1
0
forked from me/IronOS
Files
IronOS/workspace/TS100/Core/Src/main.cpp

361 lines
11 KiB
C++

// By Ben V. Brown - V2.0 of the TS100 firmware
#include <MMA8652FC.hpp>
#include <gui.hpp>
#include <main.hpp>
#include "LIS2DH12.hpp"
#include <history.hpp>
#include <power.hpp>
#include "Settings.h"
#include "Translation.h"
#include "cmsis_os.h"
#include "stdlib.h"
#include "stm32f1xx_hal.h"
#include "string.h"
#include "TipThermoModel.h"
uint8_t PCBVersion = 0;
// File local variables
uint32_t currentTempTargetDegC = 0; // Current temperature target in C
uint32_t lastMovementTime = 0;
int16_t idealQCVoltage = 0;
// FreeRTOS variables
osThreadId GUITaskHandle;
static const size_t GUITaskStackSize = 1024 / 4;
uint32_t GUITaskBuffer[GUITaskStackSize];
osStaticThreadDef_t GUITaskControlBlock;
osThreadId PIDTaskHandle;
static const size_t PIDTaskStackSize = 512 / 4;
uint32_t PIDTaskBuffer[PIDTaskStackSize];
osStaticThreadDef_t PIDTaskControlBlock;
osThreadId MOVTaskHandle;
static const size_t MOVTaskStackSize = 512 / 4;
uint32_t MOVTaskBuffer[MOVTaskStackSize];
osStaticThreadDef_t MOVTaskControlBlock;
static TaskHandle_t pidTaskNotification = NULL;
void startGUITask(void const *argument);
void startPIDTask(void const *argument);
void startMOVTask(void const *argument);
// End FreeRTOS
// Main sets up the hardware then hands over to the FreeRTOS kernel
int main(void) {
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
*/
HAL_Init();
Setup_HAL(); // Setup all the HAL objects
HAL_IWDG_Refresh(&hiwdg);
setTipX10Watts(0); // force tip off
FRToSI2C::init(&hi2c1);
OLED::initialize(); // start up the LCD
OLED::setFont(0); // default to bigger font
// Testing for which accelerometer is mounted
uint8_t buffer[1];
HAL_IWDG_Refresh(&hiwdg);
if (HAL_I2C_Mem_Read(&hi2c1, 29 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT, buffer, 1,
1000) == HAL_OK) {
PCBVersion = 1;
MMA8652FC::initalize(); // this sets up the I2C registers
} else if (HAL_I2C_Mem_Read(&hi2c1, 25 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT,
buffer, 1, 1000) == HAL_OK) {
PCBVersion = 2;
// Setup the ST Accelerometer
LIS2DH12::initalize(); // startup the accelerometer
} else {
PCBVersion = 3;
systemSettings.SleepTime = 0;
systemSettings.ShutdownTime = 0; // No accel -> disable sleep
systemSettings.sensitivity = 0;
}
HAL_IWDG_Refresh(&hiwdg);
restoreSettings(); // load the settings from flash
HAL_IWDG_Refresh(&hiwdg);
/* Create the thread(s) */
/* definition and creation of GUITask */
osThreadStaticDef(GUITask, startGUITask, osPriorityBelowNormal, 0,
GUITaskStackSize, GUITaskBuffer, &GUITaskControlBlock);
GUITaskHandle = osThreadCreate(osThread(GUITask), NULL);
/* definition and creation of PIDTask */
osThreadStaticDef(PIDTask, startPIDTask, osPriorityRealtime, 0,
PIDTaskStackSize, PIDTaskBuffer, &PIDTaskControlBlock);
PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL);
if (PCBVersion < 3) {
osThreadStaticDef(MOVTask, startMOVTask, osPriorityNormal, 0,
MOVTaskStackSize, MOVTaskBuffer, &MOVTaskControlBlock);
MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL);
}
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
while (1) {
}
}
/* StartPIDTask function */
void startPIDTask(void const *argument __unused) {
/*
* We take the current tip temperature & evaluate the next step for the tip
* control PWM.
*/
setTipX10Watts(0); // disable the output driver if the output is set to be off
#ifdef MODEL_TS80
idealQCVoltage = calculateMaxVoltage(systemSettings.cutoutSetting);
#endif
#ifdef MODEL_TS80
//Set power management code to the tip resistance in ohms * 10
TickType_t lastPowerPulse = 0;
#else
#endif
history<int32_t, PID_TIM_HZ> tempError = { { 0 }, 0, 0 };
currentTempTargetDegC = 0; // Force start with no output (off). If in sleep / soldering this will
// be over-ridden rapidly
pidTaskNotification = xTaskGetCurrentTaskHandle();
for (;;) {
if (ulTaskNotifyTake(pdTRUE, 2000)) {
// This is a call to block this thread until the ADC does its samples
// Do the reading here to keep the temp calculations churning along
uint32_t currentTipTempInC = TipThermoModel::getTipInC(true);
if (currentTempTargetDegC) {
// Cap the max set point to 450C
if (currentTempTargetDegC > (450)) {
//Maximum allowed output
currentTempTargetDegC = (450);
}
// Convert the current tip to degree's C
// As we get close to our target, temp noise causes the system
// to be unstable. Use a rolling average to dampen it.
// We overshoot by roughly 1 degree C.
// This helps stabilize the display.
int32_t tError = currentTempTargetDegC - currentTipTempInC + 1;
tError = tError > INT16_MAX ? INT16_MAX : tError;
tError = tError < INT16_MIN ? INT16_MIN : tError;
tempError.update(tError);
// Now for the PID!
int32_t x10WattsOut = 0;
// P term - total power needed to hit target temp next cycle.
// thermal mass = 1690 milliJ/*C for my tip.
// = Watts*Seconds to raise Temp from room temp to +100*C, divided by 100*C.
// we divide milliWattsNeeded by 20 to let the I term dominate near the set point.
// This is necessary because of the temp noise and thermal lag in the system.
// Once we have feed-forward temp estimation we should be able to better tune this.
int32_t x10WattsNeeded = tempToX10Watts(tError);
// tempError.average());
// note that milliWattsNeeded is sometimes negative, this counters overshoot
// from I term's inertia.
x10WattsOut += x10WattsNeeded;
// I term - energy needed to compensate for heat loss.
// We track energy put into the system over some window.
// Assuming the temp is stable, energy in = energy transfered.
// (If it isn't, P will dominate).
x10WattsOut += x10WattHistory.average();
// D term - use sudden temp change to counter fast cooling/heating.
// In practice, this provides an early boost if temp is dropping
// and counters extra power if the iron is no longer losing temp.
// basically: temp - lastTemp
// Unfortunately, our temp signal is too noisy to really help.
setTipX10Watts(x10WattsOut);
} else {
#ifdef MODEL_TS80
//If its a TS80, we want to have the option of using an occasional pulse to keep the power bank on
// This is purely guesswork :'( as everyone implements stuff differently
if (xTaskGetTickCount() - lastPowerPulse < 10) {
// for the first 100mS turn on for a bit
setTipX10Watts(25); // typically its around 5W to hold the current temp, so this wont raise temp much
} else
setTipX10Watts(0);
//Then wait until the next 0.5 seconds
if (xTaskGetTickCount() - lastPowerPulse > 50) {
lastPowerPulse = xTaskGetTickCount();
}
#else
setTipX10Watts(0);
#endif
}
HAL_IWDG_Refresh(&hiwdg);
} else {
asm("bkpt");
//ADC interrupt timeout
setTipPWM(0);
}
}
}
#define MOVFilter 8
void startMOVTask(void const *argument __unused) {
OLED::setRotation(true);
#ifdef MODEL_TS80
startQC(systemSettings.voltageDiv);
while (pidTaskNotification == 0)
osDelay(30); // To ensure we return after idealQCVoltage/tip resistance
seekQC(idealQCVoltage, systemSettings.voltageDiv); // this will move the QC output to the preferred voltage to start with
#else
osDelay(250); // wait for accelerometer to stabilize
#endif
OLED::setRotation(systemSettings.OrientationMode & 1);
lastMovementTime = 0;
int16_t datax[MOVFilter] = { 0 };
int16_t datay[MOVFilter] = { 0 };
int16_t dataz[MOVFilter] = { 0 };
uint8_t currentPointer = 0;
int16_t tx = 0, ty = 0, tz = 0;
int32_t avgx = 0, avgy = 0, avgz = 0;
if (systemSettings.sensitivity > 9)
systemSettings.sensitivity = 9;
#ifdef ACCELDEBUG
uint32_t max = 0;
#endif
Orientation rotation = ORIENTATION_FLAT;
for (;;) {
int32_t threshold = 1500 + (9 * 200);
threshold -= systemSettings.sensitivity * 200; // 200 is the step size
if (PCBVersion == 2) {
LIS2DH12::getAxisReadings(tx, ty, tz);
rotation = LIS2DH12::getOrientation();
} else if (PCBVersion == 1) {
MMA8652FC::getAxisReadings(tx, ty, tz);
rotation = MMA8652FC::getOrientation();
}
if (systemSettings.OrientationMode == 2) {
if (rotation != ORIENTATION_FLAT) {
OLED::setRotation(rotation == ORIENTATION_LEFT_HAND); // link the data through
}
}
datax[currentPointer] = (int32_t) tx;
datay[currentPointer] = (int32_t) ty;
dataz[currentPointer] = (int32_t) tz;
currentPointer = (currentPointer + 1) % MOVFilter;
avgx = avgy = avgz = 0;
// calculate averages
for (uint8_t i = 0; i < MOVFilter; i++) {
avgx += datax[i];
avgy += datay[i];
avgz += dataz[i];
}
avgx /= MOVFilter;
avgy /= MOVFilter;
avgz /= MOVFilter;
// Sum the deltas
int32_t error = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
// So now we have averages, we want to look if these are different by more
// than the threshold
// If error has occurred then we update the tick timer
if (error > threshold) {
lastMovementTime = xTaskGetTickCount();
}
osDelay(100); // Slow down update rate
#ifdef MODEL_TS80
// if (currentlyActiveTemperatureTarget) {
// seekQC(idealQCVoltage, systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
// }
#endif
}
}
#define FLASH_LOGOADDR \
(0x8000000 | 0xF800) /*second last page of flash set aside for logo image*/
bool showBootLogoIfavailable() {
// check if the header is there (0xAA,0x55,0xF0,0x0D)
// If so display logo
// TODO REDUCE STACK ON THIS ONE, USE DRAWING IN THE READ LOOP
uint16_t temp[98];
for (uint8_t i = 0; i < (98); i++) {
temp[i] = *(uint16_t *) (FLASH_LOGOADDR + (i * 2));
}
uint8_t temp8[98 * 2];
for (uint8_t i = 0; i < 98; i++) {
temp8[i * 2] = temp[i] >> 8;
temp8[i * 2 + 1] = temp[i] & 0xFF;
}
if (temp8[0] != 0xAA)
return false;
if (temp8[1] != 0x55)
return false;
if (temp8[2] != 0xF0)
return false;
if (temp8[3] != 0x0D)
return false;
OLED::drawArea(0, 0, 96, 16, (uint8_t *) (temp8 + 4));
OLED::refresh();
return true;
}
/*
* Catch the IRQ that says that the conversion is done on the temperature
* readings coming in Once these have come in we can unblock the PID so that it
* runs again
*/
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
if (hadc == &hadc1) {
if (pidTaskNotification) {
vTaskNotifyGiveFromISR(pidTaskNotification,
&xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}
}
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
FRToSI2C::CpltCallback();
}
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
FRToSI2C::CpltCallback();
}
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
FRToSI2C::CpltCallback();
}
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c __unused) {
asm("bkpt");
FRToSI2C::CpltCallback();
}
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
//asm("bkpt");
FRToSI2C::CpltCallback();
}
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
FRToSI2C::CpltCallback();
}
void vApplicationStackOverflowHook(xTaskHandle *pxTask __unused,
signed portCHAR *pcTaskName __unused) {
asm("bkpt");
// We dont have a good way to handle a stack overflow at this point in time
NVIC_SystemReset();
}