// BSP mapping functions #include "BSP.h" #include "I2C_Wrapper.hpp" #include "Model_Config.h" #include "Pins.h" #include "Setup.h" #include "history.hpp" #include "main.hpp" #include volatile uint16_t PWMSafetyTimer = 0; volatile uint8_t pendingPWM = 0; uint16_t totalPWM = 255; const uint16_t powerPWM = 255; history rawTempFilter = { { 0 }, 0, 0 }; void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } #ifdef TEMP_NTC // Lookup table for the NTC // Stored as ADCReading,Temp in degC static const uint16_t NTCHandleLookup[] = { // ADC Reading , Temp in C 29189, 0, // 29014, 1, // 28832, 2, // 28644, 3, // 28450, 4, // 28249, 5, // 28042, 6, // 27828, 7, // 27607, 8, // 27380, 9, // 27146, 10, // 26906, 11, // 26660, 12, // 26407, 13, // 26147, 14, // 25882, 15, // 25610, 16, // 25332, 17, // 25049, 18, // 24759, 19, // 24465, 20, // 24164, 21, // 23859, 22, // 23549, 23, // 23234, 24, // 22915, 25, // 22591, 26, // 22264, 27, // 21933, 28, // 21599, 29, // 21261, 30, // 20921, 31, // 20579, 32, // 20234, 33, // 19888, 34, // 19541, 35, // 19192, 36, // 18843, 37, // 18493, 38, // 18143, 39, // 17793, 40, // 17444, 41, // 17096, 42, // 16750, 43, // 16404, 44, // 16061, 45, // // 15719, 46, // // 15380, 47, // // 15044, 48, // // 14710, 49, // // 14380, 50, // // 14053, 51, // // 13729, 52, // // 13410, 53, // // 13094, 54, // // 12782, 55, // // 12475, 56, // // 12172, 57, // // 11874, 58, // // 11580, 59, // // 11292, 60, // }; #endif // These are called by the HAL after the corresponding events from the system // timers. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { // Period has elapsed if (htim->Instance == TIM1) { // STM uses this for internal functions as a counter for timeouts HAL_IncTick(); } } uint16_t getHandleTemperature() { return 250; //TODO } uint16_t getTipInstantTemperature() { return 0; //TODO } uint16_t getTipRawTemp(uint8_t refresh) { if (refresh) { uint16_t lastSample = getTipInstantTemperature(); rawTempFilter.update(lastSample); return lastSample; } else { return rawTempFilter.average(); } } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // Therefore we can divide down from there // Multiplying ADC max by 4 for additional calibration options, // ideal term is 467 static uint8_t preFillneeded = 10; static uint32_t samples[BATTFILTERDEPTH]; static uint8_t index = 0; if (preFillneeded) { for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) samples[i] = getADC(1); preFillneeded--; } if (sample) { samples[index] = getADC(1); index = (index + 1) % BATTFILTERDEPTH; } uint32_t sum = 0; for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) sum += samples[i]; sum /= BATTFILTERDEPTH; if (divisor == 0) { divisor = 1; } return sum * 4 / divisor; } bool tryBetterPWM(uint8_t pwm) { //We dont need this for the MHP30 return false; } void setTipPWM(uint8_t pulse) { //We can just set the timer directly htim3.Instance->CCR1 = pulse; } void unstick_I2C() { GPIO_InitTypeDef GPIO_InitStruct; int timeout = 100; int timeout_cnt = 0; // 1. Clear PE bit. hi2c1.Instance->CR1 &= ~(0x0001); /**I2C1 GPIO Configuration PB6 ------> I2C1_SCL PB7 ------> I2C1_SDA */ // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { // Move clock to release I2C HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); asm("nop"); asm("nop"); asm("nop"); asm("nop"); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); timeout_cnt++; if (timeout_cnt > timeout) return; } // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); // 13. Set SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 |= 0x8000; asm("nop"); // 14. Clear SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 &= ~0x8000; asm("nop"); // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register hi2c1.Instance->CR1 |= 0x0001; // Call initialization function. HAL_I2C_Init(&hi2c1); } uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } void BSPInit(void) { } void reboot() { NVIC_SystemReset(); } void delay_ms(uint16_t count) { HAL_Delay(count); }