1085 lines
30 KiB
C++
1085 lines
30 KiB
C++
// By Ben V. Brown - V2.0 of the TS100 firmware
|
|
#include <MMA8652FC.hpp>
|
|
#include <main.hpp>
|
|
#include "OLED.hpp"
|
|
#include "Settings.h"
|
|
#include "Translation.h"
|
|
#include "cmsis_os.h"
|
|
#include "stdlib.h"
|
|
#include "stm32f1xx_hal.h"
|
|
#include "string.h"
|
|
#include "LIS2DH12.hpp"
|
|
#include <gui.hpp>
|
|
|
|
#define ACCELDEBUG 0
|
|
// C++ objects
|
|
OLED lcd(&hi2c1);
|
|
MMA8652FC accel(&hi2c1);
|
|
LIS2DH12 accel2(&hi2c1);
|
|
uint8_t PCBVersion = 0;
|
|
// File local variables
|
|
uint16_t currentlyActiveTemperatureTarget = 0;
|
|
uint32_t lastMovementTime = 0;
|
|
uint32_t lastButtonTime = 0;
|
|
|
|
// FreeRTOS variables
|
|
osThreadId GUITaskHandle;
|
|
osThreadId PIDTaskHandle;
|
|
osThreadId ROTTaskHandle;
|
|
osThreadId MOVTaskHandle;
|
|
|
|
static TaskHandle_t pidTaskNotification = NULL;
|
|
|
|
void startGUITask(void const *argument);
|
|
void startPIDTask(void const *argument);
|
|
void startMOVTask(void const *argument);
|
|
void startRotationTask(void const *argument);
|
|
// End FreeRTOS
|
|
|
|
// Main sets up the hardware then hands over to the FreeRTOS kernel
|
|
int main(void) {
|
|
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
|
|
*/
|
|
HAL_Init();
|
|
Setup_HAL(); // Setup all the HAL objects
|
|
setTipPWM(0);
|
|
lcd.initialize(); // start up the LCD
|
|
lcd.setFont(0); // default to bigger font
|
|
//Testing for new weird board version
|
|
uint8_t buffer[1];
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
if (HAL_I2C_Mem_Read(&hi2c1, 29 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT, buffer, 1,
|
|
1000) == HAL_OK) {
|
|
PCBVersion = 1;
|
|
accel.initalize(); // this sets up the I2C registers and loads up the default
|
|
// settings
|
|
} else if (HAL_I2C_Mem_Read(&hi2c1, 25 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT,
|
|
buffer, 1, 1000) == HAL_OK) {
|
|
PCBVersion = 2;
|
|
//Setup the ST Accelerometer
|
|
accel2.initalize(); //startup the accelerometer
|
|
} else {
|
|
PCBVersion = 3;
|
|
systemSettings.SleepTime = 0;
|
|
systemSettings.ShutdownTime = 0; //No accel -> disable sleep
|
|
systemSettings.sensitivity = 0;
|
|
}
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
restoreSettings(); // load the settings from flash
|
|
setCalibrationOffset(systemSettings.CalibrationOffset);
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
|
|
/* Create the thread(s) */
|
|
/* definition and creation of GUITask */
|
|
osThreadDef(GUITask, startGUITask, osPriorityBelowNormal, 0, 768); //3k
|
|
GUITaskHandle = osThreadCreate(osThread(GUITask), NULL);
|
|
|
|
/* definition and creation of PIDTask */
|
|
osThreadDef(PIDTask, startPIDTask, osPriorityRealtime, 0, 512); //2k
|
|
PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL);
|
|
if (PCBVersion != 3) {
|
|
/* definition and creation of ROTTask */
|
|
osThreadDef(ROTTask, startRotationTask, osPriorityLow, 0, 256); //1k
|
|
ROTTaskHandle = osThreadCreate(osThread(ROTTask), NULL);
|
|
/* definition and creation of MOVTask */
|
|
osThreadDef(MOVTask, startMOVTask, osPriorityNormal, 0, 512); //2k
|
|
MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL);
|
|
}
|
|
|
|
/* Start scheduler */
|
|
osKernelStart();
|
|
|
|
/* We should never get here as control is now taken by the scheduler */
|
|
while (1) {
|
|
}
|
|
}
|
|
void GUIDelay() {
|
|
osDelay(66); // 15Hz
|
|
}
|
|
void gui_drawTipTemp() {
|
|
// Draw tip temp handling unit conversion & tolerance near setpoint
|
|
uint16_t Temp = getTipRawTemp(0);
|
|
|
|
if (systemSettings.temperatureInF)
|
|
Temp = tipMeasurementToF(Temp);
|
|
else
|
|
Temp = tipMeasurementToC(Temp);
|
|
//[Disabled 24/11/2017] Round if nearby
|
|
// if (abs(Temp - systemSettings.SolderingTemp) < 3)
|
|
// Temp = systemSettings.SolderingTemp;
|
|
|
|
lcd.printNumber(Temp, 3); // Draw the tip temp out finally
|
|
}
|
|
ButtonState getButtonState() {
|
|
/*
|
|
* Read in the buttons and then determine if a state change needs to occur
|
|
*/
|
|
|
|
/*
|
|
* If the previous state was 00 Then we want to latch the new state if
|
|
* different & update time
|
|
* If the previous state was !00 Then we want to search if we trigger long
|
|
* press (buttons still down), or if release we trigger press
|
|
* (downtime>filter)
|
|
*/
|
|
static uint8_t previousState = 0;
|
|
static uint32_t previousStateChange = 0;
|
|
const uint16_t timeout = 40;
|
|
uint8_t currentState;
|
|
currentState = (
|
|
HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
|
|
1 : 0) << 0;
|
|
currentState |= (
|
|
HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
|
|
1 : 0) << 1;
|
|
|
|
if (currentState)
|
|
lastButtonTime = xTaskGetTickCount();
|
|
if (currentState == previousState) {
|
|
if (currentState == 0)
|
|
return BUTTON_NONE;
|
|
if ((xTaskGetTickCount() - previousStateChange) > timeout) {
|
|
// User has been holding the button down
|
|
// We want to send a buttong is held message
|
|
if (currentState == 0x01)
|
|
return BUTTON_F_LONG;
|
|
else if (currentState == 0x02)
|
|
return BUTTON_B_LONG;
|
|
else
|
|
return BUTTON_NONE; // Both being held case, we dont long hold this
|
|
} else
|
|
return BUTTON_NONE;
|
|
} else {
|
|
// A change in button state has occurred
|
|
ButtonState retVal = BUTTON_NONE;
|
|
if (currentState) {
|
|
// User has pressed a button down (nothing done on down)
|
|
|
|
} else {
|
|
// User has released buttons
|
|
// If they previously had the buttons down we want to check if they were <
|
|
// long hold and trigger a press
|
|
if ((xTaskGetTickCount() - previousStateChange) < timeout) {
|
|
// The user didn't hold the button for long
|
|
// So we send button press
|
|
|
|
if (previousState == 0x01)
|
|
retVal = BUTTON_F_SHORT;
|
|
else if (previousState == 0x02)
|
|
retVal = BUTTON_B_SHORT;
|
|
else
|
|
retVal = BUTTON_BOTH; // Both being held case
|
|
}
|
|
}
|
|
previousState = currentState;
|
|
previousStateChange = xTaskGetTickCount();
|
|
return retVal;
|
|
}
|
|
return BUTTON_NONE;
|
|
}
|
|
|
|
static void waitForButtonPress() {
|
|
// we are just lazy and sleep until user confirms button press
|
|
// This also eats the button press event!
|
|
ButtonState buttons = getButtonState();
|
|
while (buttons) {
|
|
buttons = getButtonState();
|
|
GUIDelay();
|
|
lcd.refresh();
|
|
}
|
|
while (!buttons) {
|
|
buttons = getButtonState();
|
|
GUIDelay();
|
|
lcd.refresh();
|
|
}
|
|
}
|
|
|
|
void waitForButtonPressOrTimeout(uint32_t timeout) {
|
|
timeout += xTaskGetTickCount();
|
|
// Make timeout our exit value
|
|
for (;;) {
|
|
ButtonState buttons = getButtonState();
|
|
if (buttons)
|
|
return;
|
|
if (xTaskGetTickCount() > timeout)
|
|
return;
|
|
GUIDelay();
|
|
}
|
|
}
|
|
|
|
// returns true if undervoltage has occured
|
|
static bool checkVoltageForExit() {
|
|
uint16_t v = getInputVoltageX10(systemSettings.voltageDiv);
|
|
if ((v < lookupVoltageLevel(systemSettings.cutoutSetting))) {
|
|
lcd.clearScreen();
|
|
lcd.setCursor(0, 0);
|
|
if (systemSettings.detailedSoldering) {
|
|
lcd.setFont(1);
|
|
lcd.print(UndervoltageString);
|
|
lcd.setCursor(0, 8);
|
|
lcd.print(InputVoltageString);
|
|
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
|
|
2);
|
|
lcd.drawChar('.');
|
|
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
|
|
1);
|
|
lcd.print("V");
|
|
|
|
} else {
|
|
lcd.setFont(0);
|
|
lcd.print(UVLOWarningString);
|
|
}
|
|
|
|
lcd.refresh();
|
|
currentlyActiveTemperatureTarget = 0;
|
|
waitForButtonPress();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
static void gui_drawBatteryIcon() {
|
|
if (systemSettings.cutoutSetting) {
|
|
// User is on a lithium battery
|
|
// we need to calculate which of the 10 levels they are on
|
|
uint8_t cellCount = systemSettings.cutoutSetting + 2;
|
|
uint16_t cellV = getInputVoltageX10(systemSettings.voltageDiv)
|
|
/ cellCount;
|
|
// Should give us approx cell voltage X10
|
|
// Range is 42 -> 33 = 9 steps therefore we will use battery 1-10
|
|
if (cellV < 33)
|
|
cellV = 33;
|
|
cellV -= 33; // Should leave us a number of 0-9
|
|
if (cellV > 9)
|
|
cellV = 9;
|
|
lcd.drawBattery(cellV + 1);
|
|
} else
|
|
lcd.drawSymbol(16); // Draw the DC Logo
|
|
}
|
|
static void gui_solderingTempAdjust() {
|
|
uint32_t lastChange = xTaskGetTickCount();
|
|
currentlyActiveTemperatureTarget = 0;
|
|
for (;;) {
|
|
lcd.setCursor(0, 0);
|
|
lcd.clearScreen();
|
|
lcd.setFont(0);
|
|
ButtonState buttons = getButtonState();
|
|
if (buttons)
|
|
lastChange = xTaskGetTickCount();
|
|
switch (buttons) {
|
|
case BUTTON_NONE:
|
|
// stay
|
|
break;
|
|
case BUTTON_BOTH:
|
|
// exit
|
|
return;
|
|
break;
|
|
case BUTTON_B_LONG:
|
|
|
|
break;
|
|
case BUTTON_F_LONG:
|
|
|
|
break;
|
|
case BUTTON_F_SHORT:
|
|
if (lcd.getRotation()) {
|
|
systemSettings.SolderingTemp += 10; // add 10
|
|
} else {
|
|
systemSettings.SolderingTemp -= 10; // sub 10
|
|
}
|
|
break;
|
|
case BUTTON_B_SHORT:
|
|
if (!lcd.getRotation()) {
|
|
systemSettings.SolderingTemp += 10; // add 10
|
|
} else {
|
|
systemSettings.SolderingTemp -= 10; // sub 10
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
// constrain between 50-450 C
|
|
if (systemSettings.temperatureInF) {
|
|
if (systemSettings.SolderingTemp > 850)
|
|
systemSettings.SolderingTemp = 850;
|
|
} else {
|
|
if (systemSettings.SolderingTemp > 450)
|
|
systemSettings.SolderingTemp = 450;
|
|
}
|
|
|
|
if (systemSettings.temperatureInF) {
|
|
if (systemSettings.SolderingTemp < 120)
|
|
systemSettings.SolderingTemp = 120;
|
|
} else {
|
|
if (systemSettings.SolderingTemp < 50)
|
|
systemSettings.SolderingTemp = 50;
|
|
}
|
|
|
|
if (xTaskGetTickCount() - lastChange > 200)
|
|
return; // exit if user just doesn't press anything for a bit
|
|
lcd.drawChar('-');
|
|
lcd.drawChar(' ');
|
|
lcd.printNumber(systemSettings.SolderingTemp, 3);
|
|
if (systemSettings.temperatureInF)
|
|
lcd.drawSymbol(0);
|
|
else
|
|
lcd.drawSymbol(1);
|
|
lcd.drawChar(' ');
|
|
lcd.drawChar('+');
|
|
lcd.refresh();
|
|
GUIDelay();
|
|
}
|
|
}
|
|
|
|
static int gui_showTipTempWarning() {
|
|
for (;;) {
|
|
uint16_t tipTemp = tipMeasurementToC(getTipRawTemp(0));
|
|
lcd.clearScreen();
|
|
lcd.setCursor(0, 0);
|
|
if (systemSettings.detailedSoldering) {
|
|
lcd.setFont(1);
|
|
lcd.print(WarningAdvancedString);
|
|
lcd.setCursor(0, 8);
|
|
lcd.print(WarningTipTempString);
|
|
|
|
if (systemSettings.temperatureInF) {
|
|
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
|
|
lcd.print("F");
|
|
} else {
|
|
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
|
|
lcd.print("C");
|
|
}
|
|
} else {
|
|
lcd.setFont(0);
|
|
lcd.drawArea(0, 0, 24, 16, WarningBlock24);
|
|
lcd.setCursor(24, 0);
|
|
// lcd.print(WarningSimpleString);
|
|
lcd.print(" ");
|
|
if (systemSettings.temperatureInF) {
|
|
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
|
|
lcd.drawSymbol(0);
|
|
} else {
|
|
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
|
|
lcd.drawSymbol(1);
|
|
}
|
|
}
|
|
if (systemSettings.coolingTempBlink && tipTemp > 70) {
|
|
if (xTaskGetTickCount() % 50 < 25)
|
|
lcd.clearScreen();
|
|
}
|
|
lcd.refresh();
|
|
ButtonState buttons = getButtonState();
|
|
if (buttons == BUTTON_F_SHORT)
|
|
return 1;
|
|
else if (buttons == BUTTON_B_SHORT || buttons == BUTTON_BOTH)
|
|
return 0;
|
|
|
|
if (tipTemp < 50)
|
|
return 0; //Exit the warning screen
|
|
|
|
GUIDelay();
|
|
}
|
|
return 0;
|
|
}
|
|
static uint16_t min(uint16_t a, uint16_t b) {
|
|
if (a > b)
|
|
return b;
|
|
else
|
|
return a;
|
|
}
|
|
static int gui_SolderingSleepingMode() {
|
|
// Drop to sleep temperature and display until movement or button press
|
|
|
|
for (;;) {
|
|
ButtonState buttons = getButtonState();
|
|
if (buttons)
|
|
return 0;
|
|
if ((xTaskGetTickCount() - lastMovementTime < 100)
|
|
|| (xTaskGetTickCount() - lastButtonTime < 100))
|
|
return 0; // user moved or pressed a button, go back to soldering
|
|
if (checkVoltageForExit())
|
|
return 1; // return non-zero on error
|
|
|
|
if (systemSettings.temperatureInF)
|
|
currentlyActiveTemperatureTarget = ftoTipMeasurement(
|
|
min(systemSettings.SleepTemp,
|
|
systemSettings.SolderingTemp));
|
|
else
|
|
currentlyActiveTemperatureTarget = ctoTipMeasurement(
|
|
min(systemSettings.SleepTemp,
|
|
systemSettings.SolderingTemp));
|
|
// draw the lcd
|
|
uint16_t tipTemp;
|
|
if (systemSettings.temperatureInF)
|
|
tipTemp = tipMeasurementToF(getTipRawTemp(0));
|
|
else
|
|
tipTemp = tipMeasurementToC(getTipRawTemp(0));
|
|
|
|
lcd.clearScreen();
|
|
lcd.setCursor(0, 0);
|
|
if (systemSettings.detailedSoldering) {
|
|
lcd.setFont(1);
|
|
lcd.print(SleepingAdvancedString);
|
|
lcd.setCursor(0, 8);
|
|
lcd.print(SleepingTipAdvancedString);
|
|
lcd.printNumber(tipTemp, 3);
|
|
if (systemSettings.temperatureInF)
|
|
lcd.print("F");
|
|
else
|
|
lcd.print("C");
|
|
|
|
lcd.print(" ");
|
|
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
|
|
2);
|
|
lcd.drawChar('.');
|
|
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
|
|
1);
|
|
lcd.drawChar('V');
|
|
} else {
|
|
lcd.setFont(0);
|
|
lcd.print(SleepingSimpleString);
|
|
lcd.printNumber(tipTemp, 3);
|
|
if (systemSettings.temperatureInF)
|
|
lcd.drawSymbol(0);
|
|
else
|
|
lcd.drawSymbol(1);
|
|
}
|
|
if (systemSettings.ShutdownTime) // only allow shutdown exit if time > 0
|
|
if (lastMovementTime)
|
|
if (((uint32_t) (xTaskGetTickCount() - lastMovementTime))
|
|
> (uint32_t) (systemSettings.ShutdownTime * 60 * 100)) {
|
|
// shutdown
|
|
currentlyActiveTemperatureTarget = 0;
|
|
return 1; // we want to exit soldering mode
|
|
}
|
|
lcd.refresh();
|
|
GUIDelay();
|
|
}
|
|
return 0;
|
|
}
|
|
static void gui_solderingMode() {
|
|
/*
|
|
* * Soldering (gui_solderingMode)
|
|
* -> Main loop where we draw temp, and animations
|
|
* --> User presses buttons and they goto the temperature adjust screen
|
|
* ---> Display the current setpoint temperature
|
|
* ---> Use buttons to change forward and back on temperature
|
|
* ---> Both buttons or timeout for exiting
|
|
* --> Long hold front button to enter boost mode
|
|
* ---> Just temporarily sets the system into the alternate temperature for
|
|
* PID control
|
|
* --> Long hold back button to exit
|
|
* --> Double button to exit
|
|
*/
|
|
bool boostModeOn = false;
|
|
uint32_t sleepThres = 0;
|
|
if (systemSettings.SleepTime < 6)
|
|
sleepThres = systemSettings.SleepTime * 10 * 100;
|
|
else
|
|
sleepThres = (systemSettings.SleepTime - 5) * 60 * 100;
|
|
for (;;) {
|
|
uint16_t tipTemp = getTipRawTemp(0);
|
|
|
|
ButtonState buttons = getButtonState();
|
|
switch (buttons) {
|
|
case BUTTON_NONE:
|
|
// stay
|
|
boostModeOn = false;
|
|
break;
|
|
case BUTTON_BOTH:
|
|
// exit
|
|
return;
|
|
break;
|
|
case BUTTON_B_LONG:
|
|
return; // exit on back long hold
|
|
break;
|
|
case BUTTON_F_LONG:
|
|
// if boost mode is enabled turn it on
|
|
if (systemSettings.boostModeEnabled)
|
|
boostModeOn = true;
|
|
break;
|
|
case BUTTON_F_SHORT:
|
|
case BUTTON_B_SHORT: {
|
|
uint16_t oldTemp = systemSettings.SolderingTemp;
|
|
gui_solderingTempAdjust(); // goto adjust temp mode
|
|
if (oldTemp != systemSettings.SolderingTemp) {
|
|
saveSettings(); // only save on change
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
// else we update the screen information
|
|
lcd.setCursor(0, 0);
|
|
lcd.clearScreen();
|
|
lcd.setFont(0);
|
|
if (tipTemp > 16300) {
|
|
lcd.print(BadTipString);
|
|
lcd.refresh();
|
|
currentlyActiveTemperatureTarget = 0;
|
|
waitForButtonPress();
|
|
return;
|
|
} else {
|
|
if (systemSettings.detailedSoldering) {
|
|
lcd.setFont(1);
|
|
lcd.print(SolderingAdvancedPowerPrompt); //Power:
|
|
lcd.printNumber(getTipPWM(), 3);
|
|
lcd.print("%");
|
|
|
|
lcd.setCursor(0, 8);
|
|
lcd.print(SleepingTipAdvancedString);
|
|
uint16_t Temp = getTipRawTemp(0);
|
|
|
|
if (systemSettings.temperatureInF)
|
|
Temp = tipMeasurementToF(Temp);
|
|
else
|
|
Temp = tipMeasurementToC(Temp);
|
|
lcd.printNumber(Temp, 3);
|
|
if (systemSettings.temperatureInF)
|
|
lcd.print("F");
|
|
else
|
|
lcd.print("C");
|
|
|
|
lcd.print(" ");
|
|
lcd.printNumber(
|
|
getInputVoltageX10(systemSettings.voltageDiv) / 10, 2);
|
|
lcd.drawChar('.');
|
|
lcd.printNumber(
|
|
getInputVoltageX10(systemSettings.voltageDiv) % 10, 1);
|
|
lcd.drawChar('V');
|
|
} else {
|
|
// We switch the layout direction depending on the orientation of the lcd.
|
|
if (lcd.getRotation()) {
|
|
// battery
|
|
gui_drawBatteryIcon();
|
|
|
|
lcd.drawChar(' '); // Space out gap between battery <-> temp
|
|
if (systemSettings.temperatureInF) {
|
|
gui_drawTipTemp(); // Draw current tip temp
|
|
lcd.drawSymbol(0); // deg F
|
|
} else {
|
|
gui_drawTipTemp(); // Draw current tip temp
|
|
lcd.drawSymbol(1); // deg C
|
|
}
|
|
|
|
// We draw boost arrow if boosting, or else gap temp <-> heat indicator
|
|
if (boostModeOn)
|
|
lcd.drawSymbol(2);
|
|
else
|
|
lcd.drawChar(' ');
|
|
|
|
// Draw heating/cooling symbols
|
|
// If tip PWM > 10% then we are 'heating'
|
|
if (getTipPWM() > 10)
|
|
lcd.drawSymbol(14);
|
|
else
|
|
lcd.drawSymbol(15);
|
|
} else {
|
|
// Draw heating/cooling symbols
|
|
// If tip PWM > 10% then we are 'heating'
|
|
if (getTipPWM() > 10)
|
|
lcd.drawSymbol(14);
|
|
else
|
|
lcd.drawSymbol(15);
|
|
// We draw boost arrow if boosting, or else gap temp <-> heat indicator
|
|
if (boostModeOn)
|
|
lcd.drawSymbol(2);
|
|
else
|
|
lcd.drawChar(' ');
|
|
|
|
if (systemSettings.temperatureInF) {
|
|
gui_drawTipTemp(); // Draw current tip temp
|
|
lcd.drawSymbol(0); // deg F
|
|
} else {
|
|
gui_drawTipTemp(); // Draw current tip temp
|
|
lcd.drawSymbol(1); // deg C
|
|
}
|
|
|
|
lcd.drawChar(' '); // Space out gap between battery <-> temp
|
|
|
|
gui_drawBatteryIcon();
|
|
}
|
|
}
|
|
}
|
|
// Update the setpoints for the temperature
|
|
if (boostModeOn) {
|
|
if (systemSettings.temperatureInF)
|
|
currentlyActiveTemperatureTarget = ftoTipMeasurement(
|
|
systemSettings.BoostTemp);
|
|
else
|
|
currentlyActiveTemperatureTarget = ctoTipMeasurement(
|
|
systemSettings.BoostTemp);
|
|
|
|
} else {
|
|
if (systemSettings.temperatureInF)
|
|
currentlyActiveTemperatureTarget = ftoTipMeasurement(
|
|
systemSettings.SolderingTemp);
|
|
else
|
|
currentlyActiveTemperatureTarget = ctoTipMeasurement(
|
|
systemSettings.SolderingTemp);
|
|
}
|
|
|
|
// Undervoltage test
|
|
if (checkVoltageForExit()) {
|
|
return;
|
|
}
|
|
|
|
lcd.refresh();
|
|
if (systemSettings.sensitivity && systemSettings.SleepTime)
|
|
if (xTaskGetTickCount() - lastMovementTime > sleepThres
|
|
&& xTaskGetTickCount() - lastButtonTime > sleepThres) {
|
|
if (gui_SolderingSleepingMode()) {
|
|
return; // If the function returns non-0 then exit
|
|
}
|
|
}
|
|
GUIDelay();
|
|
}
|
|
}
|
|
|
|
/* StartGUITask function */
|
|
void startGUITask(void const *argument) {
|
|
/*
|
|
* Main program states:
|
|
*
|
|
* * Soldering (gui_solderingMode)
|
|
* -> Main loop where we draw temp, and animations
|
|
* --> User presses buttons and they goto the temperature adjust screen
|
|
* ---> Display the current setpoint temperature
|
|
* ---> Use buttons to change forward and back on temperature
|
|
* ---> Both buttons or timeout for exiting
|
|
* --> Long hold front button to enter boost mode
|
|
* ---> Just temporarily sets the system into the alternate temperature for
|
|
* PID control
|
|
* --> Long hold back button to exit
|
|
* --> Double button to exit
|
|
* * Settings Menu (gui_settingsMenu)
|
|
* -> Show setting name
|
|
* --> If no button press for > 3 Seconds, scroll description
|
|
* -> If user presses back button, adjust the setting
|
|
* -> Currently the same as 1.x (future to make more depth based)
|
|
*/
|
|
|
|
uint8_t animationStep = 0;
|
|
uint8_t tempWarningState = 0;
|
|
bool buttonLockout = false;
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
switch (systemSettings.OrientationMode) {
|
|
case 0:
|
|
lcd.setRotation(false);
|
|
break;
|
|
case 1:
|
|
lcd.setRotation(true);
|
|
break;
|
|
case 2:
|
|
lcd.setRotation(false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
uint32_t ticks = xTaskGetTickCount();
|
|
ticks += 400; //4 seconds from now
|
|
while (xTaskGetTickCount() < ticks) {
|
|
if (showBootLogoIfavailable() == false)
|
|
ticks = xTaskGetTickCount();
|
|
ButtonState buttons = getButtonState();
|
|
if (buttons)
|
|
ticks = xTaskGetTickCount(); //make timeout now so we will exit
|
|
GUIDelay();
|
|
}
|
|
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
if (systemSettings.autoStartMode) {
|
|
// jump directly to the autostart mode
|
|
if (systemSettings.autoStartMode == 1)
|
|
gui_solderingMode();
|
|
}
|
|
|
|
#if ACCELDEBUG
|
|
|
|
for (;;) {
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
osDelay(100);
|
|
}
|
|
//^ Kept here for a way to block this thread
|
|
#endif
|
|
|
|
for (;;) {
|
|
ButtonState buttons = getButtonState();
|
|
if (tempWarningState == 2)
|
|
buttons = BUTTON_F_SHORT;
|
|
if (buttons != BUTTON_NONE && buttonLockout)
|
|
buttons = BUTTON_NONE;
|
|
else
|
|
buttonLockout = false;
|
|
switch (buttons) {
|
|
case BUTTON_NONE:
|
|
// Do nothing
|
|
break;
|
|
case BUTTON_BOTH:
|
|
// Not used yet
|
|
//In multi-language this might be used to reset language on a long hold or some such
|
|
break;
|
|
|
|
case BUTTON_B_LONG:
|
|
// Show the version information
|
|
{
|
|
lcd.clearScreen(); // Ensure the buffer starts clean
|
|
lcd.setCursor(0, 0); // Position the cursor at the 0,0 (top left)
|
|
lcd.setFont(1); // small font
|
|
lcd.print((char *) "V2.04 PCB"); // Print version number
|
|
lcd.printNumber(PCBVersion, 1); //Print PCB ID number
|
|
lcd.setCursor(0, 8); // second line
|
|
lcd.print(__DATE__); // print the compile date
|
|
lcd.refresh();
|
|
waitForButtonPress();
|
|
lcd.setFont(0); // reset font
|
|
}
|
|
break;
|
|
case BUTTON_F_LONG:
|
|
gui_solderingTempAdjust();
|
|
saveSettings();
|
|
break;
|
|
case BUTTON_F_SHORT:
|
|
lcd.setFont(0);
|
|
lcd.displayOnOff(true); // turn lcd on
|
|
gui_solderingMode(); // enter soldering mode
|
|
tempWarningState = 0; // make sure warning can show
|
|
break;
|
|
case BUTTON_B_SHORT:
|
|
lcd.setFont(0);
|
|
lcd.displayOnOff(true); // turn lcd on
|
|
enterSettingsMenu(); // enter the settings menu
|
|
saveSettings();
|
|
buttonLockout = true;
|
|
setCalibrationOffset(systemSettings.CalibrationOffset); // ensure cal offset is applied
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
currentlyActiveTemperatureTarget = 0; // ensure tip is off
|
|
|
|
uint16_t tipTemp = tipMeasurementToC(getTipRawTemp(1)); //This forces a faster update rate on the filtering
|
|
|
|
if (tipTemp < 50) {
|
|
|
|
if (systemSettings.sensitivity) {
|
|
|
|
if ((xTaskGetTickCount() - lastMovementTime) > 6000
|
|
&& (xTaskGetTickCount() - lastButtonTime) > 6000) {
|
|
lcd.displayOnOff(false); // turn lcd off when no movement
|
|
} else
|
|
lcd.displayOnOff(true); // turn lcd on
|
|
} else
|
|
lcd.displayOnOff(true); // turn lcd on - disabled motion sleep
|
|
} else
|
|
lcd.displayOnOff(true); // turn lcd on when temp > 50C
|
|
|
|
if (tipTemp > 600)
|
|
tipTemp = 0;
|
|
if (tipTemp > 50) {
|
|
if (tempWarningState == 0) {
|
|
currentlyActiveTemperatureTarget = 0; // ensure tip is off
|
|
lcd.displayOnOff(true); // force LCD on
|
|
if (gui_showTipTempWarning() == 1) {
|
|
tempWarningState = 2; // we can re-enter the warning
|
|
} else
|
|
tempWarningState = 1;
|
|
}
|
|
} else
|
|
tempWarningState = 0;
|
|
// Clear the lcd buffer
|
|
lcd.clearScreen();
|
|
lcd.setCursor(0, 0);
|
|
if (systemSettings.detailedIDLE) {
|
|
lcd.setFont(1);
|
|
if (tipTemp > 470) {
|
|
lcd.print(TipDisconnectedString);
|
|
} else {
|
|
lcd.print(IdleTipString);
|
|
if (systemSettings.temperatureInF)
|
|
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
|
|
else
|
|
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
|
|
lcd.print(IdleSetString);
|
|
lcd.printNumber(systemSettings.SolderingTemp, 3);
|
|
}
|
|
lcd.setCursor(0, 8);
|
|
lcd.print(InputVoltageString);
|
|
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
|
|
2);
|
|
lcd.drawChar('.');
|
|
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
|
|
1);
|
|
lcd.print("V");
|
|
|
|
} else {
|
|
lcd.setFont(0);
|
|
if (lcd.getRotation()) {
|
|
lcd.drawArea(12, 0, 84, 16, idleScreenBG);
|
|
lcd.setCursor(0, 0);
|
|
gui_drawBatteryIcon();
|
|
} else {
|
|
lcd.drawArea(0, 0, 84, 16, idleScreenBGF); // Needs to be flipped
|
|
lcd.setCursor(84, 0);
|
|
gui_drawBatteryIcon();
|
|
}
|
|
}
|
|
|
|
lcd.refresh();
|
|
animationStep++;
|
|
GUIDelay();
|
|
}
|
|
}
|
|
|
|
/* StartPIDTask function */
|
|
void startPIDTask(void const *argument) {
|
|
/*
|
|
* We take the current tip temperature & evaluate the next step for the tip
|
|
* control PWM
|
|
* Tip temperature is measured by getTipTemperature(1) so we get instant
|
|
* result
|
|
* This comes in Cx10 format
|
|
* We then control the tip temperature to aim for the setpoint in the settings
|
|
* struct
|
|
*
|
|
*/
|
|
setTipPWM(0); // disable the output driver if the output is set to be off
|
|
osDelay(500);
|
|
int32_t integralCount = 0;
|
|
int32_t derivativeLastValue = 0;
|
|
int32_t kp, ki, kd;
|
|
kp = 40;
|
|
ki = 60;
|
|
kd = 15;
|
|
// REMEBER ^^^^ These constants are backwards
|
|
// They act as dividers, so to 'increase' a P term, you make the number
|
|
// smaller.
|
|
if (getInputVoltageX10(systemSettings.voltageDiv) < 150) {
|
|
//Boot P term if < 15 Volts
|
|
kp = 30;
|
|
}
|
|
const int32_t itermMax = 100;
|
|
pidTaskNotification = xTaskGetCurrentTaskHandle();
|
|
uint32_t ulNotificationValue;
|
|
for (;;) {
|
|
ulNotificationValue = ulTaskNotifyTake( pdTRUE, 100);//Wait a max of 100ms
|
|
//This is a call to block this thread until the ADC does its samples
|
|
uint16_t rawTemp = getTipRawTemp(1); // get instantaneous reading
|
|
if (currentlyActiveTemperatureTarget) {
|
|
// Compute the PID loop in here
|
|
// Because our values here are quite large for all measurements (0-16k ~=
|
|
// 33 counts per C)
|
|
// P I & D are divisors, so inverse logic applies (beware)
|
|
|
|
// Cap the max set point to 450C
|
|
if (currentlyActiveTemperatureTarget > ctoTipMeasurement(450)) {
|
|
currentlyActiveTemperatureTarget = ctoTipMeasurement(450);
|
|
}
|
|
|
|
int32_t rawTempError = currentlyActiveTemperatureTarget - rawTemp;
|
|
int32_t ierror = (rawTempError / ki);
|
|
integralCount += ierror;
|
|
if (integralCount > (itermMax / 2))
|
|
integralCount = itermMax / 2; // prevent too much lead
|
|
else if (integralCount < -itermMax)
|
|
integralCount = itermMax;
|
|
|
|
int32_t dInput = (rawTemp - derivativeLastValue);
|
|
|
|
/*Compute PID Output*/
|
|
int32_t output = (rawTempError / kp);
|
|
if (ki)
|
|
output += integralCount;
|
|
if (kd)
|
|
output -= (dInput / kd);
|
|
|
|
if (output > 100) {
|
|
output = 100; // saturate
|
|
} else if (output < 0) {
|
|
output = 0;
|
|
}
|
|
|
|
/*if (currentlyActiveTemperatureTarget < rawTemp) {
|
|
output = 0;
|
|
}*/
|
|
setTipPWM(output);
|
|
derivativeLastValue = rawTemp; // store for next loop
|
|
|
|
} else {
|
|
setTipPWM(0); // disable the output driver if the output is set to be off
|
|
integralCount = 0;
|
|
derivativeLastValue = 0;
|
|
osDelay(100); //sleep for a bit longer
|
|
}
|
|
|
|
HAL_IWDG_Refresh(&hiwdg);
|
|
}
|
|
}
|
|
#define MOVFilter 8
|
|
void startMOVTask(void const *argument) {
|
|
osDelay(250); // wait for accelerometer to stabilize
|
|
lastMovementTime = 0;
|
|
int16_t datax[MOVFilter];
|
|
int16_t datay[MOVFilter];
|
|
int16_t dataz[MOVFilter];
|
|
uint8_t currentPointer = 0;
|
|
memset(datax, 0, MOVFilter * sizeof(int16_t));
|
|
memset(datay, 0, MOVFilter * sizeof(int16_t));
|
|
memset(dataz, 0, MOVFilter * sizeof(int16_t));
|
|
int16_t tx, ty, tz;
|
|
int32_t avgx, avgy, avgz;
|
|
if (systemSettings.sensitivity > 9)
|
|
systemSettings.sensitivity = 9;
|
|
#if ACCELDEBUG
|
|
uint32_t max = 0;
|
|
#endif
|
|
|
|
for (;;) {
|
|
int32_t threshold = 1500 + (9 * 200);
|
|
threshold -= systemSettings.sensitivity * 200; // 200 is the step size
|
|
if (PCBVersion == 2)
|
|
accel2.getAxisReadings(&tx, &ty, &tz);
|
|
else if (PCBVersion == 1)
|
|
accel.getAxisReadings(&tx, &ty, &tz);
|
|
|
|
datax[currentPointer] = (int32_t) tx;
|
|
datay[currentPointer] = (int32_t) ty;
|
|
dataz[currentPointer] = (int32_t) tz;
|
|
currentPointer = (currentPointer + 1) % MOVFilter;
|
|
#if ACCELDEBUG
|
|
// Debug for Accel
|
|
|
|
avgx = avgy = avgz = 0;
|
|
for (uint8_t i = 0; i < MOVFilter; i++) {
|
|
avgx += datax[i];
|
|
avgy += datay[i];
|
|
avgz += dataz[i];
|
|
}
|
|
avgx /= MOVFilter;
|
|
avgy /= MOVFilter;
|
|
avgz /= MOVFilter;
|
|
lcd.setFont(1);
|
|
lcd.setCursor(0, 0);
|
|
lcd.printNumber(abs(avgx - (int32_t) tx), 5);
|
|
lcd.print(" ");
|
|
lcd.printNumber(abs(avgy - (int32_t) ty), 5);
|
|
if ((abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz)) > max)
|
|
max = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
|
|
lcd.setCursor(0, 8);
|
|
lcd.printNumber(max, 5);
|
|
lcd.print(" ");
|
|
|
|
lcd.printNumber((abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz)), 5);
|
|
lcd.refresh();
|
|
if (HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET)
|
|
max = 0;
|
|
#endif
|
|
|
|
// calculate averages
|
|
avgx = avgy = avgz = 0;
|
|
for (uint8_t i = 0; i < MOVFilter; i++) {
|
|
avgx += datax[i];
|
|
avgy += datay[i];
|
|
avgz += dataz[i];
|
|
}
|
|
avgx /= MOVFilter;
|
|
avgy /= MOVFilter;
|
|
avgz /= MOVFilter;
|
|
|
|
// So now we have averages, we want to look if these are different by more
|
|
// than the threshold
|
|
int32_t error = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
|
|
// If error has occurred then we update the tick timer
|
|
if (error > threshold) {
|
|
lastMovementTime = xTaskGetTickCount();
|
|
}
|
|
|
|
osDelay(100); // Slow down update rate
|
|
}
|
|
}
|
|
/* StartRotationTask function */
|
|
void startRotationTask(void const *argument) {
|
|
/*
|
|
* This task is used to manage rotation of the LCD screen & button re-mapping
|
|
*
|
|
*/
|
|
switch (systemSettings.OrientationMode) {
|
|
case 0:
|
|
lcd.setRotation(false);
|
|
break;
|
|
case 1:
|
|
lcd.setRotation(true);
|
|
break;
|
|
case 2:
|
|
lcd.setRotation(false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
osDelay(250); // wait for accel to stabilize
|
|
|
|
for (;;) {
|
|
|
|
// a rotation event has occurred
|
|
uint8_t rotation = 0;
|
|
if (PCBVersion == 2) {
|
|
rotation = accel2.getOrientation();
|
|
} else if (PCBVersion == 1) {
|
|
rotation = accel.getOrientation();
|
|
}
|
|
if (systemSettings.OrientationMode == 2) {
|
|
if (rotation != 0) {
|
|
lcd.setRotation(rotation == 2); // link the data through
|
|
}
|
|
}
|
|
|
|
osDelay(500);
|
|
}
|
|
}
|
|
|
|
#define FLASH_LOGOADDR \
|
|
(0x8000000 | 0xF800) /*second last page of flash set aside for logo image*/
|
|
|
|
bool showBootLogoIfavailable() {
|
|
// check if the header is there (0xAA,0x55,0xF0,0x0D)
|
|
// If so display logo
|
|
uint16_t temp[98];
|
|
|
|
for (uint8_t i = 0; i < (98); i++) {
|
|
temp[i] = *(uint16_t *) (FLASH_LOGOADDR + (i * 2));
|
|
}
|
|
uint8_t temp8[98 * 2];
|
|
for (uint8_t i = 0; i < 98; i++) {
|
|
temp8[i * 2] = temp[i] >> 8;
|
|
temp8[i * 2 + 1] = temp[i] & 0xFF;
|
|
}
|
|
|
|
if (temp8[0] != 0xAA)
|
|
return false;
|
|
if (temp8[1] != 0x55)
|
|
return false;
|
|
if (temp8[2] != 0xF0)
|
|
return false;
|
|
if (temp8[3] != 0x0D)
|
|
return false;
|
|
|
|
lcd.drawArea(0, 0, 96, 16, (uint8_t *) (temp8 + 4));
|
|
lcd.refresh();
|
|
return true;
|
|
}
|
|
|
|
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc) {
|
|
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
|
|
|
if (pidTaskNotification) {
|
|
/* Notify the task that the transmission is complete. */
|
|
vTaskNotifyGiveFromISR(pidTaskNotification, &xHigherPriorityTaskWoken);
|
|
|
|
/* If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch
|
|
should be performed to ensure the interrupt returns directly to the highest
|
|
priority task. The macro used for this purpose is dependent on the port in
|
|
use and may be called portEND_SWITCHING_ISR(). */
|
|
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
|
}
|
|
}
|