// BSP mapping functions #include "BSP.h" #include "I2C_Wrapper.hpp" #include "Model_Config.h" #include "Pins.h" #include "Setup.h" #include "TipThermoModel.h" #include "Utils.h" #include "history.hpp" #include "main.hpp" #include volatile uint16_t PWMSafetyTimer = 0; volatile uint8_t pendingPWM = 0; uint16_t totalPWM = 255; const uint16_t powerPWM = 255; history rawTempFilter = { { 0 }, 0, 0 }; void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } #ifdef TEMP_NTC // Lookup table for the NTC // Stored as ADCReading,Temp in degC static const uint16_t NTCHandleLookup[] = { // ADC Reading , Temp in C 11292, 600, // 12782, 550, // 14380, 500, // 16061, 450, // 17793, 400, // 19541, 350, // 21261, 300, // 22915, 250, // 24465, 200, // 25882, 150, // 27146, 100, // 28249, 50, // 29189, 0, // }; const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t)); #endif // These are called by the HAL after the corresponding events from the system // timers. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { // Period has elapsed if (htim->Instance == TIM1) { // STM uses this for internal functions as a counter for timeouts HAL_IncTick(); } } uint16_t getHandleTemperature() { int32_t result = getADC(0); return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result); } uint16_t getTipInstantTemperature() { return getADC(2); } uint16_t getTipRawTemp(uint8_t refresh) { if (refresh) { uint16_t lastSample = getTipInstantTemperature(); rawTempFilter.update(lastSample); return lastSample; } else { return rawTempFilter.average(); } } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // Therefore we can divide down from there // Multiplying ADC max by 4 for additional calibration options, // ideal term is 467 static uint8_t preFillneeded = 10; static uint32_t samples[BATTFILTERDEPTH]; static uint8_t index = 0; if (preFillneeded) { for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) samples[i] = getADC(1); preFillneeded--; } if (sample) { samples[index] = getADC(1); index = (index + 1) % BATTFILTERDEPTH; } uint32_t sum = 0; for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) sum += samples[i]; sum /= BATTFILTERDEPTH; if (divisor == 0) { divisor = 1; } return sum * 4 / divisor; } bool tryBetterPWM(uint8_t pwm) { // We dont need this for the MHP30 return false; } void setTipPWM(uint8_t pulse) { // We can just set the timer directly htim3.Instance->CCR1 = pulse; } void unstick_I2C() { GPIO_InitTypeDef GPIO_InitStruct; int timeout = 100; int timeout_cnt = 0; // 1. Clear PE bit. hi2c1.Instance->CR1 &= ~(0x0001); /**I2C1 GPIO Configuration PB6 ------> I2C1_SCL PB7 ------> I2C1_SDA */ // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { // Move clock to release I2C HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); asm("nop"); asm("nop"); asm("nop"); asm("nop"); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); timeout_cnt++; if (timeout_cnt > timeout) return; } // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); // 13. Set SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 |= 0x8000; asm("nop"); // 14. Clear SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 &= ~0x8000; asm("nop"); // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register hi2c1.Instance->CR1 |= 0x0001; // Call initialization function. HAL_I2C_Init(&hi2c1); } uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } void BSPInit(void) { } void reboot() { NVIC_SystemReset(); } void delay_ms(uint16_t count) { HAL_Delay(count); } void setPlatePullup(bool pullingUp) { GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin; GPIO_InitStruct.Pull = GPIO_NOPULL; if (pullingUp) { GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET); } else { //Hi-z GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET); } HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct); } uint16_t tipSenseResistancex10Ohms = 0; bool isTipDisconnected() { static bool lastTipDisconnectedState = true; static uint16_t adcReadingPD1Set = 0; static TickType_t lastMeas = 0; // For the MHP30 we want to include a little extra logic in here // As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip // And likewise if its removed we want to clear that measurement /* * plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0; * */ uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; uint32_t tipTemp = TipThermoModel::getTipInC(); bool tipDisconnected = tipTemp > tipDisconnectedThres; if (tipDisconnected != lastTipDisconnectedState) { if (tipDisconnected) { // Tip is now disconnected tipSenseResistancex10Ohms = 0; // zero out the resistance adcReadingPD1Set = 0; lastMeas = xTaskGetTickCount(); setPlatePullup(true); } lastTipDisconnectedState = tipDisconnected; } if (!tipDisconnected) { if (tipSenseResistancex10Ohms == 0) { if (xTaskGetTickCount() - lastMeas > (TICKS_100MS / 2)) { lastMeas = xTaskGetTickCount(); //We are sensing the resistance if (adcReadingPD1Set == 0) { //We will record the reading for PD1 being set adcReadingPD1Set = getADC(3); setPlatePullup(false); } else { //We have taken reading one uint16_t adcReadingPD1Cleared = getADC(3); tipSenseResistancex10Ohms = ((((int) adcReadingPD1Set - (int) adcReadingPD1Cleared) * 10000) / ((int) adcReadingPD1Cleared + (65536 - (int) adcReadingPD1Set))); } } return true; // we fake tip being disconnected until this is measured } } return tipDisconnected; }