352 lines
10 KiB
C++
352 lines
10 KiB
C++
// BSP mapping functions
|
|
|
|
#include "BSP.h"
|
|
#include "I2C_Wrapper.hpp"
|
|
#include "Model_Config.h"
|
|
#include "Pins.h"
|
|
#include "Setup.h"
|
|
#include "TipThermoModel.h"
|
|
#include "configuration.h"
|
|
#include "history.hpp"
|
|
#include "main.hpp"
|
|
#include <IRQ.h>
|
|
volatile uint16_t PWMSafetyTimer = 0;
|
|
volatile uint8_t pendingPWM = 0;
|
|
|
|
const uint16_t powerPWM = 255;
|
|
static const uint8_t holdoffTicks = 14; // delay of 8 ms
|
|
static const uint8_t tempMeasureTicks = 14;
|
|
|
|
uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
|
|
|
|
static bool fastPWM;
|
|
|
|
// 2 second filter (ADC is PID_TIM_HZ Hz)
|
|
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
|
|
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
|
#ifdef TEMP_NTC
|
|
// Lookup table for the NTC
|
|
// Stored as ADCReading,Temp in degC
|
|
static const uint16_t NTCHandleLookup[] = {
|
|
// ADC Reading , Temp in C
|
|
29189, 0, //
|
|
29014, 1, //
|
|
28832, 2, //
|
|
28644, 3, //
|
|
28450, 4, //
|
|
28249, 5, //
|
|
28042, 6, //
|
|
27828, 7, //
|
|
27607, 8, //
|
|
27380, 9, //
|
|
27146, 10, //
|
|
26906, 11, //
|
|
26660, 12, //
|
|
26407, 13, //
|
|
26147, 14, //
|
|
25882, 15, //
|
|
25610, 16, //
|
|
25332, 17, //
|
|
25049, 18, //
|
|
24759, 19, //
|
|
24465, 20, //
|
|
24164, 21, //
|
|
23859, 22, //
|
|
23549, 23, //
|
|
23234, 24, //
|
|
22915, 25, //
|
|
22591, 26, //
|
|
22264, 27, //
|
|
21933, 28, //
|
|
21599, 29, //
|
|
21261, 30, //
|
|
20921, 31, //
|
|
20579, 32, //
|
|
20234, 33, //
|
|
19888, 34, //
|
|
19541, 35, //
|
|
19192, 36, //
|
|
18843, 37, //
|
|
18493, 38, //
|
|
18143, 39, //
|
|
17793, 40, //
|
|
17444, 41, //
|
|
17096, 42, //
|
|
16750, 43, //
|
|
16404, 44, //
|
|
16061, 45, //
|
|
// 15719, 46, //
|
|
// 15380, 47, //
|
|
// 15044, 48, //
|
|
// 14710, 49, //
|
|
// 14380, 50, //
|
|
// 14053, 51, //
|
|
// 13729, 52, //
|
|
// 13410, 53, //
|
|
// 13094, 54, //
|
|
// 12782, 55, //
|
|
// 12475, 56, //
|
|
// 12172, 57, //
|
|
// 11874, 58, //
|
|
// 11580, 59, //
|
|
// 11292, 60, //
|
|
};
|
|
#endif
|
|
|
|
uint16_t getHandleTemperature() {
|
|
#ifdef TEMP_NTC
|
|
// TS80P uses 100k NTC resistors instead
|
|
// NTCG104EF104FT1X from TDK
|
|
// For now not doing interpolation
|
|
int32_t result = getADC(0);
|
|
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
|
|
if (result > NTCHandleLookup[(i * 2) + 0]) {
|
|
return NTCHandleLookup[(i * 2) + 1] * 10;
|
|
}
|
|
}
|
|
return 45 * 10;
|
|
#endif
|
|
#ifdef TEMP_TMP36
|
|
// We return the current handle temperature in X10 C
|
|
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
|
|
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
|
|
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
|
|
// mV per count So we need to subtract an offset of 0.5V to center on 0C
|
|
// (4964.8 counts)
|
|
//
|
|
int32_t result = getADC(0);
|
|
result -= 4965; // remove 0.5V offset
|
|
// 10mV per C
|
|
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
|
|
result *= 100;
|
|
result /= 994;
|
|
return result;
|
|
#endif
|
|
}
|
|
|
|
uint16_t getTipInstantTemperature() {
|
|
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
|
|
uint16_t readings[8];
|
|
// Looking to reject the highest outlier readings.
|
|
// As on some hardware these samples can run into the op-amp recovery time
|
|
// Once this time is up the signal stabilises quickly, so no need to reject minimums
|
|
readings[0] = hadc1.Instance->JDR1;
|
|
readings[1] = hadc1.Instance->JDR2;
|
|
readings[2] = hadc1.Instance->JDR3;
|
|
readings[3] = hadc1.Instance->JDR4;
|
|
readings[4] = hadc2.Instance->JDR1;
|
|
readings[5] = hadc2.Instance->JDR2;
|
|
readings[6] = hadc2.Instance->JDR3;
|
|
readings[7] = hadc2.Instance->JDR4;
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
sum += readings[i];
|
|
}
|
|
return sum; // 8x over sample
|
|
}
|
|
|
|
uint16_t getTipRawTemp(uint8_t refresh) {
|
|
if (refresh) {
|
|
uint16_t lastSample = getTipInstantTemperature();
|
|
rawTempFilter.update(lastSample);
|
|
return lastSample;
|
|
} else {
|
|
return rawTempFilter.average();
|
|
}
|
|
}
|
|
|
|
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
|
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
|
// Therefore we can divide down from there
|
|
// Multiplying ADC max by 4 for additional calibration options,
|
|
// ideal term is 467
|
|
#ifdef MODEL_TS100
|
|
#define BATTFILTERDEPTH 32
|
|
#else
|
|
#define BATTFILTERDEPTH 8
|
|
|
|
#endif
|
|
static uint8_t preFillneeded = 10;
|
|
static uint32_t samples[BATTFILTERDEPTH];
|
|
static uint8_t index = 0;
|
|
if (preFillneeded) {
|
|
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
|
samples[i] = getADC(1);
|
|
preFillneeded--;
|
|
}
|
|
if (sample) {
|
|
samples[index] = getADC(1);
|
|
index = (index + 1) % BATTFILTERDEPTH;
|
|
}
|
|
uint32_t sum = 0;
|
|
|
|
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
|
sum += samples[i];
|
|
|
|
sum /= BATTFILTERDEPTH;
|
|
if (divisor == 0) {
|
|
divisor = 1;
|
|
}
|
|
return sum * 4 / divisor;
|
|
}
|
|
|
|
void setTipPWM(uint8_t pulse) {
|
|
PWMSafetyTimer = 10; // This is decremented in the handler for PWM so that the tip pwm is
|
|
// disabled if the PID task is not scheduled often enough.
|
|
|
|
pendingPWM = pulse;
|
|
}
|
|
|
|
static void switchToFastPWM(void) {
|
|
fastPWM = true;
|
|
totalPWM = powerPWM + tempMeasureTicks * 2 + holdoffTicks;
|
|
htim2.Instance->ARR = totalPWM;
|
|
// ~3.5 Hz rate
|
|
htim2.Instance->CCR1 = powerPWM + holdoffTicks * 2;
|
|
// 2 MHz timer clock/2000 = 1 kHz tick rate
|
|
htim2.Instance->PSC = 2000;
|
|
}
|
|
|
|
static void switchToSlowPWM(void) {
|
|
fastPWM = false;
|
|
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
|
|
htim2.Instance->ARR = totalPWM;
|
|
// ~1.84 Hz rate
|
|
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
|
|
// 2 MHz timer clock/4000 = 500 Hz tick rate
|
|
htim2.Instance->PSC = 4000;
|
|
}
|
|
|
|
bool tryBetterPWM(uint8_t pwm) {
|
|
if (fastPWM && pwm == powerPWM) {
|
|
// maximum power for fast PWM reached, need to go slower to get more
|
|
switchToSlowPWM();
|
|
return true;
|
|
} else if (!fastPWM && pwm < 230) {
|
|
// 254 in fast PWM mode gives the same power as 239 in slow
|
|
// allow for some reasonable hysteresis by switching only when it goes
|
|
// below 230 (equivalent to 245 in fast mode)
|
|
switchToFastPWM();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// These are called by the HAL after the corresponding events from the system
|
|
// timers.
|
|
|
|
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
// Period has elapsed
|
|
if (htim->Instance == TIM2) {
|
|
// we want to turn on the output again
|
|
PWMSafetyTimer--;
|
|
// We decrement this safety value so that lockups in the
|
|
// scheduler will not cause the PWM to become locked in an
|
|
// active driving state.
|
|
// While we could assume this could never happen, its a small price for
|
|
// increased safety
|
|
htim2.Instance->CCR4 = pendingPWM;
|
|
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
|
|
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
|
|
} else {
|
|
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
|
|
}
|
|
} else if (htim->Instance == TIM1) {
|
|
// STM uses this for internal functions as a counter for timeouts
|
|
HAL_IncTick();
|
|
}
|
|
}
|
|
|
|
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
|
// This was a when the PWM for the output has timed out
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
|
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
|
|
}
|
|
}
|
|
void unstick_I2C() {
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
int timeout = 100;
|
|
int timeout_cnt = 0;
|
|
|
|
// 1. Clear PE bit.
|
|
hi2c1.Instance->CR1 &= ~(0x0001);
|
|
/**I2C1 GPIO Configuration
|
|
PB6 ------> I2C1_SCL
|
|
PB7 ------> I2C1_SDA
|
|
*/
|
|
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
|
// Move clock to release I2C
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
timeout_cnt++;
|
|
if (timeout_cnt > timeout)
|
|
return;
|
|
}
|
|
|
|
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
// 13. Set SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 |= 0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 &= ~0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
|
hi2c1.Instance->CR1 |= 0x0001;
|
|
|
|
// Call initialization function.
|
|
HAL_I2C_Init(&hi2c1);
|
|
}
|
|
|
|
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
|
|
void BSPInit(void) { switchToFastPWM(); }
|
|
|
|
void reboot() { NVIC_SystemReset(); }
|
|
|
|
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
|
|
|
bool isTipDisconnected() {
|
|
|
|
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
|
|
uint32_t tipTemp = TipThermoModel::getTipInC();
|
|
return tipTemp > tipDisconnectedThres;
|
|
}
|
|
|
|
void setStatusLED(const enum StatusLED state) {}
|