1
0
forked from me/IronOS
Files
IronOS/workspace/TS100/src/main.cpp
2018-04-13 16:19:05 +10:00

1085 lines
30 KiB
C++

// By Ben V. Brown - V2.0 of the TS100 firmware
#include <MMA8652FC.hpp>
#include <main.hpp>
#include "OLED.hpp"
#include "Settings.h"
#include "Translation.h"
#include "cmsis_os.h"
#include "stdlib.h"
#include "stm32f1xx_hal.h"
#include "string.h"
#include "LIS2DH12.hpp"
#include <gui.hpp>
#define ACCELDEBUG 0
// C++ objects
OLED lcd(&hi2c1);
MMA8652FC accel(&hi2c1);
LIS2DH12 accel2(&hi2c1);
uint8_t PCBVersion = 0;
// File local variables
uint16_t currentlyActiveTemperatureTarget = 0;
uint32_t lastMovementTime = 0;
uint32_t lastButtonTime = 0;
// FreeRTOS variables
osThreadId GUITaskHandle;
osThreadId PIDTaskHandle;
osThreadId ROTTaskHandle;
osThreadId MOVTaskHandle;
static TaskHandle_t pidTaskNotification = NULL;
void startGUITask(void const *argument);
void startPIDTask(void const *argument);
void startMOVTask(void const *argument);
void startRotationTask(void const *argument);
// End FreeRTOS
// Main sets up the hardware then hands over to the FreeRTOS kernel
int main(void) {
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
*/
HAL_Init();
Setup_HAL(); // Setup all the HAL objects
setTipPWM(0);
lcd.initialize(); // start up the LCD
lcd.setFont(0); // default to bigger font
//Testing for new weird board version
uint8_t buffer[1];
HAL_IWDG_Refresh(&hiwdg);
if (HAL_I2C_Mem_Read(&hi2c1, 29 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT, buffer, 1,
1000) == HAL_OK) {
PCBVersion = 1;
accel.initalize(); // this sets up the I2C registers and loads up the default
// settings
} else if (HAL_I2C_Mem_Read(&hi2c1, 25 << 1, 0x0F, I2C_MEMADD_SIZE_8BIT,
buffer, 1, 1000) == HAL_OK) {
PCBVersion = 2;
//Setup the ST Accelerometer
accel2.initalize(); //startup the accelerometer
} else {
PCBVersion = 3;
systemSettings.SleepTime = 0;
systemSettings.ShutdownTime = 0; //No accel -> disable sleep
systemSettings.sensitivity = 0;
}
HAL_IWDG_Refresh(&hiwdg);
restoreSettings(); // load the settings from flash
setCalibrationOffset(systemSettings.CalibrationOffset);
HAL_IWDG_Refresh(&hiwdg);
/* Create the thread(s) */
/* definition and creation of GUITask */
osThreadDef(GUITask, startGUITask, osPriorityBelowNormal, 0, 768); //3k
GUITaskHandle = osThreadCreate(osThread(GUITask), NULL);
/* definition and creation of PIDTask */
osThreadDef(PIDTask, startPIDTask, osPriorityRealtime, 0, 512); //2k
PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL);
if (PCBVersion != 3) {
/* definition and creation of ROTTask */
osThreadDef(ROTTask, startRotationTask, osPriorityLow, 0, 256); //1k
ROTTaskHandle = osThreadCreate(osThread(ROTTask), NULL);
/* definition and creation of MOVTask */
osThreadDef(MOVTask, startMOVTask, osPriorityNormal, 0, 512); //2k
MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL);
}
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
while (1) {
}
}
void GUIDelay() {
osDelay(66); // 15Hz
}
void gui_drawTipTemp() {
// Draw tip temp handling unit conversion & tolerance near setpoint
uint16_t Temp = getTipRawTemp(0);
if (systemSettings.temperatureInF)
Temp = tipMeasurementToF(Temp);
else
Temp = tipMeasurementToC(Temp);
//[Disabled 24/11/2017] Round if nearby
// if (abs(Temp - systemSettings.SolderingTemp) < 3)
// Temp = systemSettings.SolderingTemp;
lcd.printNumber(Temp, 3); // Draw the tip temp out finally
}
ButtonState getButtonState() {
/*
* Read in the buttons and then determine if a state change needs to occur
*/
/*
* If the previous state was 00 Then we want to latch the new state if
* different & update time
* If the previous state was !00 Then we want to search if we trigger long
* press (buttons still down), or if release we trigger press
* (downtime>filter)
*/
static uint8_t previousState = 0;
static uint32_t previousStateChange = 0;
const uint16_t timeout = 40;
uint8_t currentState;
currentState = (
HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
1 : 0) << 0;
currentState |= (
HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
1 : 0) << 1;
if (currentState)
lastButtonTime = xTaskGetTickCount();
if (currentState == previousState) {
if (currentState == 0)
return BUTTON_NONE;
if ((xTaskGetTickCount() - previousStateChange) > timeout) {
// User has been holding the button down
// We want to send a buttong is held message
if (currentState == 0x01)
return BUTTON_F_LONG;
else if (currentState == 0x02)
return BUTTON_B_LONG;
else
return BUTTON_NONE; // Both being held case, we dont long hold this
} else
return BUTTON_NONE;
} else {
// A change in button state has occurred
ButtonState retVal = BUTTON_NONE;
if (currentState) {
// User has pressed a button down (nothing done on down)
} else {
// User has released buttons
// If they previously had the buttons down we want to check if they were <
// long hold and trigger a press
if ((xTaskGetTickCount() - previousStateChange) < timeout) {
// The user didn't hold the button for long
// So we send button press
if (previousState == 0x01)
retVal = BUTTON_F_SHORT;
else if (previousState == 0x02)
retVal = BUTTON_B_SHORT;
else
retVal = BUTTON_BOTH; // Both being held case
}
}
previousState = currentState;
previousStateChange = xTaskGetTickCount();
return retVal;
}
return BUTTON_NONE;
}
static void waitForButtonPress() {
// we are just lazy and sleep until user confirms button press
// This also eats the button press event!
ButtonState buttons = getButtonState();
while (buttons) {
buttons = getButtonState();
GUIDelay();
lcd.refresh();
}
while (!buttons) {
buttons = getButtonState();
GUIDelay();
lcd.refresh();
}
}
void waitForButtonPressOrTimeout(uint32_t timeout) {
timeout += xTaskGetTickCount();
// Make timeout our exit value
for (;;) {
ButtonState buttons = getButtonState();
if (buttons)
return;
if (xTaskGetTickCount() > timeout)
return;
GUIDelay();
}
}
// returns true if undervoltage has occured
static bool checkVoltageForExit() {
uint16_t v = getInputVoltageX10(systemSettings.voltageDiv);
if ((v < lookupVoltageLevel(systemSettings.cutoutSetting))) {
lcd.clearScreen();
lcd.setCursor(0, 0);
if (systemSettings.detailedSoldering) {
lcd.setFont(1);
lcd.print(UndervoltageString);
lcd.setCursor(0, 8);
lcd.print(InputVoltageString);
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
2);
lcd.drawChar('.');
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
1);
lcd.print("V");
} else {
lcd.setFont(0);
lcd.print(UVLOWarningString);
}
lcd.refresh();
currentlyActiveTemperatureTarget = 0;
waitForButtonPress();
return true;
}
return false;
}
static void gui_drawBatteryIcon() {
if (systemSettings.cutoutSetting) {
// User is on a lithium battery
// we need to calculate which of the 10 levels they are on
uint8_t cellCount = systemSettings.cutoutSetting + 2;
uint16_t cellV = getInputVoltageX10(systemSettings.voltageDiv)
/ cellCount;
// Should give us approx cell voltage X10
// Range is 42 -> 33 = 9 steps therefore we will use battery 1-10
if (cellV < 33)
cellV = 33;
cellV -= 33; // Should leave us a number of 0-9
if (cellV > 9)
cellV = 9;
lcd.drawBattery(cellV + 1);
} else
lcd.drawSymbol(16); // Draw the DC Logo
}
static void gui_solderingTempAdjust() {
uint32_t lastChange = xTaskGetTickCount();
currentlyActiveTemperatureTarget = 0;
for (;;) {
lcd.setCursor(0, 0);
lcd.clearScreen();
lcd.setFont(0);
ButtonState buttons = getButtonState();
if (buttons)
lastChange = xTaskGetTickCount();
switch (buttons) {
case BUTTON_NONE:
// stay
break;
case BUTTON_BOTH:
// exit
return;
break;
case BUTTON_B_LONG:
break;
case BUTTON_F_LONG:
break;
case BUTTON_F_SHORT:
if (lcd.getRotation()) {
systemSettings.SolderingTemp += 10; // add 10
} else {
systemSettings.SolderingTemp -= 10; // sub 10
}
break;
case BUTTON_B_SHORT:
if (!lcd.getRotation()) {
systemSettings.SolderingTemp += 10; // add 10
} else {
systemSettings.SolderingTemp -= 10; // sub 10
}
break;
default:
break;
}
// constrain between 50-450 C
if (systemSettings.temperatureInF) {
if (systemSettings.SolderingTemp > 850)
systemSettings.SolderingTemp = 850;
} else {
if (systemSettings.SolderingTemp > 450)
systemSettings.SolderingTemp = 450;
}
if (systemSettings.temperatureInF) {
if (systemSettings.SolderingTemp < 120)
systemSettings.SolderingTemp = 120;
} else {
if (systemSettings.SolderingTemp < 50)
systemSettings.SolderingTemp = 50;
}
if (xTaskGetTickCount() - lastChange > 200)
return; // exit if user just doesn't press anything for a bit
lcd.drawChar('-');
lcd.drawChar(' ');
lcd.printNumber(systemSettings.SolderingTemp, 3);
if (systemSettings.temperatureInF)
lcd.drawSymbol(0);
else
lcd.drawSymbol(1);
lcd.drawChar(' ');
lcd.drawChar('+');
lcd.refresh();
GUIDelay();
}
}
static int gui_showTipTempWarning() {
for (;;) {
uint16_t tipTemp = tipMeasurementToC(getTipRawTemp(0));
lcd.clearScreen();
lcd.setCursor(0, 0);
if (systemSettings.detailedSoldering) {
lcd.setFont(1);
lcd.print(WarningAdvancedString);
lcd.setCursor(0, 8);
lcd.print(WarningTipTempString);
if (systemSettings.temperatureInF) {
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
lcd.print("F");
} else {
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
lcd.print("C");
}
} else {
lcd.setFont(0);
lcd.drawArea(0, 0, 24, 16, WarningBlock24);
lcd.setCursor(24, 0);
// lcd.print(WarningSimpleString);
lcd.print(" ");
if (systemSettings.temperatureInF) {
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
lcd.drawSymbol(0);
} else {
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
lcd.drawSymbol(1);
}
}
if (systemSettings.coolingTempBlink && tipTemp > 70) {
if (xTaskGetTickCount() % 50 < 25)
lcd.clearScreen();
}
lcd.refresh();
ButtonState buttons = getButtonState();
if (buttons == BUTTON_F_SHORT)
return 1;
else if (buttons == BUTTON_B_SHORT || buttons == BUTTON_BOTH)
return 0;
if (tipTemp < 50)
return 0; //Exit the warning screen
GUIDelay();
}
return 0;
}
static uint16_t min(uint16_t a, uint16_t b) {
if (a > b)
return b;
else
return a;
}
static int gui_SolderingSleepingMode() {
// Drop to sleep temperature and display until movement or button press
for (;;) {
ButtonState buttons = getButtonState();
if (buttons)
return 0;
if ((xTaskGetTickCount() - lastMovementTime < 100)
|| (xTaskGetTickCount() - lastButtonTime < 100))
return 0; // user moved or pressed a button, go back to soldering
if (checkVoltageForExit())
return 1; // return non-zero on error
if (systemSettings.temperatureInF)
currentlyActiveTemperatureTarget = ftoTipMeasurement(
min(systemSettings.SleepTemp,
systemSettings.SolderingTemp));
else
currentlyActiveTemperatureTarget = ctoTipMeasurement(
min(systemSettings.SleepTemp,
systemSettings.SolderingTemp));
// draw the lcd
uint16_t tipTemp;
if (systemSettings.temperatureInF)
tipTemp = tipMeasurementToF(getTipRawTemp(0));
else
tipTemp = tipMeasurementToC(getTipRawTemp(0));
lcd.clearScreen();
lcd.setCursor(0, 0);
if (systemSettings.detailedSoldering) {
lcd.setFont(1);
lcd.print(SleepingAdvancedString);
lcd.setCursor(0, 8);
lcd.print(SleepingTipAdvancedString);
lcd.printNumber(tipTemp, 3);
if (systemSettings.temperatureInF)
lcd.print("F");
else
lcd.print("C");
lcd.print(" ");
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
2);
lcd.drawChar('.');
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
1);
lcd.drawChar('V');
} else {
lcd.setFont(0);
lcd.print(SleepingSimpleString);
lcd.printNumber(tipTemp, 3);
if (systemSettings.temperatureInF)
lcd.drawSymbol(0);
else
lcd.drawSymbol(1);
}
if (systemSettings.ShutdownTime) // only allow shutdown exit if time > 0
if (lastMovementTime)
if (((uint32_t) (xTaskGetTickCount() - lastMovementTime))
> (uint32_t) (systemSettings.ShutdownTime * 60 * 100)) {
// shutdown
currentlyActiveTemperatureTarget = 0;
return 1; // we want to exit soldering mode
}
lcd.refresh();
GUIDelay();
}
return 0;
}
static void gui_solderingMode() {
/*
* * Soldering (gui_solderingMode)
* -> Main loop where we draw temp, and animations
* --> User presses buttons and they goto the temperature adjust screen
* ---> Display the current setpoint temperature
* ---> Use buttons to change forward and back on temperature
* ---> Both buttons or timeout for exiting
* --> Long hold front button to enter boost mode
* ---> Just temporarily sets the system into the alternate temperature for
* PID control
* --> Long hold back button to exit
* --> Double button to exit
*/
bool boostModeOn = false;
uint32_t sleepThres = 0;
if (systemSettings.SleepTime < 6)
sleepThres = systemSettings.SleepTime * 10 * 100;
else
sleepThres = (systemSettings.SleepTime - 5) * 60 * 100;
for (;;) {
uint16_t tipTemp = getTipRawTemp(0);
ButtonState buttons = getButtonState();
switch (buttons) {
case BUTTON_NONE:
// stay
boostModeOn = false;
break;
case BUTTON_BOTH:
// exit
return;
break;
case BUTTON_B_LONG:
return; // exit on back long hold
break;
case BUTTON_F_LONG:
// if boost mode is enabled turn it on
if (systemSettings.boostModeEnabled)
boostModeOn = true;
break;
case BUTTON_F_SHORT:
case BUTTON_B_SHORT: {
uint16_t oldTemp = systemSettings.SolderingTemp;
gui_solderingTempAdjust(); // goto adjust temp mode
if (oldTemp != systemSettings.SolderingTemp) {
saveSettings(); // only save on change
}
}
break;
default:
break;
}
// else we update the screen information
lcd.setCursor(0, 0);
lcd.clearScreen();
lcd.setFont(0);
if (tipTemp > 16300) {
lcd.print(BadTipString);
lcd.refresh();
currentlyActiveTemperatureTarget = 0;
waitForButtonPress();
return;
} else {
if (systemSettings.detailedSoldering) {
lcd.setFont(1);
lcd.print(SolderingAdvancedPowerPrompt); //Power:
lcd.printNumber(getTipPWM(), 3);
lcd.print("%");
lcd.setCursor(0, 8);
lcd.print(SleepingTipAdvancedString);
uint16_t Temp = getTipRawTemp(0);
if (systemSettings.temperatureInF)
Temp = tipMeasurementToF(Temp);
else
Temp = tipMeasurementToC(Temp);
lcd.printNumber(Temp, 3);
if (systemSettings.temperatureInF)
lcd.print("F");
else
lcd.print("C");
lcd.print(" ");
lcd.printNumber(
getInputVoltageX10(systemSettings.voltageDiv) / 10, 2);
lcd.drawChar('.');
lcd.printNumber(
getInputVoltageX10(systemSettings.voltageDiv) % 10, 1);
lcd.drawChar('V');
} else {
// We switch the layout direction depending on the orientation of the lcd.
if (lcd.getRotation()) {
// battery
gui_drawBatteryIcon();
lcd.drawChar(' '); // Space out gap between battery <-> temp
if (systemSettings.temperatureInF) {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(0); // deg F
} else {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(1); // deg C
}
// We draw boost arrow if boosting, or else gap temp <-> heat indicator
if (boostModeOn)
lcd.drawSymbol(2);
else
lcd.drawChar(' ');
// Draw heating/cooling symbols
// If tip PWM > 10% then we are 'heating'
if (getTipPWM() > 10)
lcd.drawSymbol(14);
else
lcd.drawSymbol(15);
} else {
// Draw heating/cooling symbols
// If tip PWM > 10% then we are 'heating'
if (getTipPWM() > 10)
lcd.drawSymbol(14);
else
lcd.drawSymbol(15);
// We draw boost arrow if boosting, or else gap temp <-> heat indicator
if (boostModeOn)
lcd.drawSymbol(2);
else
lcd.drawChar(' ');
if (systemSettings.temperatureInF) {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(0); // deg F
} else {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(1); // deg C
}
lcd.drawChar(' '); // Space out gap between battery <-> temp
gui_drawBatteryIcon();
}
}
}
// Update the setpoints for the temperature
if (boostModeOn) {
if (systemSettings.temperatureInF)
currentlyActiveTemperatureTarget = ftoTipMeasurement(
systemSettings.BoostTemp);
else
currentlyActiveTemperatureTarget = ctoTipMeasurement(
systemSettings.BoostTemp);
} else {
if (systemSettings.temperatureInF)
currentlyActiveTemperatureTarget = ftoTipMeasurement(
systemSettings.SolderingTemp);
else
currentlyActiveTemperatureTarget = ctoTipMeasurement(
systemSettings.SolderingTemp);
}
// Undervoltage test
if (checkVoltageForExit()) {
return;
}
lcd.refresh();
if (systemSettings.sensitivity && systemSettings.SleepTime)
if (xTaskGetTickCount() - lastMovementTime > sleepThres
&& xTaskGetTickCount() - lastButtonTime > sleepThres) {
if (gui_SolderingSleepingMode()) {
return; // If the function returns non-0 then exit
}
}
GUIDelay();
}
}
/* StartGUITask function */
void startGUITask(void const *argument) {
/*
* Main program states:
*
* * Soldering (gui_solderingMode)
* -> Main loop where we draw temp, and animations
* --> User presses buttons and they goto the temperature adjust screen
* ---> Display the current setpoint temperature
* ---> Use buttons to change forward and back on temperature
* ---> Both buttons or timeout for exiting
* --> Long hold front button to enter boost mode
* ---> Just temporarily sets the system into the alternate temperature for
* PID control
* --> Long hold back button to exit
* --> Double button to exit
* * Settings Menu (gui_settingsMenu)
* -> Show setting name
* --> If no button press for > 3 Seconds, scroll description
* -> If user presses back button, adjust the setting
* -> Currently the same as 1.x (future to make more depth based)
*/
uint8_t animationStep = 0;
uint8_t tempWarningState = 0;
bool buttonLockout = false;
HAL_IWDG_Refresh(&hiwdg);
switch (systemSettings.OrientationMode) {
case 0:
lcd.setRotation(false);
break;
case 1:
lcd.setRotation(true);
break;
case 2:
lcd.setRotation(false);
break;
default:
break;
}
uint32_t ticks = xTaskGetTickCount();
ticks += 400; //4 seconds from now
while (xTaskGetTickCount() < ticks) {
if (showBootLogoIfavailable() == false)
ticks = xTaskGetTickCount();
ButtonState buttons = getButtonState();
if (buttons)
ticks = xTaskGetTickCount(); //make timeout now so we will exit
GUIDelay();
}
HAL_IWDG_Refresh(&hiwdg);
if (systemSettings.autoStartMode) {
// jump directly to the autostart mode
if (systemSettings.autoStartMode == 1)
gui_solderingMode();
}
#if ACCELDEBUG
for (;;) {
HAL_IWDG_Refresh(&hiwdg);
osDelay(100);
}
//^ Kept here for a way to block this thread
#endif
for (;;) {
ButtonState buttons = getButtonState();
if (tempWarningState == 2)
buttons = BUTTON_F_SHORT;
if (buttons != BUTTON_NONE && buttonLockout)
buttons = BUTTON_NONE;
else
buttonLockout = false;
switch (buttons) {
case BUTTON_NONE:
// Do nothing
break;
case BUTTON_BOTH:
// Not used yet
//In multi-language this might be used to reset language on a long hold or some such
break;
case BUTTON_B_LONG:
// Show the version information
{
lcd.clearScreen(); // Ensure the buffer starts clean
lcd.setCursor(0, 0); // Position the cursor at the 0,0 (top left)
lcd.setFont(1); // small font
lcd.print((char *) "V2.04 PCB"); // Print version number
lcd.printNumber(PCBVersion, 1); //Print PCB ID number
lcd.setCursor(0, 8); // second line
lcd.print(__DATE__); // print the compile date
lcd.refresh();
waitForButtonPress();
lcd.setFont(0); // reset font
}
break;
case BUTTON_F_LONG:
gui_solderingTempAdjust();
saveSettings();
break;
case BUTTON_F_SHORT:
lcd.setFont(0);
lcd.displayOnOff(true); // turn lcd on
gui_solderingMode(); // enter soldering mode
tempWarningState = 0; // make sure warning can show
break;
case BUTTON_B_SHORT:
lcd.setFont(0);
lcd.displayOnOff(true); // turn lcd on
enterSettingsMenu(); // enter the settings menu
saveSettings();
buttonLockout = true;
setCalibrationOffset(systemSettings.CalibrationOffset); // ensure cal offset is applied
break;
default:
break;
}
currentlyActiveTemperatureTarget = 0; // ensure tip is off
uint16_t tipTemp = tipMeasurementToC(getTipRawTemp(1)); //This forces a faster update rate on the filtering
if (tipTemp < 50) {
if (systemSettings.sensitivity) {
if ((xTaskGetTickCount() - lastMovementTime) > 6000
&& (xTaskGetTickCount() - lastButtonTime) > 6000) {
lcd.displayOnOff(false); // turn lcd off when no movement
} else
lcd.displayOnOff(true); // turn lcd on
} else
lcd.displayOnOff(true); // turn lcd on - disabled motion sleep
} else
lcd.displayOnOff(true); // turn lcd on when temp > 50C
if (tipTemp > 600)
tipTemp = 0;
if (tipTemp > 50) {
if (tempWarningState == 0) {
currentlyActiveTemperatureTarget = 0; // ensure tip is off
lcd.displayOnOff(true); // force LCD on
if (gui_showTipTempWarning() == 1) {
tempWarningState = 2; // we can re-enter the warning
} else
tempWarningState = 1;
}
} else
tempWarningState = 0;
// Clear the lcd buffer
lcd.clearScreen();
lcd.setCursor(0, 0);
if (systemSettings.detailedIDLE) {
lcd.setFont(1);
if (tipTemp > 470) {
lcd.print(TipDisconnectedString);
} else {
lcd.print(IdleTipString);
if (systemSettings.temperatureInF)
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
else
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
lcd.print(IdleSetString);
lcd.printNumber(systemSettings.SolderingTemp, 3);
}
lcd.setCursor(0, 8);
lcd.print(InputVoltageString);
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
2);
lcd.drawChar('.');
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
1);
lcd.print("V");
} else {
lcd.setFont(0);
if (lcd.getRotation()) {
lcd.drawArea(12, 0, 84, 16, idleScreenBG);
lcd.setCursor(0, 0);
gui_drawBatteryIcon();
} else {
lcd.drawArea(0, 0, 84, 16, idleScreenBGF); // Needs to be flipped
lcd.setCursor(84, 0);
gui_drawBatteryIcon();
}
}
lcd.refresh();
animationStep++;
GUIDelay();
}
}
/* StartPIDTask function */
void startPIDTask(void const *argument) {
/*
* We take the current tip temperature & evaluate the next step for the tip
* control PWM
* Tip temperature is measured by getTipTemperature(1) so we get instant
* result
* This comes in Cx10 format
* We then control the tip temperature to aim for the setpoint in the settings
* struct
*
*/
setTipPWM(0); // disable the output driver if the output is set to be off
osDelay(500);
int32_t integralCount = 0;
int32_t derivativeLastValue = 0;
int32_t kp, ki, kd;
kp = 40;
ki = 60;
kd = 15;
// REMEBER ^^^^ These constants are backwards
// They act as dividers, so to 'increase' a P term, you make the number
// smaller.
if (getInputVoltageX10(systemSettings.voltageDiv) < 150) {
//Boot P term if < 15 Volts
kp = 30;
}
const int32_t itermMax = 100;
pidTaskNotification = xTaskGetCurrentTaskHandle();
uint32_t ulNotificationValue;
for (;;) {
ulNotificationValue = ulTaskNotifyTake( pdTRUE, 100);//Wait a max of 100ms
//This is a call to block this thread until the ADC does its samples
uint16_t rawTemp = getTipRawTemp(1); // get instantaneous reading
if (currentlyActiveTemperatureTarget) {
// Compute the PID loop in here
// Because our values here are quite large for all measurements (0-16k ~=
// 33 counts per C)
// P I & D are divisors, so inverse logic applies (beware)
// Cap the max set point to 450C
if (currentlyActiveTemperatureTarget > ctoTipMeasurement(450)) {
currentlyActiveTemperatureTarget = ctoTipMeasurement(450);
}
int32_t rawTempError = currentlyActiveTemperatureTarget - rawTemp;
int32_t ierror = (rawTempError / ki);
integralCount += ierror;
if (integralCount > (itermMax / 2))
integralCount = itermMax / 2; // prevent too much lead
else if (integralCount < -itermMax)
integralCount = itermMax;
int32_t dInput = (rawTemp - derivativeLastValue);
/*Compute PID Output*/
int32_t output = (rawTempError / kp);
if (ki)
output += integralCount;
if (kd)
output -= (dInput / kd);
if (output > 100) {
output = 100; // saturate
} else if (output < 0) {
output = 0;
}
/*if (currentlyActiveTemperatureTarget < rawTemp) {
output = 0;
}*/
setTipPWM(output);
derivativeLastValue = rawTemp; // store for next loop
} else {
setTipPWM(0); // disable the output driver if the output is set to be off
integralCount = 0;
derivativeLastValue = 0;
osDelay(100); //sleep for a bit longer
}
HAL_IWDG_Refresh(&hiwdg);
}
}
#define MOVFilter 8
void startMOVTask(void const *argument) {
osDelay(250); // wait for accelerometer to stabilize
lastMovementTime = 0;
int16_t datax[MOVFilter];
int16_t datay[MOVFilter];
int16_t dataz[MOVFilter];
uint8_t currentPointer = 0;
memset(datax, 0, MOVFilter * sizeof(int16_t));
memset(datay, 0, MOVFilter * sizeof(int16_t));
memset(dataz, 0, MOVFilter * sizeof(int16_t));
int16_t tx, ty, tz;
int32_t avgx, avgy, avgz;
if (systemSettings.sensitivity > 9)
systemSettings.sensitivity = 9;
#if ACCELDEBUG
uint32_t max = 0;
#endif
for (;;) {
int32_t threshold = 1500 + (9 * 200);
threshold -= systemSettings.sensitivity * 200; // 200 is the step size
if (PCBVersion == 2)
accel2.getAxisReadings(&tx, &ty, &tz);
else if (PCBVersion == 1)
accel.getAxisReadings(&tx, &ty, &tz);
datax[currentPointer] = (int32_t) tx;
datay[currentPointer] = (int32_t) ty;
dataz[currentPointer] = (int32_t) tz;
currentPointer = (currentPointer + 1) % MOVFilter;
#if ACCELDEBUG
// Debug for Accel
avgx = avgy = avgz = 0;
for (uint8_t i = 0; i < MOVFilter; i++) {
avgx += datax[i];
avgy += datay[i];
avgz += dataz[i];
}
avgx /= MOVFilter;
avgy /= MOVFilter;
avgz /= MOVFilter;
lcd.setFont(1);
lcd.setCursor(0, 0);
lcd.printNumber(abs(avgx - (int32_t) tx), 5);
lcd.print(" ");
lcd.printNumber(abs(avgy - (int32_t) ty), 5);
if ((abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz)) > max)
max = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
lcd.setCursor(0, 8);
lcd.printNumber(max, 5);
lcd.print(" ");
lcd.printNumber((abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz)), 5);
lcd.refresh();
if (HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET)
max = 0;
#endif
// calculate averages
avgx = avgy = avgz = 0;
for (uint8_t i = 0; i < MOVFilter; i++) {
avgx += datax[i];
avgy += datay[i];
avgz += dataz[i];
}
avgx /= MOVFilter;
avgy /= MOVFilter;
avgz /= MOVFilter;
// So now we have averages, we want to look if these are different by more
// than the threshold
int32_t error = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
// If error has occurred then we update the tick timer
if (error > threshold) {
lastMovementTime = xTaskGetTickCount();
}
osDelay(100); // Slow down update rate
}
}
/* StartRotationTask function */
void startRotationTask(void const *argument) {
/*
* This task is used to manage rotation of the LCD screen & button re-mapping
*
*/
switch (systemSettings.OrientationMode) {
case 0:
lcd.setRotation(false);
break;
case 1:
lcd.setRotation(true);
break;
case 2:
lcd.setRotation(false);
break;
default:
break;
}
osDelay(250); // wait for accel to stabilize
for (;;) {
// a rotation event has occurred
uint8_t rotation = 0;
if (PCBVersion == 2) {
rotation = accel2.getOrientation();
} else if (PCBVersion == 1) {
rotation = accel.getOrientation();
}
if (systemSettings.OrientationMode == 2) {
if (rotation != 0) {
lcd.setRotation(rotation == 2); // link the data through
}
}
osDelay(500);
}
}
#define FLASH_LOGOADDR \
(0x8000000 | 0xF800) /*second last page of flash set aside for logo image*/
bool showBootLogoIfavailable() {
// check if the header is there (0xAA,0x55,0xF0,0x0D)
// If so display logo
uint16_t temp[98];
for (uint8_t i = 0; i < (98); i++) {
temp[i] = *(uint16_t *) (FLASH_LOGOADDR + (i * 2));
}
uint8_t temp8[98 * 2];
for (uint8_t i = 0; i < 98; i++) {
temp8[i * 2] = temp[i] >> 8;
temp8[i * 2 + 1] = temp[i] & 0xFF;
}
if (temp8[0] != 0xAA)
return false;
if (temp8[1] != 0x55)
return false;
if (temp8[2] != 0xF0)
return false;
if (temp8[3] != 0x0D)
return false;
lcd.drawArea(0, 0, 96, 16, (uint8_t *) (temp8 + 4));
lcd.refresh();
return true;
}
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
if (pidTaskNotification) {
/* Notify the task that the transmission is complete. */
vTaskNotifyGiveFromISR(pidTaskNotification, &xHigherPriorityTaskWoken);
/* If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch
should be performed to ensure the interrupt returns directly to the highest
priority task. The macro used for this purpose is dependent on the port in
use and may be called portEND_SWITCHING_ISR(). */
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}