SettingsOptions::TemperatureInF))
OLED::print(SymbolDegF, FontStyle::SMALL);
else {
OLED::print(SymbolDegC, FontStyle::SMALL);
}
OLED::print(SymbolSpace, FontStyle::SMALL);
printVoltage();
OLED::print(SymbolVolts, FontStyle::SMALL);
} else {
OLED::print(translatedString(Tr->SleepingSimpleString), FontStyle::LARGE);
OLED::printNumber(tipTemp, 3, FontStyle::LARGE);
if (getSettingValue(SettingsOptions::TemperatureInF))
OLED::drawSymbol(0);
else {
OLED::drawSymbol(1);
}
}
OLED::refresh();
GUIDelay();
if (!shouldBeSleeping(autoStarted)) {
return 0;
}
if (shouldShutdown()) {
// shutdown
currentTempTargetDegC = 0;
return 1; // we want to exit soldering mode
}
}
return 0;
}
#ifndef NO_SLEEP_MODE
static void display_countdown(int sleepThres) {
/*
* Print seconds or minutes (if > 99 seconds) until sleep
* mode is triggered.
*/
TickType_t lastEventTime = lastButtonTime < lastMovementTime ? lastMovementTime : lastButtonTime;
TickType_t downCount = sleepThres - xTaskGetTickCount() + lastEventTime;
if (downCount > (99 * TICKS_SECOND)) {
OLED::printNumber(downCount / 60000 + 1, 2, FontStyle::SMALL);
OLED::print(SymbolMinutes, FontStyle::SMALL);
} else {
OLED::printNumber(downCount / 1000 + 1, 2, FontStyle::SMALL);
OLED::print(SymbolSeconds, FontStyle::SMALL);
}
}
static uint32_t getSleepTimeout() {
if (getSettingValue(SettingsOptions::Sensitivity) && getSettingValue(SettingsOptions::SleepTime)) {
uint32_t sleepThres = 0;
if (getSettingValue(SettingsOptions::SleepTime) < 6)
sleepThres = getSettingValue(SettingsOptions::SleepTime) * 10 * 1000;
else
sleepThres = (getSettingValue(SettingsOptions::SleepTime) - 5) * 60 * 1000;
return sleepThres;
}
return 0;
}
#endif
static bool shouldBeSleeping(bool inAutoStart) {
#ifndef NO_SLEEP_MODE
// Return true if the iron should be in sleep mode
if (getSettingValue(SettingsOptions::Sensitivity) && getSettingValue(SettingsOptions::SleepTime)) {
if (inAutoStart) {
// In auto start we are asleep until movement
if (lastMovementTime == 0 && lastButtonTime == 0) {
return true;
}
}
if (lastMovementTime > 0 || lastButtonTime > 0) {
if (((xTaskGetTickCount() - lastMovementTime) > getSleepTimeout()) && ((xTaskGetTickCount() - lastButtonTime) > getSleepTimeout())) {
return true;
}
}
}
#ifdef HALL_SENSOR
// If the hall effect sensor is enabled in the build, check if its over
// threshold, and if so then we force sleep
if (getHallSensorFitted() && lookupHallEffectThreshold()) {
int16_t hallEffectStrength = getRawHallEffect();
if (hallEffectStrength < 0)
hallEffectStrength = -hallEffectStrength;
// Have absolute value of measure of magnetic field strength
if (hallEffectStrength > lookupHallEffectThreshold()) {
if (lastHallEffectSleepStart == 0) {
lastHallEffectSleepStart = xTaskGetTickCount();
}
if ((xTaskGetTickCount() - lastHallEffectSleepStart) > TICKS_SECOND) {
return true;
}
} else {
lastHallEffectSleepStart = 0;
}
}
#endif
#endif
return false;
}
static void gui_solderingMode(uint8_t jumpToSleep) {
/*
* * Soldering (gui_solderingMode)
* -> Main loop where we draw temp, and animations
* --> User presses buttons and they goto the temperature adjust screen
* ---> Display the current setpoint temperature
* ---> Use buttons to change forward and back on temperature
* ---> Both buttons or timeout for exiting
* --> Long hold front button to enter boost mode
* ---> Just temporarily sets the system into the alternate temperature for
* PID control
* --> Long hold back button to exit
* --> Double button to exit
* --> Long hold double button to toggle key lock
*/
bool boostModeOn = false;
bool buttonsLocked = false;
if (jumpToSleep) {
if (gui_SolderingSleepingMode(jumpToSleep == 2, true) == 1) {
lastButtonTime = xTaskGetTickCount();
return; // If the function returns non-0 then exit
}
}
for (;;) {
ButtonState buttons = getButtonState();
if (buttonsLocked && (getSettingValue(SettingsOptions::LockingMode) != 0)) { // If buttons locked
switch (buttons) {
case BUTTON_NONE:
boostModeOn = false;
break;
case BUTTON_BOTH_LONG:
// Unlock buttons
buttonsLocked = false;
warnUser(translatedString(Tr->UnlockingKeysString), TICKS_SECOND);
break;
case BUTTON_F_LONG:
// if boost mode is enabled turn it on
if (getSettingValue(SettingsOptions::BoostTemp) && (getSettingValue(SettingsOptions::LockingMode) == 1)) {
boostModeOn = true;
}
break;
// fall through
case BUTTON_BOTH:
case BUTTON_B_LONG:
case BUTTON_F_SHORT:
case BUTTON_B_SHORT:
// Do nothing and display a lock warning
warnUser(translatedString(Tr->WarningKeysLockedString), TICKS_SECOND / 2);
break;
default:
break;
}
} else { // Button not locked
switch (buttons) {
case BUTTON_NONE:
// stay
boostModeOn = false;
break;
case BUTTON_BOTH:
case BUTTON_B_LONG:
return; // exit on back long hold
case BUTTON_F_LONG:
// if boost mode is enabled turn it on
if (getSettingValue(SettingsOptions::BoostTemp))
boostModeOn = true;
break;
case BUTTON_F_SHORT:
case BUTTON_B_SHORT: {
uint16_t oldTemp = getSettingValue(SettingsOptions::SolderingTemp);
gui_solderingTempAdjust(); // goto adjust temp mode
if (oldTemp != getSettingValue(SettingsOptions::SolderingTemp)) {
saveSettings(); // only save on change
}
} break;
case BUTTON_BOTH_LONG:
if (getSettingValue(SettingsOptions::LockingMode) != 0) {
// Lock buttons
buttonsLocked = true;
warnUser(translatedString(Tr->LockingKeysString), TICKS_SECOND);
}
break;
default:
break;
}
}
// else we update the screen information
OLED::clearScreen();
// Draw in the screen details
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
if (OLED::getRotation()) {
OLED::setCursor(50, 0);
} else {
OLED::setCursor(-1, 0);
}
gui_drawTipTemp(true, FontStyle::LARGE);
#ifndef NO_SLEEP_MODE
if (getSettingValue(SettingsOptions::Sensitivity) && getSettingValue(SettingsOptions::SleepTime)) {
if (OLED::getRotation()) {
OLED::setCursor(32, 0);
} else {
OLED::setCursor(47, 0);
}
display_countdown(getSleepTimeout());
}
#endif
if (boostModeOn) {
if (OLED::getRotation()) {
OLED::setCursor(38, 8);
} else {
OLED::setCursor(55, 8);
}
OLED::print(SymbolPlus, FontStyle::SMALL);
}
if (OLED::getRotation()) {
OLED::setCursor(0, 0);
} else {
OLED::setCursor(67, 0);
}
OLED::printNumber(x10WattHistory.average() / 10, 2, FontStyle::SMALL);
OLED::print(SymbolDot, FontStyle::SMALL);
OLED::printNumber(x10WattHistory.average() % 10, 1, FontStyle::SMALL);
OLED::print(SymbolWatts, FontStyle::SMALL);
if (OLED::getRotation()) {
OLED::setCursor(0, 8);
} else {
OLED::setCursor(67, 8);
}
printVoltage();
OLED::print(SymbolVolts, FontStyle::SMALL);
} else {
OLED::setCursor(0, 0);
// We switch the layout direction depending on the orientation of the oled
if (OLED::getRotation()) {
// battery
gui_drawBatteryIcon();
OLED::print(SymbolSpace, FontStyle::LARGE); // Space out gap between battery <-> temp
gui_drawTipTemp(true, FontStyle::LARGE); // Draw current tip temp
// We draw boost arrow if boosting, or else gap temp <-> heat
// indicator
if (boostModeOn)
OLED::drawSymbol(2);
else
OLED::print(SymbolSpace, FontStyle::LARGE);
// Draw heating/cooling symbols
OLED::drawHeatSymbol(X10WattsToPWM(x10WattHistory.average()));
} else {
// Draw heating/cooling symbols
OLED::drawHeatSymbol(X10WattsToPWM(x10WattHistory.average()));
// We draw boost arrow if boosting, or else gap temp <-> heat
// indicator
if (boostModeOn)
OLED::drawSymbol(2);
else
OLED::print(SymbolSpace, FontStyle::LARGE);
gui_drawTipTemp(true, FontStyle::LARGE); // Draw current tip temp
OLED::print(SymbolSpace, FontStyle::LARGE); // Space out gap between battery <-> temp
gui_drawBatteryIcon();
}
}
OLED::refresh();
// Update the setpoints for the temperature
if (boostModeOn) {
if (getSettingValue(SettingsOptions::TemperatureInF))
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::BoostTemp));
else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::BoostTemp));
}
} else {
if (getSettingValue(SettingsOptions::TemperatureInF))
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::SolderingTemp));
else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::SolderingTemp));
}
}
#ifdef POW_DC
// Undervoltage test
if (checkVoltageForExit()) {
lastButtonTime = xTaskGetTickCount();
return;
}
#endif
#ifdef ACCEL_EXITS_ON_MOVEMENT
// If the accel works in reverse where movement will cause exiting the soldering mode
if (getSettingValue(SettingsOptions::Sensitivity)) {
if (lastMovementTime) {
if (lastMovementTime > TICKS_SECOND * 10) {
// If we have moved recently; in the last second
// Then exit soldering mode
if (((TickType_t)(xTaskGetTickCount() - lastMovementTime)) < (TickType_t)(TICKS_SECOND)) {
currentTempTargetDegC = 0;
return;
}
}
}
}
#endif
#ifdef NO_SLEEP_MODE
// No sleep mode, but still want shutdown timeout
if (shouldShutdown()) {
// shutdown
currentTempTargetDegC = 0;
return; // we want to exit soldering mode
}
#endif
if (shouldBeSleeping()) {
if (gui_SolderingSleepingMode(false, false)) {
return; // If the function returns non-0 then exit
}
}
// Update LED status
int error = currentTempTargetDegC - TipThermoModel::getTipInC();
if (error >= -10 && error <= 10) {
// converged
setStatusLED(LED_HOT);
} else {
setStatusLED(LED_HEATING);
}
// If we have tripped thermal runaway, turn off heater and show warning
if (heaterThermalRunaway) {
currentTempTargetDegC = 0; // heater control off
warnUser(translatedString(Tr->WarningThermalRunaway), 10 * TICKS_SECOND);
heaterThermalRunaway = false;
return;
}
// slow down ui update rate
GUIDelay();
}
}
void showDebugMenu(void) {
uint8_t screen = 0;
ButtonState b;
for (;;) {
OLED::clearScreen(); // Ensure the buffer starts clean
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(SymbolVersionNumber, FontStyle::SMALL); // Print version number
OLED::setCursor(0, 8); // second line
OLED::print(DebugMenu[screen], FontStyle::SMALL);
switch (screen) {
case 0: // Just prints date
break;
case 1:
// system up time stamp
OLED::printNumber(xTaskGetTickCount() / TICKS_100MS, 5, FontStyle::SMALL);
break;
case 2:
// Movement time stamp
OLED::printNumber(lastMovementTime / TICKS_100MS, 5, FontStyle::SMALL);
break;
case 3:
// Raw Tip
{ OLED::printNumber(TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true), 6, FontStyle::SMALL); }
break;
case 4:
// Temp in C
OLED::printNumber(TipThermoModel::getTipInC(), 5, FontStyle::SMALL);
break;
case 5:
// Handle Temp
OLED::printNumber(getHandleTemperature(0), 6, FontStyle::SMALL);
break;
case 6:
// Voltage input
printVoltage();
break;
case 7:
// Print ACC type
OLED::print(AccelTypeNames[(int)DetectedAccelerometerVersion], FontStyle::SMALL);
break;
case 8:
// Power negotiation status
{
int sourceNumber = 0;
if (getIsPoweredByDCIN()) {
sourceNumber = 0;
} else {
// We are not powered via DC, so want to display the appropriate state for PD or QC
bool poweredbyPD = false;
bool pdHasVBUSConnected = false;
#if POW_PD
if (USBPowerDelivery::fusbPresent()) {
// We are PD capable
if (USBPowerDelivery::negotiationComplete()) {
// We are powered via PD
poweredbyPD = true;
#ifdef VBUS_MOD_TEST
pdHasVBUSConnected = USBPowerDelivery::isVBUSConnected();
#endif
}
}
#endif
if (poweredbyPD) {
if (pdHasVBUSConnected) {
sourceNumber = 2;
} else {
sourceNumber = 3;
}
} else {
sourceNumber = 1;
}
}
OLED::print(PowerSourceNames[sourceNumber], FontStyle::SMALL);
}
break;
case 9:
// Print device ID Numbers
{
uint64_t id = getDeviceID();
OLED::drawHex((uint32_t)(id >> 32), FontStyle::SMALL);
OLED::drawHex((uint32_t)(id & 0xFFFFFFFF), FontStyle::SMALL);
}
break;
case 10:
// Max deg C limit
OLED::printNumber(TipThermoModel::getTipMaxInC(), 3, FontStyle::SMALL);
break;
case 11:
// High water mark for GUI
OLED::printNumber(uxTaskGetStackHighWaterMark(GUITaskHandle), 5, FontStyle::SMALL);
break;
case 12:
// High water mark for the Movement task
OLED::printNumber(uxTaskGetStackHighWaterMark(MOVTaskHandle), 5, FontStyle::SMALL);
break;
case 13:
// High water mark for the PID task
OLED::printNumber(uxTaskGetStackHighWaterMark(PIDTaskHandle), 5, FontStyle::SMALL);
break;
#ifdef HALL_SENSOR
case 14:
// Print raw hall effect value if availabe, none if hall effect disabled.
{
int16_t hallEffectStrength = getRawHallEffect();
if (hallEffectStrength < 0)
hallEffectStrength = -hallEffectStrength;
OLED::printNumber(hallEffectStrength, 6, FontStyle::SMALL);
}
break;
#endif
default:
break;
}
OLED::refresh();
b = getButtonState();
if (b == BUTTON_B_SHORT)
return;
else if (b == BUTTON_F_SHORT) {
screen++;
#ifdef HALL_SENSOR
screen = screen % 15;
#else
screen = screen % 14;
#endif
}
GUIDelay();
}
}
#if POW_PD
#ifdef HAS_POWER_DEBUG_MENU
static void showPDDebug(void) {
// Print out the USB-PD state
// Basically this is like the Debug menu, but instead we want to print out the PD status
uint8_t screen = 0;
ButtonState b;
for (;;) {
OLED::clearScreen(); // Ensure the buffer starts clean
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::print(SymbolPDDebug, FontStyle::SMALL); // Print Title
OLED::setCursor(0, 8); // second line
if (screen == 0) {
// Print the PD state machine
OLED::print(SymbolState, FontStyle::SMALL);
OLED::print(SymbolSpace, FontStyle::SMALL);
OLED::printNumber(USBPowerDelivery::getStateNumber(), 2, FontStyle::SMALL, true);
OLED::print(SymbolSpace, FontStyle::SMALL);
// Also print vbus mod status
if (USBPowerDelivery::fusbPresent()) {
if (USBPowerDelivery::negotiationComplete() || (xTaskGetTickCount() > (TICKS_SECOND * 10))) {
if (!USBPowerDelivery::isVBUSConnected()) {
OLED::print(SymbolNoVBus, FontStyle::SMALL);
} else {
OLED::print(SymbolVBus, FontStyle::SMALL);
}
}
}
} else {
// Print out the Proposed power options one by one
auto lastCaps = USBPowerDelivery::getLastSeenCapabilities();
if ((screen - 1) < 11) {
int voltage_mv = 0;
int min_voltage = 0;
int current_a_x100 = 0;
int wattage = 0;
if ((lastCaps[screen - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCaps[screen - 1])); // voltage in mV units
current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCaps[screen - 1]); // current in 10mA units
} else if ((lastCaps[screen - 1] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED) {
voltage_mv = PD_PAV2MV(PD_APDO_AVS_MAX_VOLTAGE_GET(lastCaps[screen - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps[screen - 1]));
// Last value is wattage
wattage = PD_APDO_AVS_MAX_POWER_GET(lastCaps[screen - 1]);
} else {
voltage_mv = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCaps[screen - 1]));
min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCaps[screen - 1]));
current_a_x100 = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCaps[screen - 1])); // max current in 10mA units
}
// Skip not used entries
if (voltage_mv == 0) {
screen++;
} else {
// print out this entry of the proposal
OLED::printNumber(screen, 2, FontStyle::SMALL, true); // print the entry number
OLED::print(SymbolSpace, FontStyle::SMALL);
if (min_voltage > 0) {
OLED::printNumber(min_voltage / 1000, 2, FontStyle::SMALL, true); // print the voltage
OLED::print(SymbolMinus, FontStyle::SMALL);
}
OLED::printNumber(voltage_mv / 1000, 2, FontStyle::SMALL, true); // print the voltage
OLED::print(SymbolVolts, FontStyle::SMALL);
OLED::print(SymbolSpace, FontStyle::SMALL);
if (wattage) {
OLED::printNumber(wattage, 3, FontStyle::SMALL, true); // print the current in 0.1A res
OLED::print(SymbolWatts, FontStyle::SMALL);
} else {
OLED::printNumber(current_a_x100 / 100, 2, FontStyle::SMALL, true); // print the current in 0.1A res
OLED::print(SymbolDot, FontStyle::SMALL);
OLED::printNumber(current_a_x100 % 100, 2, FontStyle::SMALL, true); // print the current in 0.1A res
OLED::print(SymbolAmps, FontStyle::SMALL);
}
}
} else {
screen = 0;
}
}
OLED::refresh();
b = getButtonState();
if (b == BUTTON_B_SHORT)
return;
else if (b == BUTTON_F_SHORT) {
screen++;
}
GUIDelay();
}
}
#endif
#endif
void showWarnings() {
// Display alert if settings were reset
if (settingsWereReset) {
warnUser(translatedString(Tr->SettingsResetMessage), 10 * TICKS_SECOND);
}
#ifndef NO_WARN_MISSING
// We also want to alert if accel or pd is not detected / not responding
// In this case though, we dont want to nag the user _too_ much
// So only show first 2 times
while (DetectedAccelerometerVersion == AccelType::Scanning) {
osDelay(5);
}
// Display alert if accelerometer is not detected
if (DetectedAccelerometerVersion == AccelType::None) {
if (getSettingValue(SettingsOptions::AccelMissingWarningCounter) < 2) {
nextSettingValue(SettingsOptions::AccelMissingWarningCounter);
saveSettings();
warnUser(translatedString(Tr->NoAccelerometerMessage), 10 * TICKS_SECOND);
}
}
#if POW_PD
// We expect pd to be present
if (!USBPowerDelivery::fusbPresent()) {
if (getSettingValue(SettingsOptions::PDMissingWarningCounter) < 2) {
nextSettingValue(SettingsOptions::PDMissingWarningCounter);
saveSettings();
warnUser(translatedString(Tr->NoPowerDeliveryMessage), 10 * TICKS_SECOND);
}
}
#endif
#endif
}
uint8_t buttonAF[sizeof(buttonA)];
uint8_t buttonBF[sizeof(buttonB)];
uint8_t disconnectedTipF[sizeof(disconnectedTip)];
/* StartGUITask function */
void startGUITask(void const *argument) {
(void)argument;
prepareTranslations();
OLED::initialize(); // start up the LCD
OLED::setBrightness(getSettingValue(SettingsOptions::OLEDBrightness));
OLED::setInverseDisplay(getSettingValue(SettingsOptions::OLEDInversion));
uint8_t tempWarningState = 0;
bool buttonLockout = false;
bool tempOnDisplay = false;
bool tipDisconnectedDisplay = false;
bool showExitMenuTransition = false;
{
// Generate the flipped screen into ram for later use
// flipped is generated by flipping each row
for (int row = 0; row < 2; row++) {
for (int x = 0; x < 42; x++) {
buttonAF[(row * 42) + x] = buttonA[(row * 42) + (41 - x)];
buttonBF[(row * 42) + x] = buttonB[(row * 42) + (41 - x)];
disconnectedTipF[(row * 42) + x] = disconnectedTip[(row * 42) + (41 - x)];
}
}
}
getTipRawTemp(1); // reset filter
OLED::setRotation(getSettingValue(SettingsOptions::OrientationMode) & 1);
// If the front button is held down, on supported devices, show PD debugging metrics
#if POW_PD
#ifdef HAS_POWER_DEBUG_MENU
if (getButtonA()) {
showPDDebug();
}
#endif
#endif
// If the boot logo is enabled (but it times out) and the autostart mode is enabled (but not set to sleep w/o heat), start heating during boot logo
if (getSettingValue(SettingsOptions::LOGOTime) > 0 &&
getSettingValue(SettingsOptions::LOGOTime) < 5 &&
getSettingValue(SettingsOptions::AutoStartMode) > 0 &&
getSettingValue(SettingsOptions::AutoStartMode) < 3) {
uint16_t sleepTempDegC;
if (getSettingValue(SettingsOptions::TemperatureInF)) {
sleepTempDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::SleepTemp));
} else {
sleepTempDegC = getSettingValue(SettingsOptions::SleepTemp);
}
// Only heat to sleep temperature (but no higher than 75*C for safety)
currentTempTargetDegC = min(sleepTempDegC, 75);
}
BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR);
showWarnings();
if (getSettingValue(SettingsOptions::AutoStartMode)) {
// jump directly to the autostart mode
gui_solderingMode(getSettingValue(SettingsOptions::AutoStartMode) - 1);
buttonLockout = true;
}
for (;;) {
ButtonState buttons = getButtonState();
if (buttons != BUTTON_NONE) {
OLED::setDisplayState(OLED::DisplayState::ON);
}
if (tempWarningState == 2)
buttons = BUTTON_F_SHORT;
if (buttons != BUTTON_NONE && buttonLockout)
buttons = BUTTON_NONE;
else
buttonLockout = false;
switch (buttons) {
case BUTTON_NONE:
// Do nothing
break;
case BUTTON_BOTH:
// Not used yet
// In multi-language this might be used to reset language on a long hold
// or some such
break;
case BUTTON_B_LONG:
// Show the version information
showDebugMenu();
break;
case BUTTON_F_LONG:
gui_solderingTempAdjust();
saveSettings();
break;
case BUTTON_F_SHORT:
if (!isTipDisconnected()) {
gui_solderingMode(0); // enter soldering mode
buttonLockout = true;
}
break;
case BUTTON_B_SHORT:
enterSettingsMenu(); // enter the settings menu
{
OLED::useSecondaryFramebuffer(true);
showExitMenuTransition = true;
}
buttonLockout = true;
break;
default:
break;
}
currentTempTargetDegC = 0; // ensure tip is off
getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
uint32_t tipTemp = TipThermoModel::getTipInC();
if (tipTemp > 55) {
setStatusLED(LED_COOLING_STILL_HOT);
} else {
setStatusLED(LED_STANDBY);
}
// Preemptively turn the display on. Turn it off if and only if
// the tip temperature is below 50 degrees C *and* motion sleep
// detection is enabled *and* there has been no activity (movement or
// button presses) in a while.
// This is zero cost really as state is only changed on display updates
OLED::setDisplayState(OLED::DisplayState::ON);
if ((tipTemp < 50) && getSettingValue(SettingsOptions::Sensitivity)
&& (((xTaskGetTickCount() - lastMovementTime) > MOVEMENT_INACTIVITY_TIME) && ((xTaskGetTickCount() - lastButtonTime) > BUTTON_INACTIVITY_TIME))) {
OLED::setDisplayState(OLED::DisplayState::OFF);
setStatusLED(LED_OFF);
}
// Clear the lcd buffer
OLED::clearScreen();
if (OLED::getRotation()) {
OLED::setCursor(50, 0);
} else {
OLED::setCursor(-1, 0);
}
if (getSettingValue(SettingsOptions::DetailedIDLE)) {
if (isTipDisconnected()) {
if (OLED::getRotation()) {
// in right handed mode we want to draw over the first part
OLED::drawArea(54, 0, 42, 16, disconnectedTipF);
} else {
OLED::drawArea(0, 0, 42, 16, disconnectedTip);
}
if (OLED::getRotation()) {
OLED::setCursor(-1, 0);
} else {
OLED::setCursor(42, 0);
}
uint32_t Vlt = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
OLED::printNumber(Vlt / 10, 2, FontStyle::LARGE);
OLED::print(SymbolDot, FontStyle::LARGE);
OLED::printNumber(Vlt % 10, 1, FontStyle::LARGE);
if (OLED::getRotation()) {
OLED::setCursor(48, 8);
} else {
OLED::setCursor(91, 8);
}
OLED::print(SymbolVolts, FontStyle::SMALL);
} else {
if (!(getSettingValue(SettingsOptions::CoolingTempBlink) && (tipTemp > 55) && (xTaskGetTickCount() % 1000 < 300)))
// Blink temp if setting enable and temp < 55°
// 1000 tick/sec
// OFF 300ms ON 700ms
gui_drawTipTemp(true, FontStyle::LARGE); // draw in the temp
if (OLED::getRotation()) {
OLED::setCursor(6, 0);
} else {
OLED::setCursor(73, 0); // top right
}
OLED::printNumber(getSettingValue(SettingsOptions::SolderingTemp), 3, FontStyle::SMALL); // draw set temp
if (getSettingValue(SettingsOptions::TemperatureInF))
OLED::print(SymbolDegF, FontStyle::SMALL);
else
OLED::print(SymbolDegC, FontStyle::SMALL);
if (OLED::getRotation()) {
OLED::setCursor(0, 8);
} else {
OLED::setCursor(67, 8); // bottom right
}
printVoltage(); // draw voltage then symbol (v)
OLED::print(SymbolVolts, FontStyle::SMALL);
}
} else {
if (OLED::getRotation()) {
OLED::drawArea(54, 0, 42, 16, buttonAF);
OLED::drawArea(12, 0, 42, 16, buttonBF);
OLED::setCursor(0, 0);
gui_drawBatteryIcon();
} else {
OLED::drawArea(0, 0, 42, 16, buttonA); // Needs to be flipped so button ends up
OLED::drawArea(42, 0, 42, 16, buttonB); // on right side of screen
OLED::setCursor(84, 0);
gui_drawBatteryIcon();
}
tipDisconnectedDisplay = false;
if (tipTemp > 55)
tempOnDisplay = true;
else if (tipTemp < 45)
tempOnDisplay = false;
if (isTipDisconnected()) {
tempOnDisplay = false;
tipDisconnectedDisplay = true;
}
if (tempOnDisplay || tipDisconnectedDisplay) {
// draw temp over the start soldering button
// Location changes on screen rotation
if (OLED::getRotation()) {
// in right handed mode we want to draw over the first part
OLED::fillArea(55, 0, 41, 16, 0); // clear the area for the temp
OLED::setCursor(56, 0);
} else {
OLED::fillArea(0, 0, 41, 16, 0); // clear the area
OLED::setCursor(0, 0);
}
// If we have a tip connected draw the temp, if not we leave it blank
if (!tipDisconnectedDisplay) {
// draw in the temp
if (!(getSettingValue(SettingsOptions::CoolingTempBlink) && (xTaskGetTickCount() % 260 < 160)))
gui_drawTipTemp(false, FontStyle::LARGE); // draw in the temp
} else {
// Draw in missing tip symbol
if (OLED::getRotation()) {
// in right handed mode we want to draw over the first part
OLED::drawArea(54, 0, 42, 16, disconnectedTipF);
} else {
OLED::drawArea(0, 0, 42, 16, disconnectedTip);
}
}
}
}
if (showExitMenuTransition) {
OLED::useSecondaryFramebuffer(false);
OLED::transitionSecondaryFramebuffer(false);
showExitMenuTransition = false;
} else {
OLED::refresh();
GUIDelay();
}
}
}