183 lines
5.1 KiB
C++
183 lines
5.1 KiB
C++
// BSP mapping functions
|
|
|
|
#include "BSP.h"
|
|
#include "I2C_Wrapper.hpp"
|
|
#include "Model_Config.h"
|
|
#include "Pins.h"
|
|
#include "Setup.h"
|
|
#include "Utils.h"
|
|
#include "history.hpp"
|
|
#include "main.hpp"
|
|
#include <IRQ.h>
|
|
volatile uint16_t PWMSafetyTimer = 0;
|
|
volatile uint8_t pendingPWM = 0;
|
|
uint16_t totalPWM = 255;
|
|
const uint16_t powerPWM = 255;
|
|
|
|
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
|
|
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
|
|
|
#ifdef TEMP_NTC
|
|
// Lookup table for the NTC
|
|
// Stored as ADCReading,Temp in degC
|
|
static const uint16_t NTCHandleLookup[] = {
|
|
// ADC Reading , Temp in C
|
|
11292, 600, //
|
|
12782, 550, //
|
|
14380, 500, //
|
|
16061, 450, //
|
|
17793, 400, //
|
|
19541, 350, //
|
|
21261, 300, //
|
|
22915, 250, //
|
|
24465, 200, //
|
|
25882, 150, //
|
|
27146, 100, //
|
|
28249, 50, //
|
|
29189, 0, //
|
|
};
|
|
const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t));
|
|
#endif
|
|
|
|
// These are called by the HAL after the corresponding events from the system
|
|
// timers.
|
|
|
|
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
// Period has elapsed
|
|
if (htim->Instance == TIM1) {
|
|
// STM uses this for internal functions as a counter for timeouts
|
|
HAL_IncTick();
|
|
}
|
|
}
|
|
uint16_t getHandleTemperature() {
|
|
int32_t result = getADC(0);
|
|
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result);
|
|
}
|
|
|
|
uint16_t getTipInstantTemperature() { return getADC(2); }
|
|
|
|
uint16_t getTipRawTemp(uint8_t refresh) {
|
|
if (refresh) {
|
|
uint16_t lastSample = getTipInstantTemperature();
|
|
rawTempFilter.update(lastSample);
|
|
return lastSample;
|
|
} else {
|
|
return rawTempFilter.average();
|
|
}
|
|
}
|
|
|
|
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
|
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
|
// Therefore we can divide down from there
|
|
// Multiplying ADC max by 4 for additional calibration options,
|
|
// ideal term is 467
|
|
static uint8_t preFillneeded = 10;
|
|
static uint32_t samples[BATTFILTERDEPTH];
|
|
static uint8_t index = 0;
|
|
if (preFillneeded) {
|
|
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
|
samples[i] = getADC(1);
|
|
preFillneeded--;
|
|
}
|
|
if (sample) {
|
|
samples[index] = getADC(1);
|
|
index = (index + 1) % BATTFILTERDEPTH;
|
|
}
|
|
uint32_t sum = 0;
|
|
|
|
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
|
sum += samples[i];
|
|
|
|
sum /= BATTFILTERDEPTH;
|
|
if (divisor == 0) {
|
|
divisor = 1;
|
|
}
|
|
return sum * 4 / divisor;
|
|
}
|
|
bool tryBetterPWM(uint8_t pwm) {
|
|
// We dont need this for the MHP30
|
|
return false;
|
|
}
|
|
void setTipPWM(uint8_t pulse) {
|
|
// We can just set the timer directly
|
|
htim3.Instance->CCR1 = pulse;
|
|
}
|
|
|
|
void unstick_I2C() {
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
int timeout = 100;
|
|
int timeout_cnt = 0;
|
|
|
|
// 1. Clear PE bit.
|
|
hi2c1.Instance->CR1 &= ~(0x0001);
|
|
/**I2C1 GPIO Configuration
|
|
PB6 ------> I2C1_SCL
|
|
PB7 ------> I2C1_SDA
|
|
*/
|
|
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
|
// Move clock to release I2C
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
timeout_cnt++;
|
|
if (timeout_cnt > timeout)
|
|
return;
|
|
}
|
|
|
|
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
// 13. Set SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 |= 0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 &= ~0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
|
hi2c1.Instance->CR1 |= 0x0001;
|
|
|
|
// Call initialization function.
|
|
HAL_I2C_Init(&hi2c1);
|
|
}
|
|
|
|
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
|
|
void BSPInit(void) {}
|
|
|
|
void reboot() { NVIC_SystemReset(); }
|
|
|
|
void delay_ms(uint16_t count) { HAL_Delay(count); }
|