* Remove unused includes * Adding in submodule * Move fusb functions to the BSP * Remove old code * Creating IronOS PD integration wrapper * Redirect to wrapper * pd lib updates * fix Docker build * Finish linking across * Cleanup * Update Makefile * Update push.yml * Update push.yml * PD -> Compensate for different tick rates * Update codeql-analysis.yml * Fix PD #define for @Firebie * Check irq low at start * Update BSP.h * Update main.cpp * Closer delay * Update OLED.cpp * Bugfix trying to start QC too early * Missing fusb shouldnt hang qc * Update FreeRTOSConfig.h * Update the GD drivers * Update Pinecil IRQ setup * Redirect printf() to uart * Update Power.cpp * Adding extras to PD state * Update USBPD.cpp * Delay in printf * Iterate once before delay on start * Update usb-pd * master usb-pd now * Format gd libs * Update gd32vf103_bkp.c * Guard with PD timeout * Remove CodeQL * Slow for testing, fix runt pulses at start * Fix runt pulse in read size 1 * Cleaner probing setup * Testing delay during stop gen in read 1 * Update I2C driver * Update gd32vf103_i2c.c * Cleaning up i2c wrapper a little, given up on dma for rx * Update preRTOS.cpp * Update Setup.cpp * Update MOVThread.cpp * Slow down UART to work with new clock config * Better ack setup for 2 byte read * Cleanup POW_PD so cant be lost in #includes * tipResistance -> TIP_RESISTANCE * handle NOP race on len==2 * Update configuration.h * Dont use neg timeout to mask anymore * Not required for MHP * Fix up source display Miniware * Fix race on PD init * Update POWThread.cpp * Update formatting * MHP format * Update push.yml * Faster TS80P I2C * Bugfix for IRQ handlers * Correctly handle I2C race on PD access * Fix CI error (unused var) and MHP IRQ * Test Pinecil alt ADC mode
86 lines
2.9 KiB
C++
86 lines
2.9 KiB
C++
/*
|
|
* power.cpp
|
|
*
|
|
* Created on: 28 Oct, 2018
|
|
* Authors: Ben V. Brown, David Hilton <- Mostly David
|
|
*/
|
|
|
|
#include <BSP.h>
|
|
#include <Settings.h>
|
|
#include <power.hpp>
|
|
|
|
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample);
|
|
const int fastPWMChangeoverPoint = 128;
|
|
const int fastPWMChangeoverTolerance = 16;
|
|
|
|
expMovingAverage<uint32_t, wattHistoryFilter> x10WattHistory = {0};
|
|
|
|
bool shouldBeUsingFastPWMMode(const uint8_t pwmTicks) {
|
|
// Determine if we should use slow or fast PWM mode
|
|
// Crossover between modes set around the midpoint of the PWM control point
|
|
static bool lastPWMWasFast = true;
|
|
if (pwmTicks > (fastPWMChangeoverPoint + fastPWMChangeoverTolerance) && lastPWMWasFast) {
|
|
lastPWMWasFast = false;
|
|
} else if (pwmTicks < (fastPWMChangeoverPoint - fastPWMChangeoverTolerance) && !lastPWMWasFast) {
|
|
lastPWMWasFast = true;
|
|
}
|
|
return lastPWMWasFast;
|
|
}
|
|
|
|
int32_t tempToX10Watts(int32_t rawTemp) {
|
|
// mass is in x10J/*C, rawC is raw per degree C
|
|
// returns x10Watts needed to raise/lower a mass by rawTemp
|
|
// degrees in one cycle.
|
|
int32_t x10Watts = TIP_THERMAL_MASS * rawTemp;
|
|
return x10Watts;
|
|
}
|
|
|
|
void setTipX10Watts(int32_t mw) {
|
|
int32_t outputPWMLevel = X10WattsToPWM(mw, 1);
|
|
const bool shouldUseFastPWM = shouldBeUsingFastPWMMode(outputPWMLevel);
|
|
setTipPWM(outputPWMLevel, shouldUseFastPWM);
|
|
uint32_t actualMilliWatts = PWMToX10Watts(outputPWMLevel, 0);
|
|
|
|
x10WattHistory.update(actualMilliWatts);
|
|
}
|
|
|
|
uint32_t availableW10(uint8_t sample) {
|
|
// P = V^2 / R, v*v = v^2 * 100
|
|
// R = R*10
|
|
// P therefore is in V^2*100/R*10 = W*10.
|
|
uint32_t v = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), sample); // 100 = 10v
|
|
uint32_t availableWattsX10 = (v * v) / TIP_RESISTANCE;
|
|
// However, 100% duty cycle is not possible as there is a dead time while the ADC takes a reading
|
|
// Therefore need to scale available milliwats by this
|
|
|
|
// avMw=(AvMw*powerPWM)/totalPWM.
|
|
availableWattsX10 = availableWattsX10 * powerPWM;
|
|
availableWattsX10 /= totalPWM;
|
|
|
|
// availableMilliWattsX10 is now an accurate representation
|
|
return availableWattsX10;
|
|
}
|
|
uint8_t X10WattsToPWM(int32_t x10Watts, uint8_t sample) {
|
|
// Scale input x10Watts to the pwm range available
|
|
if (x10Watts < 0) {
|
|
// keep the battery voltage updating the filter
|
|
getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), sample);
|
|
return 0;
|
|
}
|
|
|
|
// Calculate desired x10Watts as a percentage of availableW10
|
|
uint32_t pwm;
|
|
pwm = (powerPWM * x10Watts) / availableW10(sample);
|
|
if (pwm > powerPWM) {
|
|
// constrain to max PWM counter
|
|
pwm = powerPWM;
|
|
}
|
|
return pwm;
|
|
}
|
|
|
|
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample) {
|
|
uint32_t maxMW = availableW10(sample); // Get the milliwatts for the max pwm period
|
|
// Then convert pwm into percentage of powerPWM to get the percentage of the max mw
|
|
return (((uint32_t)pwm) * maxMW) / powerPWM;
|
|
}
|