// By Ben V. Brown - V2.0 of the TS100 firmware #include "BSP.h" #include #include #include #include "LIS2DH12.hpp" #include #include #include "Settings.h" #include "Translation.h" #include "cmsis_os.h" #include "stdlib.h" #include "stm32f1xx_hal.h" #include "string.h" #include "TipThermoModel.h" uint8_t PCBVersion = 0; // File local variables uint32_t currentTempTargetDegC = 0; // Current temperature target in C uint8_t accelInit = 0; uint32_t lastMovementTime = 0; bool settingsWereReset = false; // FreeRTOS variables osThreadId GUITaskHandle; static const size_t GUITaskStackSize = 1024 / 4; uint32_t GUITaskBuffer[GUITaskStackSize]; osStaticThreadDef_t GUITaskControlBlock; osThreadId PIDTaskHandle; static const size_t PIDTaskStackSize = 512 / 4; uint32_t PIDTaskBuffer[PIDTaskStackSize]; osStaticThreadDef_t PIDTaskControlBlock; osThreadId MOVTaskHandle; static const size_t MOVTaskStackSize = 512 / 4; uint32_t MOVTaskBuffer[MOVTaskStackSize]; osStaticThreadDef_t MOVTaskControlBlock; // End FreeRTOS // Main sets up the hardware then hands over to the FreeRTOS kernel int main(void) { preRToSInit(); setTipX10Watts(0); // force tip off FRToSI2C::init(&hi2c1); OLED::initialize(); // start up the LCD OLED::setFont(0); // default to bigger font // Testing for which accelerometer is mounted resetWatchdog(); if (MMA8652FC::detect()) { PCBVersion = 1; MMA8652FC::initalize(); // this sets up the I2C registers } else if (LIS2DH12::detect()) { PCBVersion = 2; // Setup the ST Accelerometer LIS2DH12::initalize(); // startup the accelerometer } else { PCBVersion = 3; systemSettings.SleepTime = 0; systemSettings.ShutdownTime = 0; // No accel -> disable sleep systemSettings.sensitivity = 0; } resetWatchdog(); settingsWereReset = restoreSettings(); // load the settings from flash resetWatchdog(); /* Create the thread(s) */ /* definition and creation of GUITask */ osThreadStaticDef(GUITask, startGUITask, osPriorityBelowNormal, 0, GUITaskStackSize, GUITaskBuffer, &GUITaskControlBlock); GUITaskHandle = osThreadCreate(osThread(GUITask), NULL); /* definition and creation of PIDTask */ osThreadStaticDef(PIDTask, startPIDTask, osPriorityRealtime, 0, PIDTaskStackSize, PIDTaskBuffer, &PIDTaskControlBlock); PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL); if (PCBVersion < 3) { osThreadStaticDef(MOVTask, startMOVTask, osPriorityNormal, 0, MOVTaskStackSize, MOVTaskBuffer, &MOVTaskControlBlock); MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL); } /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ while (1) { } } #define MOVFilter 8 void startMOVTask(void const *argument __unused) { OLED::setRotation(true); #ifdef MODEL_TS80 startQC(systemSettings.voltageDiv); while (pidTaskNotification == 0) osDelay(30); // To ensure we return after idealQCVoltage/tip resistance seekQC((systemSettings.cutoutSetting) ? 120 : 90, systemSettings.voltageDiv); // this will move the QC output to the preferred voltage to start with #else osDelay(250); // wait for accelerometer to stabilize #endif OLED::setRotation(systemSettings.OrientationMode & 1); lastMovementTime = 0; int16_t datax[MOVFilter] = { 0 }; int16_t datay[MOVFilter] = { 0 }; int16_t dataz[MOVFilter] = { 0 }; uint8_t currentPointer = 0; int16_t tx = 0, ty = 0, tz = 0; int32_t avgx = 0, avgy = 0, avgz = 0; if (systemSettings.sensitivity > 9) systemSettings.sensitivity = 9; #ifdef ACCELDEBUG uint32_t max = 0; #endif Orientation rotation = ORIENTATION_FLAT; for (;;) { int32_t threshold = 1500 + (9 * 200); threshold -= systemSettings.sensitivity * 200; // 200 is the step size if (PCBVersion == 2) { LIS2DH12::getAxisReadings(tx, ty, tz); rotation = LIS2DH12::getOrientation(); } else if (PCBVersion == 1) { MMA8652FC::getAxisReadings(tx, ty, tz); rotation = MMA8652FC::getOrientation(); } if (systemSettings.OrientationMode == 2) { if (rotation != ORIENTATION_FLAT) { OLED::setRotation(rotation == ORIENTATION_LEFT_HAND); // link the data through } } datax[currentPointer] = (int32_t) tx; datay[currentPointer] = (int32_t) ty; dataz[currentPointer] = (int32_t) tz; if (!accelInit) { for (uint8_t i = currentPointer + 1; i < MOVFilter; i++) { datax[i] = (int32_t) tx; datay[i] = (int32_t) ty; dataz[i] = (int32_t) tz; } accelInit = 1; } currentPointer = (currentPointer + 1) % MOVFilter; avgx = avgy = avgz = 0; // calculate averages for (uint8_t i = 0; i < MOVFilter; i++) { avgx += datax[i]; avgy += datay[i]; avgz += dataz[i]; } avgx /= MOVFilter; avgy /= MOVFilter; avgz /= MOVFilter; // Sum the deltas int32_t error = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz)); // So now we have averages, we want to look if these are different by more // than the threshold // If error has occurred then we update the tick timer if (error > threshold) { lastMovementTime = xTaskGetTickCount(); } osDelay(100); // Slow down update rate #ifdef MODEL_TS80 seekQC((systemSettings.cutoutSetting) ? 120 : 90, systemSettings.voltageDiv); // Run the QC seek again if we have drifted too much #endif } } // Second last page of flash set aside for logo image. #define FLASH_LOGOADDR (0x8000000 | 0xF800) // Logo header signature. #define LOGO_HEADER_VALUE 0xF00DAA55 bool showBootLogoIfavailable() { // Do not show logo data if signature is not found. if (LOGO_HEADER_VALUE != *(reinterpret_cast(FLASH_LOGOADDR))) { return false; } OLED::drawAreaSwapped(0, 0, 96, 16, (uint8_t*) (FLASH_LOGOADDR + 4)); OLED::refresh(); return true; } /* * Catch the IRQ that says that the conversion is done on the temperature * readings coming in Once these have come in we can unblock the PID so that it * runs again */ void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc) { BaseType_t xHigherPriorityTaskWoken = pdFALSE; if (hadc == &hadc1) { if (pidTaskNotification) { vTaskNotifyGiveFromISR(pidTaskNotification, &xHigherPriorityTaskWoken); portYIELD_FROM_ISR(xHigherPriorityTaskWoken); } } } void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); } void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); } void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); } void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); } void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); } void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); } void vApplicationStackOverflowHook(xTaskHandle *pxTask __unused, signed portCHAR *pcTaskName __unused) { // We dont have a good way to handle a stack overflow at this point in time NVIC_SystemReset(); }