/* * PIDThread.cpp * * Created on: 29 May 2020 * Author: Ralim */ #include "BSP.h" #include "FreeRTOS.h" #include "Settings.h" #include "TipThermoModel.h" #include "cmsis_os.h" #include "history.hpp" #include "main.hpp" #include "power.hpp" #include "task.h" static TickType_t powerPulseWaitUnit = 25 * TICKS_100MS; // 2.5 s static TickType_t powerPulseDurationUnit = (5 * TICKS_100MS) / 2; // 250 ms TaskHandle_t pidTaskNotification = NULL; volatile uint32_t currentTempTargetDegC = 0; // Current temperature target in C int32_t powerSupplyWattageLimit = 0; bool heaterThermalRunaway = false; static int32_t getPIDResultX10Watts(int32_t tError); static void detectThermalRunaway(const int16_t currentTipTempInC, const int tError); static void setOutputx10WattsViaFilters(int32_t x10Watts); static int32_t getX10WattageLimits(); /* StartPIDTask function */ void startPIDTask(void const *argument __unused) { /* * We take the current tip temperature & evaluate the next step for the tip * control PWM. */ setTipX10Watts(0); // disable the output at startup currentTempTargetDegC = 0; // Force start with no output (off). If in sleep / soldering this will // be over-ridden rapidly pidTaskNotification = xTaskGetCurrentTaskHandle(); uint32_t PIDTempTarget = 0; // Pre-seed the adc filters for (int i = 0; i < 32; i++) { ulTaskNotifyTake(pdTRUE, 5); TipThermoModel::getTipInC(true); getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 1); } while (preStartChecks() != 0) { ulTaskNotifyTake(pdTRUE, 2000); } int32_t x10WattsOut = 0; for (;;) { x10WattsOut = 0; // This is a call to block this thread until the ADC does its samples if (ulTaskNotifyTake(pdTRUE, TICKS_SECOND * 2)) { // Do the reading here to keep the temp calculations churning along uint32_t currentTipTempInC = TipThermoModel::getTipInC(true); PIDTempTarget = currentTempTargetDegC; if (PIDTempTarget > 0) { // Cap the max set point to 450C if (PIDTempTarget > (450)) { // Maximum allowed output PIDTempTarget = (450); } // Safety check that not aiming higher than current tip can measure if (PIDTempTarget > TipThermoModel::getTipMaxInC()) { PIDTempTarget = TipThermoModel::getTipMaxInC(); } int32_t tError = PIDTempTarget - currentTipTempInC; detectThermalRunaway(currentTipTempInC, tError); x10WattsOut = getPIDResultX10Watts(tError); } else { detectThermalRunaway(currentTipTempInC, 0); } setOutputx10WattsViaFilters(x10WattsOut); } else { // ADC interrupt timeout setTipPWM(0, false); } #ifdef DEBUG_UART_OUTPUT log_system_state(x10WattsOut); #endif } } template struct Integrator { T sum; T update(const T val, const int32_t inertia, const int32_t gain, const int32_t rate, const int32_t limit) { // Decay the old value. This is a simplified formula that still works with decent results // Ideally we would have used an exponential decay but the computational effort required // by exp function is just not justified here in respect to the outcome sum = (sum * (100 - (inertia / rate))) / 100; // Add the new value x integration interval ( 1 / rate) sum += (gain * val) / rate; // limit the output if (sum > limit) sum = limit; else if (sum < -limit) sum = -limit; return sum; } void set(T const val) { sum = val; } T get(bool positiveOnly = true) const { return (positiveOnly) ? ((sum > 0) ? sum : 0) : sum; } }; int32_t getPIDResultX10Watts(int32_t setpointDelta) { static TickType_t lastCall = 0; static Integrator powerStore = {0}; const int rate = 1000 / (xTaskGetTickCount() - lastCall); lastCall = xTaskGetTickCount(); // Sandman note: // PID Challenge - we have a small thermal mass that we to want heat up as fast as possible but we don't // want to overshot excessively (if at all) the setpoint temperature. In the same time we have 'imprecise' // instant temperature measurements. The nature of temperature reading imprecision is not necessarily // related to the sensor (thermocouple) or DAQ system, that otherwise are fairly decent. The real issue is // the thermal inertia. We basically read the temperature in the window between two heating sessions when // the output is off. However, the heater temperature does not dissipate instantly into the tip mass so // at any moment right after heating, the thermocouple would sense a temperature significantly higher than // moments later. We could use longer delays but that would slow the PID loop and that would lead to other // negative side effects. As a result, we can only rely on the I term but with a twist. Instead of a simple // integrator we are going to use a self decaying integrator that acts more like a dual I term / P term // rather than a plain I term. Depending on the circumstances, like when the delta temperature is large, // it acts more like a P term whereas on closing to setpoint it acts increasingly closer to a plain I term. // So in a sense, we have a bit of both. // So there we go... // P = (Thermal Mass) x (Delta Temperature ) / 1sec, where thermal mass is in X10 J / °C and // delta temperature is in °C. The result is the power in X10 W needed to raise (or decrease!) the // tip temperature with (Delta Temperature ) °C in 1 second. // Note on powerStore. On update, if the value is provided in X10 (W) units then inertia shall be provided // in X10 (J / °C) units as well. Also, powerStore is updated with a gain of 2. Where this comes from: The actual // power CMOS is controlled by TIM3->CTR1 (that is software modulated - on/off - by TIM2-CTR4 interrupts). However, // TIM3->CTR1 is configured with a duty cycle of 50% so, in real, we get only 50% of the presumed power output // so we basically double the need (gain = 2) to get what we want. return powerStore.update(TIP_THERMAL_MASS * setpointDelta, // the required power TIP_THERMAL_MASS, // Inertia, smaller numbers increase dominance of the previous value 2, // gain rate, // PID cycle frequency getX10WattageLimits()); } void detectThermalRunaway(const int16_t currentTipTempInC, const int tError) { static uint16_t tipTempCRunawayTemp = 0; static TickType_t runawaylastChangeTime = 0; // Check for thermal runaway, where it has been x seconds with negligible (y) temp rise // While trying to actively heat // If we are more than 20C below the setpoint if ((tError > THERMAL_RUNAWAY_TEMP_C)) { // If we have heated up by more than 20C since last sample point, snapshot time and tip temp int16_t delta = (int16_t)currentTipTempInC - (int16_t)tipTempCRunawayTemp; if (delta > THERMAL_RUNAWAY_TEMP_C) { // We have heated up more than the threshold, reset the timer tipTempCRunawayTemp = currentTipTempInC; runawaylastChangeTime = xTaskGetTickCount(); } else { if ((xTaskGetTickCount() - runawaylastChangeTime) > (THERMAL_RUNAWAY_TIME_SEC * TICKS_SECOND)) { // It has taken too long to rise heaterThermalRunaway = true; } } } else { tipTempCRunawayTemp = currentTipTempInC; runawaylastChangeTime = xTaskGetTickCount(); } } int32_t getX10WattageLimits() { int32_t limit = availableW10(0); if (getSettingValue(SettingsOptions::PowerLimit) && limit > (getSettingValue(SettingsOptions::PowerLimit) * 10)) { limit = getSettingValue(SettingsOptions::PowerLimit) * 10; } if (powerSupplyWattageLimit && limit > powerSupplyWattageLimit * 10) { limit = powerSupplyWattageLimit * 10; } return limit; } void setOutputx10WattsViaFilters(int32_t x10WattsOut) { static TickType_t lastPowerPulseStart = 0; static TickType_t lastPowerPulseEnd = 0; #ifdef SLEW_LIMIT static int32_t x10WattsOutLast = 0; #endif // If the user turns on the option of using an occasional pulse to keep the power bank on if (getSettingValue(SettingsOptions::KeepAwakePulse)) { const TickType_t powerPulseWait = powerPulseWaitUnit * getSettingValue(SettingsOptions::KeepAwakePulseWait); if (xTaskGetTickCount() - lastPowerPulseStart > powerPulseWait) { const TickType_t powerPulseDuration = powerPulseDurationUnit * getSettingValue(SettingsOptions::KeepAwakePulseDuration); lastPowerPulseStart = xTaskGetTickCount(); lastPowerPulseEnd = lastPowerPulseStart + powerPulseDuration; } // If current PID is less than the pulse level, check if we want to constrain to the pulse as the floor if (x10WattsOut < getSettingValue(SettingsOptions::KeepAwakePulse) && xTaskGetTickCount() < lastPowerPulseEnd) { x10WattsOut = getSettingValue(SettingsOptions::KeepAwakePulse); } } // Secondary safety check to forcefully disable header when within ADC noise of top of ADC if (getTipRawTemp(0) > (0x7FFF - 32)) { x10WattsOut = 0; } if (heaterThermalRunaway) { x10WattsOut = 0; } #ifdef SLEW_LIMIT if (x10WattsOut - x10WattsOutLast > SLEW_LIMIT) { x10WattsOut = x10WattsOutLast + SLEW_LIMIT; } if (x10WattsOut < 0) { x10WattsOut = 0; } x10WattsOutLast = x10WattsOut; #endif setTipX10Watts(x10WattsOut); resetWatchdog(); }