/* * TipThermoModel.cpp * * Created on: 7 Oct 2019 * Author: ralim */ #include "TipThermoModel.h" #include "Settings.h" #include "BSP.h" #include "../../configuration.h" /* * The hardware is laid out as a non-inverting op-amp * There is a pullup of 39k(TS100) from the +ve input to 3.9V (1M pulup on TS100) * * The simplest case to model this, is to ignore the pullup resistors influence, and assume that its influence is mostly constant * -> Tip resistance *does* change with temp, but this should be much less than the rest of the system. * * When a thermocouple is equal temperature at both sides (hot and cold junction), then the output should be 0uV * Therefore, by measuring the uV when both are equal, the measured reading is the offset value. * This is a mix of the pull-up resistor, combined with tip manufacturing differences. * * All of the thermocouple readings are based on this expired patent * - > https://patents.google.com/patent/US6087631A/en * * This was bought to my attention by */ uint32_t TipThermoModel::convertTipRawADCTouV(uint16_t rawADC) { // This takes the raw ADC samples, converts these to uV // Then divides this down by the gain to convert to the uV on the input to the op-amp (A+B terminals) // Then remove the calibration value that is stored as a tip offset uint32_t vddRailmVX10 = 33000;//The vreg is +-2%, but we have no higher accuracy available // 4096 * 8 readings for full scale // Convert the input ADC reading back into mV times 10 format. uint32_t rawInputmVX10 = (rawADC * vddRailmVX10) / (4096 * 8); uint32_t valueuV = rawInputmVX10 * 100; // shift into uV //Now to divide this down by the gain valueuV = (valueuV) / OP_AMP_GAIN_STAGE; //Remove uV tipOffset if (valueuV >= systemSettings.CalibrationOffset) valueuV -= systemSettings.CalibrationOffset; else valueuV = 0; return valueuV; } uint32_t TipThermoModel::convertTipRawADCToDegC(uint16_t rawADC) { return convertuVToDegC(convertTipRawADCTouV(rawADC)); } #ifdef ENABLED_FAHRENHEIT_SUPPORT uint32_t TipThermoModel::convertTipRawADCToDegF(uint16_t rawADC) { return convertuVToDegF(convertTipRawADCTouV(rawADC)); } #endif //Table that is designed to be walked to find the best sample for the lookup //Extrapolate between two points // [x1, y1] = point 1 // [x2, y2] = point 2 // x = input value // output is x's extrapolated y value int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x) { return y1 + (((((x - x1) * 1000) / (x2 - x1)) * (y2 - y1))) / 1000; } uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) { //based on new measurements, tip is quite linear // tipuVDelta *= 10; tipuVDelta /= systemSettings.TipGain; #if defined( MODEL_TS80)+defined( MODEL_TS80P)>0 tipuVDelta /= OP_AMP_GAIN_STAGE_TS100 / OP_AMP_GAIN_STAGE_TS80; #endif return tipuVDelta; } #ifdef ENABLED_FAHRENHEIT_SUPPORT uint32_t TipThermoModel::convertuVToDegF(uint32_t tipuVDelta) { return convertCtoF(convertuVToDegC(tipuVDelta)); } uint32_t TipThermoModel::convertCtoF(uint32_t degC) { //(Y °C × 9/5) + 32 =Y°F return 32 + ((degC * 9) / 5); } uint32_t TipThermoModel::convertFtoC(uint32_t degF) { //(Y°F − 32) × 5/9 = Y°C if (degF < 32) return 0; return ((degF - 32) * 5) / 9; } #endif uint32_t TipThermoModel::getTipInC(bool sampleNow) { uint32_t currentTipTempInC = TipThermoModel::convertTipRawADCToDegC( getTipRawTemp(sampleNow)); currentTipTempInC += getHandleTemperature() / 10; //Add handle offset return currentTipTempInC; } #ifdef ENABLED_FAHRENHEIT_SUPPORT uint32_t TipThermoModel::getTipInF(bool sampleNow) { uint32_t currentTipTempInF = TipThermoModel::convertTipRawADCToDegF( getTipRawTemp(sampleNow)); currentTipTempInF += convertCtoF(getHandleTemperature() / 10); //Add handle offset return currentTipTempInF; } #endif uint32_t TipThermoModel::getTipMaxInC() { uint32_t maximumTipTemp = TipThermoModel::convertTipRawADCToDegC( 0x7FFF - (80 * 5)); //back off approx 5 deg c from ADC max maximumTipTemp += getHandleTemperature() / 10; //Add handle offset return maximumTipTemp - 1; }