1
0
forked from me/IronOS
Files
IronOS/source/Core/BSP/Pine64/Setup.cpp
Ben V. Brown 3594604efc Fixes for I2C on Pinecil + USB-PD stack (#1099)
* Remove unused includes

* Adding in submodule

* Move fusb functions to the BSP

* Remove old code

* Creating IronOS PD integration wrapper

* Redirect to wrapper

* pd lib updates

* fix Docker build

* Finish linking across

* Cleanup

* Update Makefile

* Update push.yml

* Update push.yml

* PD -> Compensate for different tick rates

* Update codeql-analysis.yml

* Fix PD #define for @Firebie

* Check irq low at start

* Update BSP.h

* Update main.cpp

* Closer delay

* Update OLED.cpp

* Bugfix trying to start QC too early

* Missing fusb shouldnt hang qc

* Update FreeRTOSConfig.h

* Update the GD drivers

* Update Pinecil IRQ setup

* Redirect printf() to uart

* Update Power.cpp

* Adding extras to PD state

* Update USBPD.cpp

* Delay in printf

* Iterate once before delay on start

* Update usb-pd

* master usb-pd now

* Format gd libs

* Update gd32vf103_bkp.c

* Guard with PD timeout

* Remove CodeQL

* Slow for testing, fix runt pulses at start

* Fix runt pulse in read size 1

* Cleaner probing setup

* Testing delay during stop gen in read 1

* Update I2C driver

* Update gd32vf103_i2c.c

* Cleaning up i2c wrapper a little, given up on dma for rx

* Update preRTOS.cpp

* Update Setup.cpp

* Update MOVThread.cpp

* Slow down UART to work with new clock config

* Better ack setup for 2 byte read

* Cleanup POW_PD so cant be lost in #includes

* tipResistance -> TIP_RESISTANCE

* handle NOP race on len==2

* Update configuration.h

* Dont use neg timeout to mask anymore

* Not required for MHP

* Fix up source display Miniware

* Fix race on PD init

* Update POWThread.cpp

* Update formatting

* MHP format

* Update push.yml

* Faster TS80P I2C

* Bugfix for IRQ handlers

* Correctly handle I2C race on PD access

* Fix CI error (unused var) and MHP IRQ

* Test Pinecil alt ADC mode
2021-10-02 14:48:58 +10:00

343 lines
13 KiB
C++

/*
* Setup.c
*
* Created on: 29Aug.,2017
* Author: Ben V. Brown
*/
#include "Setup.h"
#include "BSP.h"
#include "Debug.h"
#include "Pins.h"
#include "gd32vf103.h"
#include "history.hpp"
#include <string.h>
#define ADC_NORM_SAMPLES 16
#define ADC_FILTER_LEN 4
uint16_t ADCReadings[ADC_NORM_SAMPLES]; // room for 32 lots of the pair of readings
// Functions
void setup_gpio();
void setup_dma();
void setup_i2c();
void setup_adc();
void setup_timers();
void setup_iwdg();
void setup_uart();
void hardware_init() {
// I2C
setup_i2c();
// GPIO
setup_gpio();
// DMA
setup_dma();
// ADC's
setup_adc();
// Timers
setup_timers();
// Watchdog
setup_iwdg();
// ELIC
eclic_priority_group_set(ECLIC_PRIGROUP_LEVEL0_PRIO4);
// uart for debugging
setup_uart();
/* enable TIMER1 - PWM control timing*/
timer_enable(TIMER1);
timer_enable(TIMER2);
}
uint16_t getADCHandleTemp(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_NORM_SAMPLES; i++) {
sum += ADCReadings[i];
}
filter.update(sum);
}
return filter.average() >> 1;
}
uint16_t getADCVin(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint16_t latestADC = 0;
latestADC += adc_inserted_data_read(ADC1, 0);
latestADC += adc_inserted_data_read(ADC1, 1);
latestADC += adc_inserted_data_read(ADC1, 2);
latestADC += adc_inserted_data_read(ADC1, 3);
latestADC <<= 1;
filter.update(latestADC);
}
return filter.average();
}
// Returns either average or instant value. When sample is set the samples from the injected ADC are copied to the filter and then the raw reading is returned
uint16_t getTipRawTemp(uint8_t sample) {
static history<uint16_t, ADC_FILTER_LEN> filter = {{0}, 0, 0};
if (sample) {
uint16_t latestADC = 0;
latestADC += adc_inserted_data_read(ADC0, 0);
latestADC += adc_inserted_data_read(ADC0, 1);
latestADC += adc_inserted_data_read(ADC0, 2);
latestADC += adc_inserted_data_read(ADC0, 3);
latestADC <<= 1;
filter.update(latestADC);
return latestADC;
}
return filter.average();
}
void setup_uart() {
// Setup the uart pins as a uart with dma
/* enable USART clock */
rcu_periph_clock_enable(RCU_USART1);
/* connect port to USARTx_Tx */
gpio_init(UART_TX_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_10MHZ, UART_TX_Pin);
/* connect port to USARTx_Rx */
gpio_init(UART_RX_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_10MHZ, UART_RX_Pin);
/* USART configure */
usart_deinit(UART_PERIF);
usart_baudrate_set(UART_PERIF, 1000000);
usart_word_length_set(UART_PERIF, USART_WL_8BIT);
usart_stop_bit_set(UART_PERIF, USART_STB_1BIT);
usart_parity_config(UART_PERIF, USART_PM_NONE);
usart_hardware_flow_rts_config(UART_PERIF, USART_RTS_DISABLE);
usart_hardware_flow_cts_config(UART_PERIF, USART_CTS_DISABLE);
usart_receive_config(UART_PERIF, USART_RECEIVE_DISABLE); // Dont use rx for now
usart_transmit_config(UART_PERIF, USART_TRANSMIT_ENABLE);
eclic_irq_enable(USART1_IRQn, 15, 15);
usart_enable(UART_PERIF);
}
void setup_gpio() {
/* enable GPIOB clock */
rcu_periph_clock_enable(RCU_GPIOA);
/* enable GPIOB clock */
rcu_periph_clock_enable(RCU_GPIOB);
// Alternate function clock enable
rcu_periph_clock_enable(RCU_AF);
// Buttons as input
gpio_init(KEY_A_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_A_Pin);
gpio_init(KEY_B_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_B_Pin);
// OLED reset as output
gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, OLED_RESET_Pin);
// I2C as AF Open Drain
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin);
gpio_init(SCL_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SCL_Pin);
// PWM output as AF Push Pull
gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, PWM_Out_Pin);
// Analog Inputs ... as analog inputs
gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_2MHZ, TMP36_INPUT_Pin);
gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_2MHZ, TIP_TEMP_Pin);
gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_2MHZ, VIN_Pin);
// Remap PB4 away from JTAG NJRST
gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE);
// FUSB interrupt
gpio_init(FUSB302_IRQ_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, FUSB302_IRQ_Pin);
}
void setup_dma() {
// Setup DMA for ADC0
{
/* enable DMA0 clock */
rcu_periph_clock_enable(RCU_DMA0);
// rcu_periph_clock_enable(RCU_DMA1);
/* ADC_DMA_channel configuration */
dma_parameter_struct dma_data_parameter;
/* ADC DMA_channel configuration */
dma_deinit(DMA0, DMA_CH0);
/* initialize DMA data mode */
dma_data_parameter.periph_addr = (uint32_t)(&ADC_RDATA(ADC0));
dma_data_parameter.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_data_parameter.memory_addr = (uint32_t)(ADCReadings);
dma_data_parameter.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_data_parameter.periph_width = DMA_PERIPHERAL_WIDTH_16BIT;
dma_data_parameter.memory_width = DMA_MEMORY_WIDTH_16BIT;
dma_data_parameter.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_data_parameter.number = ADC_NORM_SAMPLES;
dma_data_parameter.priority = DMA_PRIORITY_HIGH;
dma_init(DMA0, DMA_CH0, &dma_data_parameter);
dma_circulation_enable(DMA0, DMA_CH0);
/* enable DMA channel */
dma_channel_enable(DMA0, DMA_CH0);
}
}
void setup_i2c() {
/* enable I2C0 clock */
rcu_periph_clock_enable(RCU_I2C0);
/* enable DMA0 clock */
rcu_periph_clock_enable(RCU_DMA0);
// Setup I20 at 400kHz
i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_2);
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x7F);
i2c_enable(I2C0);
/* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
}
void setup_adc() {
// Setup ADC in normal + injected mode
// Want it to sample handle temp and input voltage normally via dma
// Then injected trigger to sample tip temp
memset(ADCReadings, 0, sizeof(ADCReadings));
rcu_periph_clock_enable(RCU_ADC0);
rcu_periph_clock_enable(RCU_ADC1);
adc_deinit(ADC0);
adc_deinit(ADC1);
/* config ADC clock */
rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16);
// Run in normal parallel + inserted parallel
adc_mode_config(ADC_DAUL_INSERTED_PARALLEL);
adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_SCAN_MODE, ENABLE);
// Align right
adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT);
adc_data_alignment_config(ADC1, ADC_DATAALIGN_RIGHT);
// Setup reading the handle temp
adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, 1);
adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, 0);
// Setup the two channels
adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL,
ADC_SAMPLETIME_71POINT5); // temp sensor
// Setup that we want all 4 inserted readings to be the tip temp
adc_channel_length_config(ADC0, ADC_INSERTED_CHANNEL, 4);
adc_channel_length_config(ADC1, ADC_INSERTED_CHANNEL, 4);
for (int rank = 0; rank < 4; rank++) {
adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL, ADC_SAMPLETIME_28POINT5);
adc_inserted_channel_config(ADC1, rank, VIN_ADC1_CHANNEL, ADC_SAMPLETIME_28POINT5);
}
// Setup timer 1 channel 0 to trigger injected measurements
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_TRGO);
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_TRGO);
adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE);
adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE);
// Enable triggers for the ADC
adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE);
adc_external_trigger_config(ADC1, ADC_INSERTED_CHANNEL, ENABLE);
adc_external_trigger_config(ADC0, ADC_REGULAR_CHANNEL, ENABLE);
adc_external_trigger_config(ADC1, ADC_REGULAR_CHANNEL, ENABLE);
adc_watchdog_disable(ADC0);
adc_watchdog_disable(ADC1);
adc_resolution_config(ADC0, ADC_RESOLUTION_12B);
adc_resolution_config(ADC1, ADC_RESOLUTION_12B);
/* clear the ADC flag */
adc_oversample_mode_disable(ADC0);
adc_oversample_mode_disable(ADC1);
adc_enable(ADC0);
adc_calibration_enable(ADC0);
adc_enable(ADC1);
adc_calibration_enable(ADC1);
adc_dma_mode_enable(ADC0);
// Enable interrupt on end of injected readings
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOC);
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOIC);
adc_interrupt_enable(ADC0, ADC_INT_EOIC);
eclic_irq_enable(ADC0_1_IRQn, 2, 0);
adc_software_trigger_enable(ADC0, ADC_REGULAR_CHANNEL);
adc_software_trigger_enable(ADC1, ADC_REGULAR_CHANNEL);
adc_tempsensor_vrefint_disable();
}
void setup_timers() {
// Setup timer 1 to run the actual PWM level
/* enable timer1 clock */
rcu_periph_clock_enable(RCU_TIMER1);
rcu_periph_clock_enable(RCU_TIMER2);
timer_oc_parameter_struct timer_ocintpara;
timer_parameter_struct timer_initpara;
{
// deinit to reset the timer
timer_deinit(TIMER1);
/* initialize TIMER init parameter struct */
timer_struct_para_init(&timer_initpara);
/* TIMER1 configuration */
timer_initpara.prescaler = 30000;
timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
timer_initpara.counterdirection = TIMER_COUNTER_UP;
timer_initpara.period = powerPWM + tempMeasureTicks + holdoffTicks;
timer_initpara.clockdivision = TIMER_CKDIV_DIV4;
timer_initpara.repetitioncounter = 0;
timer_init(TIMER1, &timer_initpara);
/* CH0 configured to implement the PWM irq's for the output control*/
timer_channel_output_struct_para_init(&timer_ocintpara);
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_LOW;
timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0, powerPWM + holdoffTicks);
timer_channel_output_mode_config(TIMER1, TIMER_CH_0, TIMER_OC_MODE_PWM1);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_0, TIMER_OC_SHADOW_DISABLE);
/* CH1 used for irq */
timer_channel_output_struct_para_init(&timer_ocintpara);
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara);
timer_master_output_trigger_source_select(TIMER1, TIMER_TRI_OUT_SRC_CH0);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0);
timer_channel_output_mode_config(TIMER1, TIMER_CH_1, TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_1, TIMER_OC_SHADOW_DISABLE);
// IRQ
timer_interrupt_enable(TIMER1, TIMER_INT_UP);
timer_interrupt_enable(TIMER1, TIMER_INT_CH1);
}
eclic_irq_enable(TIMER1_IRQn, 2, 5);
// Setup timer 2 to control the output signal
{
timer_deinit(TIMER2);
/* initialize TIMER init parameter struct */
timer_struct_para_init(&timer_initpara);
/* TIMER1 configuration */
timer_initpara.prescaler = 200;
timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
timer_initpara.counterdirection = TIMER_COUNTER_UP;
timer_initpara.period = 100;
timer_initpara.clockdivision = TIMER_CKDIV_DIV4;
timer_initpara.repetitioncounter = 0;
timer_init(TIMER2, &timer_initpara);
/* CH0 configuration in PWM mode0 */
timer_channel_output_struct_para_init(&timer_ocintpara);
timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_ocintpara.outputnstate = TIMER_CCXN_DISABLE;
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_ocintpara.ocnpolarity = TIMER_OCN_POLARITY_HIGH;
timer_ocintpara.ocidlestate = TIMER_OC_IDLE_STATE_LOW;
timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 0);
timer_channel_output_mode_config(TIMER2, TIMER_CH_0, TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER2, TIMER_CH_0, TIMER_OC_SHADOW_DISABLE);
timer_auto_reload_shadow_enable(TIMER2);
timer_enable(TIMER2);
}
}
void setup_iwdg() {
fwdgt_config(0x0FFF, FWDGT_PSC_DIV256);
fwdgt_enable();
}
void setupFUSBIRQ() {
eclic_global_interrupt_enable();
eclic_irq_enable(EXTI5_9_IRQn, 15, 0);
gpio_exti_source_select(GPIO_PORT_SOURCE_GPIOB, GPIO_PIN_SOURCE_5);
/* configure key EXTI line */
exti_init(EXTI_5, EXTI_INTERRUPT, EXTI_TRIG_FALLING);
}