// BSP mapping functions #include "BSP.h" #include "I2C_Wrapper.hpp" #include "Pins.h" #include "Setup.h" #include "TipThermoModel.h" #include "configuration.h" #include "history.hpp" #include "main.hpp" #include volatile uint16_t PWMSafetyTimer = 0; volatile uint8_t pendingPWM = 0; const uint16_t powerPWM = 255; static const uint8_t holdoffTicks = 14; // delay of 8 ms static const uint8_t tempMeasureTicks = 14; uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle static bool fastPWM; static bool infastPWM; void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } #ifdef TEMP_NTC // Lookup table for the NTC // Stored as ADCReading,Temp in degC static const uint16_t NTCHandleLookup[] = { // ADC Reading , Temp in C 29189, 0, // 28832, 2, // 28450, 4, // 28042, 6, // 27607, 8, // 27146, 10, // 26660, 12, // 26147, 14, // 25610, 16, // 25049, 18, // 24465, 20, // 23859, 22, // 23234, 24, // 22591, 26, // 21933, 28, // 21261, 30, // 20579, 32, // 19888, 34, // 19192, 36, // 18493, 38, // 17793, 40, // 17096, 42, // 16404, 44, // 16061, 45, // }; #endif uint16_t getHandleTemperature(uint8_t sample) { int32_t result = getADCHandleTemp(sample); #ifdef TEMP_NTC // TS80P uses 100k NTC resistors instead // NTCG104EF104FT1X from TDK // For now not doing interpolation for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) { if (result > NTCHandleLookup[(i * 2) + 0]) { return NTCHandleLookup[(i * 2) + 1] * 10; } } return 45 * 10; #endif #ifdef TEMP_TMP36 // We return the current handle temperature in X10 C // TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for // example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) = // 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125 // mV per count So we need to subtract an offset of 0.5V to center on 0C // (4964.8 counts) // result -= 4965; // remove 0.5V offset // 10mV per C // 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units result *= 100; result /= 994; return result; #endif return 0; } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // Therefore we can divide down from there // Multiplying ADC max by 4 for additional calibration options, // ideal term is 467 uint32_t res = getADCVin(sample); res *= 4; res /= divisor; return res; } static void switchToFastPWM(void) { // 10Hz infastPWM = true; totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; htim2.Instance->ARR = totalPWM; htim2.Instance->CCR1 = powerPWM + holdoffTicks; htim2.Instance->PSC = 2690; } static void switchToSlowPWM(void) { // 5Hz infastPWM = false; totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2; htim2.Instance->ARR = totalPWM; htim2.Instance->CCR1 = powerPWM + holdoffTicks / 2; htim2.Instance->PSC = 2690 * 2; } void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) { PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is // disabled if the PID task is not scheduled often enough. fastPWM = shouldUseFastModePWM; pendingPWM = pulse; } // These are called by the HAL after the corresponding events from the system // timers. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { // Period has elapsed if (htim->Instance == TIM2) { // we want to turn on the output again PWMSafetyTimer--; // We decrement this safety value so that lockups in the // scheduler will not cause the PWM to become locked in an // active driving state. // While we could assume this could never happen, its a small price for // increased safety htim2.Instance->CCR4 = pendingPWM; if (htim2.Instance->CCR4 && PWMSafetyTimer) { HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1); } else { HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1); } if (fastPWM != infastPWM) { if (fastPWM) { switchToFastPWM(); } else { switchToSlowPWM(); } } } else if (htim->Instance == TIM1) { // STM uses this for internal functions as a counter for timeouts HAL_IncTick(); } } void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) { // This was a when the PWM for the output has timed out if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) { HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1); } } void unstick_I2C() { GPIO_InitTypeDef GPIO_InitStruct; int timeout = 100; int timeout_cnt = 0; // 1. Clear PE bit. hi2c1.Instance->CR1 &= ~(0x0001); /**I2C1 GPIO Configuration PB6 ------> I2C1_SCL PB7 ------> I2C1_SDA */ // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { // Move clock to release I2C HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); asm("nop"); asm("nop"); asm("nop"); asm("nop"); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); timeout_cnt++; if (timeout_cnt > timeout) return; } // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); // 13. Set SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 |= 0x8000; asm("nop"); // 14. Clear SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 &= ~0x8000; asm("nop"); // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register hi2c1.Instance->CR1 |= 0x0001; // Call initialization function. HAL_I2C_Init(&hi2c1); } uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } void BSPInit(void) { switchToFastPWM(); } void reboot() { NVIC_SystemReset(); } void delay_ms(uint16_t count) { HAL_Delay(count); } bool isTipDisconnected() { uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; uint32_t tipTemp = TipThermoModel::getTipInC(); return tipTemp > tipDisconnectedThres; } void setStatusLED(const enum StatusLED state) {} void setBuzzer(bool on) {} uint8_t preStartChecks() { return 1; } uint64_t getDeviceID() { // return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32); } uint8_t getTipResistanceX10() { return TIP_RESISTANCE; } uint8_t preStartChecksDone() { return 1; } uint8_t getTipThermalMass() { return TIP_THERMAL_MASS; } uint8_t getTipInertia() { return TIP_THERMAL_MASS; }