1
0
forked from me/IronOS

Compare commits

...

33 Commits

Author SHA1 Message Date
Ben V. Brown
3d1d47acee Long overdue additions
Closes #329
Closes #324
Closes #331
Should Close #321
Should Close #301
2018-07-27 19:21:12 +10:00
Julius Vitkauskas
e598d1cbbb Update Lithuanian translation (#335) 2018-07-27 16:22:44 +10:00
nils måsén
20d1874aee Add Swedish translation (#318)
* Swedish language
2018-06-20 08:43:12 +10:00
Alessandro Gatti
030a714ff2 Initialise variables before usage / Cleanup (#315) 2018-06-17 09:41:53 +10:00
L0laapk3
67066f218f added dutch translation (#307)
* added dutch translation

* fixed caps

* dutch language improvements

* dutch language improvements
2018-06-02 10:44:26 +10:00
Alessandro Gatti
50fe2bcff1 Shrink GUI code and simplify LCD rotation. (#300)
* Inline more methods in FRToSI2C.

* Shrink down GUI code.

* Simplify LCD rotation handling.

* Extract version headers.
2018-05-26 14:21:42 +10:00
dogtopus
a576f44ba2 Add binary generation (#310) 2018-05-26 14:21:06 +10:00
Ben V. Brown
74de59c235 Update readme 2018-05-25 22:24:20 +10:00
Valmantas Palikša
fc669dc274 Use LTO to save up to 7k of flash (#305) 2018-05-18 18:54:57 +10:00
Ben V. Brown
b0b512030f Fix up menu icons
Sorry this got lost 😠
Fixed now :)
Fixes #214 finally.
2018-05-11 13:10:36 +10:00
Ben V. Brown
48cc1ff8cc Add auto-repeat to temp adjust
Fixes #285
2018-05-11 13:06:10 +10:00
Ben V. Brown
c9a56392a0 Bring back cooling blink
Fixes #289
2018-05-11 13:01:21 +10:00
Ben V. Brown
b6b207568c Delay I2C DMA thread on oled slightly
The flickering on the LCD screen was caused by the OLED DMA taking slightly longer than the delays, so the tail end would flicker if the buffer was cleared before it finished writing.

In future may want to double buffer the LCD.

Fixes #290
2018-05-11 12:54:55 +10:00
Alessandro Gatti
8bf65351ea Shrink OLED driver code. (#296)
* Precompute command header.
* Update data header on-demand.
* Use more aggressive inlining.
* Do not clear number buffer twice.
2018-05-11 12:32:37 +10:00
Alessandro Gatti
215fe8e9e8 Reduce code size for accelerometer support (#288)
* Reduce the LIS2DH12 driver's code size.
* Reduce the MMA8652FC driver's code size.
* Make orientation detection smaller.


* Inlined C++ class constructor.
* De-unroll I2C register writes.
* Removed unused setSensitivity method.
2018-05-10 10:02:29 +10:00
Ben V. Brown
4718efe79b 2.04 bugfixes
Should help with UI lockups
2018-05-07 21:24:29 +10:00
Ben V. Brown
771f0a1b9e Cleanup LCD on/off commands into buffer 2018-05-06 20:06:16 +10:00
Ben V. Brown
1fef2fb53a Move OLED LCD update to be DMA'ed
Start Cleaning up I2C HAL
2018-05-06 18:56:38 +10:00
Ben V. Brown
bf1fa74d72 Update debug info
Change pin configs
Clean up some code
2018-05-06 18:01:34 +10:00
freetushkan
1ae8b2f216 Additional changes in russian localization (#284)
Changes in russian localization (typos, improvements, machine translation replacements). I'd like to maintain this in the future.
2018-05-05 14:55:15 +10:00
Jan Krupička
98ed6be197 factory reset as last item (again) (#282) 2018-05-05 14:54:48 +10:00
freetushkan
19240f2ae5 Some changes in russian localisation (#276) 2018-04-30 08:58:14 +10:00
Ben V. Brown
dd2fdbcb8e Fix button lockout
Fixes #278
2018-04-28 11:46:07 +10:00
Ben V. Brown
42db57da25 Update power indicator
Fixes and closes #211
Final 2.04 release coming up :)
2018-04-27 15:25:58 +10:00
Ben V. Brown
b6351f9696 Add showing the tip temp on idle (#226)
This shows the tip temp on the simple home screen if the temp is > 50C.

This removes the tip temp warning for all users, as now everyone can see the tip temp.

#187
2018-04-27 14:46:59 +10:00
Leonid
bf7f1f5062 typo (#272) 2018-04-20 12:44:07 +10:00
Ben V. Brown
6500eb5eed FI Updates
#267
2018-04-14 18:05:13 +10:00
Ben V. Brown
311d5182eb Cleanup formatting 2018-04-14 17:58:28 +10:00
Ben V. Brown
88ea45d8c8 Fix OLED leftover task calls 2018-04-14 17:05:26 +10:00
Ben V. Brown
576575d7ba More FRToS I2C cleanup 2018-04-14 16:33:16 +10:00
Ben V. Brown
7c1937b412 Adding FreeRToS constructs to I2C driver 2018-04-14 15:05:46 +10:00
Ben V. Brown
f599624b6f I2C into nicer wrapper for FreeRToS 2018-04-14 13:37:42 +10:00
Ben V. Brown
cc09157106 Fix UK -> UA for Ukrainian
#261
2018-04-13 17:27:22 +10:00
31 changed files with 1789 additions and 1422 deletions

View File

@@ -34,36 +34,36 @@ ADC1.SamplingTime-4\#ChannelInjectedConversion=ADC_SAMPLETIME_239CYCLES_5
ADC1.SamplingTime-5\#ChannelInjectedConversion=ADC_SAMPLETIME_71CYCLES_5
ADC1.ScanConvMode=ADC_SCAN_ENABLE
ADC1.master=1
Dma.ADC1.2.Direction=DMA_PERIPH_TO_MEMORY
Dma.ADC1.2.Instance=DMA1_Channel1
Dma.ADC1.2.MemDataAlignment=DMA_MDATAALIGN_HALFWORD
Dma.ADC1.2.MemInc=DMA_MINC_ENABLE
Dma.ADC1.2.Mode=DMA_CIRCULAR
Dma.ADC1.2.PeriphDataAlignment=DMA_PDATAALIGN_HALFWORD
Dma.ADC1.2.PeriphInc=DMA_PINC_DISABLE
Dma.ADC1.2.Priority=DMA_PRIORITY_VERY_HIGH
Dma.ADC1.2.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority
Dma.I2C1_RX.0.Direction=DMA_PERIPH_TO_MEMORY
Dma.I2C1_RX.0.Instance=DMA1_Channel7
Dma.I2C1_RX.0.MemDataAlignment=DMA_MDATAALIGN_BYTE
Dma.I2C1_RX.0.MemInc=DMA_MINC_ENABLE
Dma.I2C1_RX.0.Mode=DMA_NORMAL
Dma.I2C1_RX.0.PeriphDataAlignment=DMA_PDATAALIGN_BYTE
Dma.I2C1_RX.0.PeriphInc=DMA_PINC_DISABLE
Dma.I2C1_RX.0.Priority=DMA_PRIORITY_LOW
Dma.I2C1_RX.0.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority
Dma.I2C1_TX.1.Direction=DMA_MEMORY_TO_PERIPH
Dma.I2C1_TX.1.Instance=DMA1_Channel6
Dma.I2C1_TX.1.MemDataAlignment=DMA_MDATAALIGN_BYTE
Dma.I2C1_TX.1.MemInc=DMA_MINC_ENABLE
Dma.I2C1_TX.1.Mode=DMA_NORMAL
Dma.I2C1_TX.1.PeriphDataAlignment=DMA_PDATAALIGN_BYTE
Dma.I2C1_TX.1.PeriphInc=DMA_PINC_DISABLE
Dma.I2C1_TX.1.Priority=DMA_PRIORITY_LOW
Dma.I2C1_TX.1.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority
Dma.Request0=I2C1_RX
Dma.Request1=I2C1_TX
Dma.Request2=ADC1
Dma.ADC1.0.Direction=DMA_PERIPH_TO_MEMORY
Dma.ADC1.0.Instance=DMA1_Channel1
Dma.ADC1.0.MemDataAlignment=DMA_MDATAALIGN_HALFWORD
Dma.ADC1.0.MemInc=DMA_MINC_ENABLE
Dma.ADC1.0.Mode=DMA_CIRCULAR
Dma.ADC1.0.PeriphDataAlignment=DMA_PDATAALIGN_HALFWORD
Dma.ADC1.0.PeriphInc=DMA_PINC_DISABLE
Dma.ADC1.0.Priority=DMA_PRIORITY_VERY_HIGH
Dma.ADC1.0.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority
Dma.I2C1_RX.1.Direction=DMA_PERIPH_TO_MEMORY
Dma.I2C1_RX.1.Instance=DMA1_Channel7
Dma.I2C1_RX.1.MemDataAlignment=DMA_MDATAALIGN_BYTE
Dma.I2C1_RX.1.MemInc=DMA_MINC_ENABLE
Dma.I2C1_RX.1.Mode=DMA_NORMAL
Dma.I2C1_RX.1.PeriphDataAlignment=DMA_PDATAALIGN_BYTE
Dma.I2C1_RX.1.PeriphInc=DMA_PINC_DISABLE
Dma.I2C1_RX.1.Priority=DMA_PRIORITY_MEDIUM
Dma.I2C1_RX.1.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority
Dma.I2C1_TX.2.Direction=DMA_MEMORY_TO_PERIPH
Dma.I2C1_TX.2.Instance=DMA1_Channel6
Dma.I2C1_TX.2.MemDataAlignment=DMA_MDATAALIGN_BYTE
Dma.I2C1_TX.2.MemInc=DMA_MINC_ENABLE
Dma.I2C1_TX.2.Mode=DMA_NORMAL
Dma.I2C1_TX.2.PeriphDataAlignment=DMA_PDATAALIGN_BYTE
Dma.I2C1_TX.2.PeriphInc=DMA_PINC_DISABLE
Dma.I2C1_TX.2.Priority=DMA_PRIORITY_MEDIUM
Dma.I2C1_TX.2.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority
Dma.Request0=ADC1
Dma.Request1=I2C1_RX
Dma.Request2=I2C1_TX
Dma.RequestsNb=3
FREERTOS.FootprintOK=true
FREERTOS.INCLUDE_vTaskDelete=0
@@ -74,8 +74,9 @@ FREERTOS.configMINIMAL_STACK_SIZE=256
FREERTOS.configTICK_RATE_HZ=100
FREERTOS.configTOTAL_HEAP_SIZE=10240
File.Version=6
I2C1.DutyCycle=I2C_DUTYCYCLE_2
I2C1.I2C_Mode=I2C_Fast
I2C1.IPParameters=I2C_Mode
I2C1.IPParameters=I2C_Mode,DutyCycle
IWDG.IPParameters=Prescaler
IWDG.Prescaler=IWDG_PRESCALER_256
KeepUserPlacement=false
@@ -88,8 +89,9 @@ Mcu.IP4=IWDG
Mcu.IP5=NVIC
Mcu.IP6=RCC
Mcu.IP7=SYS
Mcu.IP8=TIM3
Mcu.IPNb=9
Mcu.IP8=TIM2
Mcu.IP9=TIM3
Mcu.IPNb=10
Mcu.Name=STM32F103T(8-B)Ux
Mcu.Package=VFQFPN36
Mcu.Pin0=PA6
@@ -100,9 +102,12 @@ Mcu.Pin12=PB7
Mcu.Pin13=VP_FREERTOS_VS_ENABLE
Mcu.Pin14=VP_IWDG_VS_IWDG
Mcu.Pin15=VP_SYS_VS_tim1
Mcu.Pin16=VP_TIM3_VS_ClockSourceINT
Mcu.Pin17=VP_TIM3_VS_no_output4
Mcu.Pin16=VP_TIM2_VS_ClockSourceINT
Mcu.Pin17=VP_TIM2_VS_no_output1
Mcu.Pin18=VP_TIM2_VS_no_output3
Mcu.Pin19=VP_TIM3_VS_ClockSourceINT
Mcu.Pin2=PB0
Mcu.Pin20=VP_TIM3_VS_no_output4
Mcu.Pin3=PB1
Mcu.Pin4=PA8
Mcu.Pin5=PA9
@@ -110,28 +115,31 @@ Mcu.Pin6=PA13
Mcu.Pin7=PA14
Mcu.Pin8=PB3
Mcu.Pin9=PB4
Mcu.PinsNb=18
Mcu.PinsNb=21
Mcu.ThirdPartyNb=0
Mcu.UserConstants=
Mcu.UserName=STM32F103T8Ux
MxCube.Version=4.22.0
MxDb.Version=DB.4.0.220
NVIC.ADC1_2_IRQn=true\:5\:0\:false\:false\:true\:true
NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false
NVIC.DMA1_Channel1_IRQn=true\:5\:0\:false\:false\:true\:true
NVIC.DMA1_Channel6_IRQn=true\:5\:0\:false\:false\:true\:true
NVIC.DMA1_Channel7_IRQn=true\:5\:0\:false\:false\:true\:true
NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false
NVIC.HardFault_IRQn=true\:0\:0\:false\:false\:true\:false
NVIC.MemoryManagement_IRQn=true\:0\:0\:false\:false\:true\:false
NVIC.NonMaskableInt_IRQn=true\:0\:0\:false\:false\:true\:false
NVIC.PendSV_IRQn=true\:15\:0\:false\:false\:false\:true
MxCube.Version=4.25.0
MxDb.Version=DB.4.0.250
NVIC.ADC1_2_IRQn=true\:5\:0\:false\:false\:true\:true\:true
NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:true
NVIC.DMA1_Channel1_IRQn=true\:5\:0\:false\:false\:true\:true\:true
NVIC.DMA1_Channel6_IRQn=true\:5\:0\:false\:false\:true\:true\:true
NVIC.DMA1_Channel7_IRQn=true\:5\:0\:false\:false\:true\:true\:true
NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false\:true
NVIC.HardFault_IRQn=true\:0\:0\:false\:false\:true\:false\:true
NVIC.I2C1_ER_IRQn=true\:5\:0\:false\:false\:true\:true\:true
NVIC.I2C1_EV_IRQn=true\:5\:0\:false\:false\:true\:true\:true
NVIC.MemoryManagement_IRQn=true\:0\:0\:false\:false\:true\:false\:true
NVIC.NonMaskableInt_IRQn=true\:0\:0\:false\:false\:true\:false\:true
NVIC.PendSV_IRQn=true\:15\:0\:false\:false\:false\:true\:true
NVIC.PriorityGroup=NVIC_PRIORITYGROUP_4
NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:false\:false
NVIC.SysTick_IRQn=true\:15\:0\:false\:false\:true\:true
NVIC.TIM1_UP_IRQn=true\:0\:0\:false\:false\:true\:false
NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:false\:false\:true
NVIC.SysTick_IRQn=true\:15\:0\:false\:false\:true\:true\:true
NVIC.TIM1_UP_IRQn=true\:0\:0\:false\:false\:true\:false\:true
NVIC.TimeBase=TIM1_UP_IRQn
NVIC.TimeBaseIP=TIM1
NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false
NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:true
PA13.Locked=true
PA13.Mode=Serial_Wire
PA13.Signal=SYS_JTMS-SWDIO
@@ -193,29 +201,30 @@ PCC.Vdd=3.3
PinOutPanel.RotationAngle=0
ProjectManager.AskForMigrate=true
ProjectManager.BackupPrevious=false
ProjectManager.CompilerOptimize=2
ProjectManager.CompilerOptimize=3
ProjectManager.ComputerToolchain=false
ProjectManager.CoupleFile=false
ProjectManager.CustomerFirmwarePackage=C\:/Users/Ben V. Brown/STM32Cube/Repository/STM32Cube_FW_F1_V1.6.0
ProjectManager.CustomerFirmwarePackage=C\:/Users/Ralim/STM32Cube/Repository/STM32Cube_FW_F1_V1.6.1
ProjectManager.DefaultFWLocation=true
ProjectManager.DeletePrevious=true
ProjectManager.DeviceId=STM32F103T8Ux
ProjectManager.FirmwarePackage=STM32Cube FW_F1 V1.6.0
ProjectManager.FirmwarePackage=STM32Cube FW_F1 V1.6.1
ProjectManager.FreePins=true
ProjectManager.HalAssertFull=false
ProjectManager.HeapSize=0x200
ProjectManager.KeepUserCode=true
ProjectManager.LastFirmware=true
ProjectManager.LibraryCopy=1
ProjectManager.MainLocation=Src
ProjectManager.PreviousToolchain=SW4STM32
ProjectManager.ProjectBuild=false
ProjectManager.ProjectFileName=TS100.ioc
ProjectManager.ProjectName=TS100
ProjectManager.StackSize=0x400
ProjectManager.TargetToolchain=SW4STM32
ProjectManager.ToolChainLocation=C\:\\Users\\Ralim\\Repo\\ts100\\TS100
ProjectManager.ToolChainLocation=
ProjectManager.UnderRoot=false
ProjectManager.functionlistsort=1-MX_GPIO_Init-GPIO-false-HAL,2-MX_DMA_Init-DMA-false-HAL,3-MX_I2C1_Init-I2C1-false-HAL,4-MX_ADC1_Init-ADC1-false-HAL,5-SystemClock_Config-RCC-false-HAL,6-MX_TIM3_Init-TIM3-false-HAL,7-MX_IWDG_Init-IWDG-false-HAL
ProjectManager.functionlistsort=1-MX_GPIO_Init-GPIO-false-HAL-true,2-MX_DMA_Init-DMA-false-HAL-true,3-MX_I2C1_Init-I2C1-false-HAL-true,4-MX_ADC1_Init-ADC1-false-HAL-true,5-SystemClock_Config-RCC-false-HAL-true,6-MX_TIM3_Init-TIM3-false-HAL-true,7-MX_IWDG_Init-IWDG-false-HAL-true,8-MX_TIM2_Init-TIM2-false-HAL-true
RCC.ADCFreqValue=8000000
RCC.ADCPresc=RCC_ADCPCLK2_DIV8
RCC.AHBFreq_Value=64000000
@@ -252,6 +261,9 @@ SH.GPXTI5.0=GPIO_EXTI5
SH.GPXTI5.ConfNb=1
SH.S_TIM3_CH1.0=TIM3_CH1,PWM Generation1 CH1
SH.S_TIM3_CH1.ConfNb=1
TIM2.Channel-PWM\ Generation1\ No\ Output=TIM_CHANNEL_1
TIM2.Channel-PWM\ Generation3\ No\ Output=TIM_CHANNEL_3
TIM2.IPParameters=Channel-PWM Generation1 No Output,Channel-PWM Generation3 No Output
TIM3.Channel-Output\ Compare4\ No\ Output=TIM_CHANNEL_4
TIM3.Channel-PWM\ Generation1\ CH1=TIM_CHANNEL_1
TIM3.ClockDivision=TIM_CLOCKDIVISION_DIV4
@@ -267,6 +279,12 @@ VP_IWDG_VS_IWDG.Mode=IWDG_Activate
VP_IWDG_VS_IWDG.Signal=IWDG_VS_IWDG
VP_SYS_VS_tim1.Mode=TIM1
VP_SYS_VS_tim1.Signal=SYS_VS_tim1
VP_TIM2_VS_ClockSourceINT.Mode=Internal
VP_TIM2_VS_ClockSourceINT.Signal=TIM2_VS_ClockSourceINT
VP_TIM2_VS_no_output1.Mode=PWM Generation1 No Output
VP_TIM2_VS_no_output1.Signal=TIM2_VS_no_output1
VP_TIM2_VS_no_output3.Mode=PWM Generation3 No Output
VP_TIM2_VS_no_output3.Signal=TIM2_VS_no_output3
VP_TIM3_VS_ClockSourceINT.Mode=Internal
VP_TIM3_VS_ClockSourceINT.Signal=TIM3_VS_ClockSourceINT
VP_TIM3_VS_no_output4.Mode=Output Compare4 No Output

View File

@@ -1,10 +1,12 @@
# TS100
This is a complete rewrite of the open source software for the ts100 soldering iron.
The version two fork of this code has no shared code with the original firmware from Miniware (E-design) group.
This project is concidered feature complete for use as a soldering iron, *so please suggest any feature improvements you would like!*
This project is considered feature complete for use as a soldering iron, *so please suggest any feature improvements you would like!*
A short(ish) video that goes through every single menu option in the firmware is available [over here](https://www.youtube.com/watch?v=WlnpboYfxNk).
This video was created on an earlier 1.x version of the firmware, so alot has changed and a new video will be coming soon for the 2.x fork.
This video was created on an earlier 1.x version of the firmware, so alot has changed but should be fairly intuitive as the menu has vastly improved.
*This firmware does **NOT** support the usb port while running for changing settings. This is done through the onscreen menu only. Logos are edited using the tool or python script and uploaded in DFU mode.*
@@ -12,6 +14,7 @@ This video was created on an earlier 1.x version of the firmware, so alot has ch
Please calibrate your irons voltage reading when you are using a lithium battery after any firmware upgrades.*
## Features
* PID iron temperature control
* Automatic sleep with selectable sensitivity
* Motion wake support
@@ -26,10 +29,11 @@ Please calibrate your irons voltage reading when you are using a lithium battery
* Battery charge level indicatior if power source set to a lipo cell count.
* Custom bootup logo support
* Automatic LCD rotation based on orientation
* Supports both the version 1 and version 2 hardware
## Upgrading your ts100 iron
This is completely safe, if it goes wrong just put the .hex file from the official website onto the unit and your back to the old firmware. Downloads for the hex files to flash are available on the [releases page.](https://github.com/Ralim/ts100/releases) The file you want is called *ts100.hex* unless you want the translations, they are ts100_*language short name*.hex.
This is completely safe, if it goes wrong just put the .hex file from the official website onto the unit and your back to the old firmware. Downloads for the hex files to flash are available on the [releases page.](https://github.com/Ralim/ts100/releases) The file you want is called *ts100_EN.hex* unless you want the translations, they are ts100_*language short name*.hex.
Officially the bootloader on the iron only works under windows. However, users have reported that it does work under Mac, and can be made to work under Linux *sometimes*. Details over on the [wiki page](https://github.com/Ralim/ts100/wiki/Upgrading-Firmware).
@@ -55,10 +59,12 @@ There are further instructions on the [wiki](https://github.com/Ralim/ts100/wiki
This new firmware uses a new menu system to allow access to the settings on the device.
When on the main screen, the unit shows prompts for the two most common operations.
* Pressing the button near the tip enters soldering mode
* Pressing the button near the USB enters the settings menu.
* Holding the button near the tip will enter soldering temperature adjust mode (This is the same as the one in the soldering menu, just to let you edit before heating up).
* Holding the button near the USB end will show the firmware version details.
## Soldering mode
In this mode the iron works as you would expect, pressing either button will take you to a temperature change screen.
@@ -70,23 +76,12 @@ Holding the button at the front of the iron will enter boost mode (if enabled).
This menu allows you to cycle through all the options and set their values.
The button near the USB cycles through the options, and the one near the tip changes the selected option.
Note that settings are not saved until you exit the menu, and some settings such as screen flip do not apply until a power cycle is applied.
If you leave the unit alone (ie don't press any buttons) on a setting, after 3 seconds the screen will scroll a longer version of the name
Note that settings are not saved until you exit the menu.
If you leave the unit alone (ie don't press any buttons) on a setting, after 3 seconds the screen will scroll a rough description of the setting.
* PWRSC -> Power source, select a cell count if using a LiPo, or DC to disable the shutdown. (Sets it to minimum of 10V).
* STMP -> The temperature the unit drops to in sleep mode
* SLTME -> Sleep time, how long it takes before the unit goes to sleep
* SHTME -> Shutdown Time, how long the unit will wait after movement before shutting down completely
* MSENSE -> Motion Sensitivity,0*9,0 means motion sensing is turned off, 9 is most sensitive, 1 is least sensitive (ie takes more movement to trigger)
* ADVDSP -> Enable the advanced display (shows more details)
* DSPROT -> Display rotation mode, Automatic, Left handed or Right handed
* BOOST -> Enable boost mode
* BTMP -> Set the temperature for the boost mode
* ASART -> Automatically start the unit when power is applied (i.e. the unit will go straight into soldering mode)
* CLBLNK -> Blink the screen as an alert when cooling down
* TMP CAL -> Use to calibrate offset on the tip temperature
* RESET -> Use to force a complete reset on exit of the settings menu
* TMPUNIT -> Temperature unit, C or F
The menu is arranged so that the most often used settings are first.
With submenu's being selected to enter using the front button (as if you were going to change the setting).
Scrolling through the submenu will return you back to its entry location after you scroll through all of the options.
### Calibrating input voltage
@@ -99,19 +94,11 @@ To calibrate your Iron:
1. Measure the input voltage with a multimeter and note it down.
2. Connect the input to your iron.
3. On the home screen (showing iron symbol), press both buttons simultainiously.
4. The iron will now show the tip temperature.
5. Press the button near the soldering iron tip.
6. The screen will display the measured input voltage.
7. If this is the same as what you measured before skip to step 13
8. Otherwise, press the button near the USB end of the iron
9. The voltage will now slowly blink.
10. Use the buttons to adjust the reading up and down until it reads as close as possible to the voltage you measured earlier.
11. When it is reading as close as possible, press both buttons at once.
12. The screen will go back to just showing the input voltage.
13. Press the button near the tip of the iron to exit back to the live temperature display.
14. Press both buttons at once to exit back to the idle screen.
15. You're done. Enjoy your iron.
3. Enter the settings menu
4. Under the advanced submenu
5. Select the calibrate voltage option
6. Use the front and back buttons to adjust the displayed voltage to minimise the error to your origional measurement
7. Hold both buttons to save and exit to the menu
### Calibrating tip offset
@@ -120,7 +107,7 @@ Some tips will have an offset on their readings, to calibrate this out perform t
1. Connect power to your iron
2. Make sure the tip is at room temperature (ie. wait for a fair while after using the iron before calibration)
3. Enter the settings menu
4. Scroll down to *TMP CAL*
4. Scroll down to the advanced menu, and then the temperature calibration
5. Press the button to change the option (tip button)
6. The display will start to scroll a warning message to check that the tip is at ambient temperature!
7. Press the button near the tip of the iron to confirm.
@@ -135,7 +122,6 @@ This allows you to change the front key (one near the tip) to become a boost but
The boost temperature is set in the settings menu.
## Thanks
If you love this firmware and want to continue my caffine addiction, you can do so here (or email me for other options) : https://paypal.me/RalimTek

View File

@@ -110,120 +110,6 @@
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.externalSettings"/>
</cconfiguration>
<cconfiguration id="fr.ac6.managedbuild.config.gnu.cross.exe.release.723264573">
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="fr.ac6.managedbuild.config.gnu.cross.exe.release.723264573" moduleId="org.eclipse.cdt.core.settings" name="Release">
<externalSettings/>
<extensions>
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
</extensions>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<configuration artifactExtension="elf" artifactName="${ProjName}" buildArtefactType="org.eclipse.cdt.build.core.buildArtefactType.exe" buildProperties="org.eclipse.cdt.build.core.buildArtefactType=org.eclipse.cdt.build.core.buildArtefactType.exe,org.eclipse.cdt.build.core.buildType=org.eclipse.cdt.build.core.buildType.release" cleanCommand="rm -rf" description="" id="fr.ac6.managedbuild.config.gnu.cross.exe.release.723264573" name="Release" parent="fr.ac6.managedbuild.config.gnu.cross.exe.release" postannouncebuildStep="Generating binary and Printing size information:" postbuildStep="arm-none-eabi-objcopy -O binary &quot;${BuildArtifactFileBaseName}.elf&quot; &quot;${BuildArtifactFileBaseName}.bin&quot;; arm-none-eabi-size -B &quot;${BuildArtifactFileName}&quot; ;arm-none-eabi-objcopy -O ihex &quot;${BuildArtifactFileBaseName}.elf&quot; &quot;${BuildArtifactFileBaseName}.hex&quot;">
<folderInfo id="fr.ac6.managedbuild.config.gnu.cross.exe.release.723264573." name="/" resourcePath="">
<toolChain id="fr.ac6.managedbuild.toolchain.gnu.cross.exe.release.1456567544" name="Ac6 STM32 MCU GCC" superClass="fr.ac6.managedbuild.toolchain.gnu.cross.exe.release">
<option id="fr.ac6.managedbuild.option.gnu.cross.mcu.67332574" name="Mcu" superClass="fr.ac6.managedbuild.option.gnu.cross.mcu" useByScannerDiscovery="false" value="STM32F103T8Ux" valueType="string"/>
<option id="fr.ac6.managedbuild.option.gnu.cross.board.1570943989" name="Board" superClass="fr.ac6.managedbuild.option.gnu.cross.board" useByScannerDiscovery="false" value="ts100" valueType="string"/>
<targetPlatform archList="all" binaryParser="org.eclipse.cdt.core.ELF" id="fr.ac6.managedbuild.targetPlatform.gnu.cross.793444160" isAbstract="false" osList="all" superClass="fr.ac6.managedbuild.targetPlatform.gnu.cross"/>
<builder buildPath="${workspace_loc:/TS100}/Release" id="fr.ac6.managedbuild.builder.gnu.cross.548236022" keepEnvironmentInBuildfile="false" managedBuildOn="true" name="Gnu Make Builder" superClass="fr.ac6.managedbuild.builder.gnu.cross"/>
<tool id="fr.ac6.managedbuild.tool.gnu.cross.c.compiler.1363306495" name="MCU GCC Compiler" superClass="fr.ac6.managedbuild.tool.gnu.cross.c.compiler">
<option id="fr.ac6.managedbuild.gnu.c.compiler.option.optimization.level.1100266163" name="Optimization Level" superClass="fr.ac6.managedbuild.gnu.c.compiler.option.optimization.level" useByScannerDiscovery="false" value="fr.ac6.managedbuild.gnu.c.optimization.level.more" valueType="enumerated"/>
<option id="gnu.c.compiler.option.debugging.level.2139237845" name="Debug Level" superClass="gnu.c.compiler.option.debugging.level" useByScannerDiscovery="false" value="gnu.c.debugging.level.max" valueType="enumerated"/>
<option id="gnu.c.compiler.option.include.paths.1770182855" name="Include paths (-I)" superClass="gnu.c.compiler.option.include.paths" useByScannerDiscovery="false" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/inc&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/CMSIS/core&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/CMSIS/device&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/HAL_Driver/Inc/Legacy&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/HAL_Driver/Inc&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/CMSIS_RTOS&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM3&quot;"/>
</option>
<option id="gnu.c.compiler.option.preprocessor.def.symbols.1423042308" name="Defined symbols (-D)" superClass="gnu.c.compiler.option.preprocessor.def.symbols" useByScannerDiscovery="false" valueType="definedSymbols">
<listOptionValue builtIn="false" value="STM32F103T8Ux"/>
<listOptionValue builtIn="false" value="STM32F1"/>
<listOptionValue builtIn="false" value="STM32"/>
<listOptionValue builtIn="false" value="USE_HAL_DRIVER"/>
<listOptionValue builtIn="false" value="STM32F103xB"/>
<listOptionValue builtIn="false" value="USE_RTOS_SYSTICK"/>
</option>
<option id="gnu.c.compiler.option.dialect.std.356859384" name="Language standard" superClass="gnu.c.compiler.option.dialect.std" useByScannerDiscovery="true" value="gnu.c.compiler.dialect.default" valueType="enumerated"/>
<option id="fr.ac6.managedbuild.tool.gnu.cross.c.compiler.fdata.1580070223" name="Place the data in their own section (-fdata-sections)" superClass="fr.ac6.managedbuild.tool.gnu.cross.c.compiler.fdata" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option id="gnu.c.compiler.option.misc.pic.1841660469" name="Position Independent Code (-fPIC)" superClass="gnu.c.compiler.option.misc.pic" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<inputType id="fr.ac6.managedbuild.tool.gnu.cross.c.compiler.input.c.747173367" superClass="fr.ac6.managedbuild.tool.gnu.cross.c.compiler.input.c"/>
<inputType id="fr.ac6.managedbuild.tool.gnu.cross.c.compiler.input.s.1210653460" superClass="fr.ac6.managedbuild.tool.gnu.cross.c.compiler.input.s"/>
</tool>
<tool id="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler.1414722294" name="MCU G++ Compiler" superClass="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler">
<option id="fr.ac6.managedbuild.gnu.cpp.compiler.option.optimization.level.1489744363" name="Optimization Level" superClass="fr.ac6.managedbuild.gnu.cpp.compiler.option.optimization.level" useByScannerDiscovery="false" value="fr.ac6.managedbuild.gnu.cpp.optimization.level.more" valueType="enumerated"/>
<option id="gnu.cpp.compiler.option.debugging.level.641509376" name="Debug Level" superClass="gnu.cpp.compiler.option.debugging.level" useByScannerDiscovery="false" value="gnu.cpp.compiler.debugging.level.max" valueType="enumerated"/>
<option id="gnu.cpp.compiler.option.include.paths.105977434" name="Include paths (-I)" superClass="gnu.cpp.compiler.option.include.paths" useByScannerDiscovery="false" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/inc&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/CMSIS/core&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/CMSIS/device&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/HAL_Driver/Inc/Legacy&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/HAL_Driver/Inc&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/CMSIS_RTOS&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM3&quot;"/>
</option>
<option id="gnu.cpp.compiler.option.preprocessor.def.158062035" name="Defined symbols (-D)" superClass="gnu.cpp.compiler.option.preprocessor.def" useByScannerDiscovery="false" valueType="definedSymbols">
<listOptionValue builtIn="false" value="STM32F103T8Ux"/>
<listOptionValue builtIn="false" value="STM32F1"/>
<listOptionValue builtIn="false" value="STM32"/>
<listOptionValue builtIn="false" value="USE_HAL_DRIVER"/>
<listOptionValue builtIn="false" value="STM32F103xB"/>
<listOptionValue builtIn="false" value="USE_RTOS_SYSTICK"/>
</option>
<option id="gnu.cpp.compiler.option.dialect.std.2101054556" name="Language standard" superClass="gnu.cpp.compiler.option.dialect.std" useByScannerDiscovery="true" value="gnu.cpp.compiler.dialect.default" valueType="enumerated"/>
<option id="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler.fdata.1877154487" name="Place the data in their own section (-fdata-sections)" superClass="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler.fdata" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<inputType id="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler.input.cpp.688034595" superClass="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler.input.cpp"/>
<inputType id="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler.input.s.6473827" superClass="fr.ac6.managedbuild.tool.gnu.cross.cpp.compiler.input.s"/>
</tool>
<tool id="fr.ac6.managedbuild.tool.gnu.cross.c.linker.1409185098" name="MCU GCC Linker" superClass="fr.ac6.managedbuild.tool.gnu.cross.c.linker"/>
<tool id="fr.ac6.managedbuild.tool.gnu.cross.cpp.linker.162825548" name="MCU G++ Linker" superClass="fr.ac6.managedbuild.tool.gnu.cross.cpp.linker">
<option id="gnu.cpp.link.option.strip.459660118" name="Omit all symbol information (-s)" superClass="gnu.cpp.link.option.strip" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option id="fr.ac6.managedbuild.tool.gnu.cross.cpp.linker.gcsections.664103720" name="Discard unused sections (-Wl,--gc-sections)" superClass="fr.ac6.managedbuild.tool.gnu.cross.cpp.linker.gcsections" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<inputType id="cdt.managedbuild.tool.gnu.cpp.linker.input.1735005640" superClass="cdt.managedbuild.tool.gnu.cpp.linker.input">
<additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/>
<additionalInput kind="additionalinput" paths="$(LIBS)"/>
</inputType>
</tool>
<tool id="fr.ac6.managedbuild.tool.gnu.archiver.907512577" name="MCU GCC Archiver" superClass="fr.ac6.managedbuild.tool.gnu.archiver"/>
<tool id="fr.ac6.managedbuild.tool.gnu.cross.assembler.1906472572" name="MCU GCC Assembler" superClass="fr.ac6.managedbuild.tool.gnu.cross.assembler">
<option id="gnu.both.asm.option.include.paths.1277819409" name="Include paths (-I)" superClass="gnu.both.asm.option.include.paths" useByScannerDiscovery="false" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/inc&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/CMSIS/core&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/CMSIS/device&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/HAL_Driver/Inc/Legacy&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/HAL_Driver/Inc&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/CMSIS_RTOS&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${ProjDirPath}/Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM3&quot;"/>
</option>
<inputType id="cdt.managedbuild.tool.gnu.assembler.input.1588000933" superClass="cdt.managedbuild.tool.gnu.assembler.input"/>
<inputType id="fr.ac6.managedbuild.tool.gnu.cross.assembler.input.1118741214" superClass="fr.ac6.managedbuild.tool.gnu.cross.assembler.input"/>
</tool>
<tool id="fr.ac6.managedbuild.tool.gnu.cross.assembler.exe.release.63862661" name="MCU GCC Assembler" superClass="fr.ac6.managedbuild.tool.gnu.cross.assembler.exe.release">
<inputType id="cdt.managedbuild.tool.gnu.assembler.input.983697759" superClass="cdt.managedbuild.tool.gnu.assembler.input"/>
<inputType id="fr.ac6.managedbuild.tool.gnu.cross.assembler.input.1721181053" superClass="fr.ac6.managedbuild.tool.gnu.cross.assembler.input"/>
</tool>
</toolChain>
</folderInfo>
<sourceEntries>
<entry excluding="Src/stm32f1xx_hal_timebase_tim_template.c|Src/stm32f1xx_hal_timebase_rtc_wakeup_template.c|Src/stm32f1xx_hal_timebase_rtc_alarm_template.c" flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="HAL_Driver"/>
<entry excluding="Third_Party/FreeRTOS/Source/portable/MemMang/heap_1.c|Third_Party/FreeRTOS/Source/portable/MemMang/heap_2.c|Third_Party/FreeRTOS/Source/portable/MemMang/heap_3.c|Third_Party/FreeRTOS/Source/portable/MemMang/heap_5.c" flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="Middlewares"/>
<entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="inc"/>
<entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="src"/>
<entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="startup"/>
</sourceEntries>
</configuration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.externalSettings"/>
</cconfiguration>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<project id="TS100.fr.ac6.managedbuild.target.gnu.cross.exe.1768512215" name="Executable" projectType="fr.ac6.managedbuild.target.gnu.cross.exe"/>

View File

@@ -6,19 +6,7 @@
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider copy-of="extension" id="org.eclipse.cdt.managedbuilder.core.GCCBuildCommandParser"/>
<provider class="fr.ac6.mcu.ide.build.CrossBuiltinSpecsDetector" console="false" env-hash="1349131645423570210" id="fr.ac6.mcu.ide.build.CrossBuiltinSpecsDetector" keep-relative-paths="false" name="Ac6 SW4 STM32 MCU Built-in Compiler Settings" parameter="${COMMAND} ${FLAGS} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>
</extension>
</configuration>
<configuration id="fr.ac6.managedbuild.config.gnu.cross.exe.release.723264573" name="Release">
<extension point="org.eclipse.cdt.core.LanguageSettingsProvider">
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider copy-of="extension" id="org.eclipse.cdt.managedbuilder.core.GCCBuildCommandParser"/>
<provider class="fr.ac6.mcu.ide.build.CrossBuiltinSpecsDetector" console="false" env-hash="1349131645423570210" id="fr.ac6.mcu.ide.build.CrossBuiltinSpecsDetector" keep-relative-paths="false" name="Ac6 SW4 STM32 MCU Built-in Compiler Settings" parameter="${COMMAND} ${FLAGS} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<provider class="fr.ac6.mcu.ide.build.CrossBuiltinSpecsDetector" console="false" env-hash="-283880394950776525" id="fr.ac6.mcu.ide.build.CrossBuiltinSpecsDetector" keep-relative-paths="false" name="Ac6 SW4 STM32 MCU Built-in Compiler Settings" parameter="${COMMAND} ${FLAGS} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>

View File

@@ -3467,48 +3467,7 @@ void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c)
}
}
}
/* Slave mode selected */
else
{
/* ADDR set --------------------------------------------------------------*/
if(((sr1itflags & I2C_FLAG_ADDR) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_Slave_ADDR(hi2c);
}
/* STOPF set --------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_STOPF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_Slave_STOPF(hi2c);
}
/* I2C in mode Transmitter -----------------------------------------------*/
else if((sr2itflags & I2C_FLAG_TRA) != RESET)
{
/* TXE set and BTF reset -----------------------------------------------*/
if(((sr1itflags & I2C_FLAG_TXE) != RESET) && ((itsources & I2C_IT_BUF) != RESET) && ((sr1itflags & I2C_FLAG_BTF) == RESET))
{
I2C_SlaveTransmit_TXE(hi2c);
}
/* BTF set -------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_BTF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_SlaveTransmit_BTF(hi2c);
}
}
/* I2C in mode Receiver --------------------------------------------------*/
else
{
/* RXNE set and BTF reset ----------------------------------------------*/
if(((sr1itflags & I2C_FLAG_RXNE) != RESET) && ((itsources & I2C_IT_BUF) != RESET) && ((sr1itflags & I2C_FLAG_BTF) == RESET))
{
I2C_SlaveReceive_RXNE(hi2c);
}
/* BTF set -------------------------------------------------------------*/
else if(((sr1itflags & I2C_FLAG_BTF) != RESET) && ((itsources & I2C_IT_EVT) != RESET))
{
I2C_SlaveReceive_BTF(hi2c);
}
}
}
}
/**

View File

@@ -7,6 +7,7 @@ endif
# Discover the source files to build
SOURCE := $(shell find . -type f -name '*.c')
SOURCE_CPP := $(shell find . -type f -name '*.cpp')
SOURCES := $(shell find . -type f -name '*.c*')
S_SRCS := $(shell find . -type f -name '*.s')
APP_INC_DIR = ./inc
@@ -31,7 +32,7 @@ HEXFILE_DIR=Hexfile
OUTPUT_DIR=Objects
# code optimisation ------------------------------------------------------------
OPTIM=-O2 -finline-small-functions -findirect-inlining -fdiagnostics-color
OPTIM=-Os -flto -finline-small-functions -findirect-inlining -fdiagnostics-color -ffunction-sections -fdata-sections
# global defines ---------------------------------------------------------------
@@ -72,7 +73,7 @@ LINKER_FLAGS=-Wl,--gc-sections \
-mcpu=cortex-m3 \
-mthumb \
-mfloat-abi=soft \
-lm
-lm -Os -flto -Wl,--undefined=vTaskSwitchContext
# compiler flags ---------------------------------------------------------------
CPUFLAGS=-D GCC_ARMCM3 \
@@ -130,7 +131,11 @@ CXXFLAGS=$(CPUFLAGS) \
-fno-rtti \
-fno-exceptions \
-fno-non-call-exceptions \
-fno-use-cxa-atexit \
-fno-use-cxa-atexit \
-fno-strict-aliasing \
-fno-rtti \
-fno-exceptions \
-fno-threadsafe-statics \
-T$(LDSCRIPT)
@@ -172,7 +177,7 @@ OUT_OBJS_CPP=$(addprefix $(OUTPUT_DIR)/,$(OBJS_CPP))
OUT_OBJS_S=$(addprefix $(OUTPUT_DIR)/,$(OBJS_S))
OUT_HEXFILE=$(addprefix $(HEXFILE_DIR)/,$(OUTPUT_EXE))
all: $(OUT_HEXFILE).hex
all: $(OUT_HEXFILE).hex $(OUT_HEXFILE).bin
#
# The rule to create the target directory
@@ -180,13 +185,17 @@ all: $(OUT_HEXFILE).hex
# Create hexfile
%.hex : %.elf
$(SIZE) -x $^
$(SIZE) $^
$(OBJCOPY) $^ -O ihex $@
%.bin : %.elf
$(SIZE) $^
$(OBJCOPY) $^ -O binary $@
$(OUT_HEXFILE).elf : $(OUT_OBJS) $(OUT_OBJS_CPP) $(OUT_OBJS_S) Makefile $(LDSCRIPT)
@test -d $(@D) || mkdir -p $(@D)
@echo Linking $(OUTPUT_EXE).elf
@$(CPP) $(CXXFLAGS) $(OUT_OBJS) $(OUT_OBJS_CPP) $(OUT_OBJS_S) $(LIBS) $(LINKER_FLAGS)
@$(CPP) $(CXXFLAGS) $(OUT_OBJS_S) $(OUT_OBJS) $(OUT_OBJS_CPP) $(LIBS) $(LINKER_FLAGS)
$(OUT_OBJS): $(OUTPUT_DIR)/%.o : %.c Makefile
@test -d $(@D) || mkdir -p $(@D)

27
workspace/TS100/TS100.cfg Normal file
View File

@@ -0,0 +1,27 @@
# This is an ts100 board with a single STM32F103T8Ux chip
#
# Generated by System Workbench for STM32
# Take care that such file, as generated, may be overridden without any early notice. Please have a look to debug launch configuration setup(s)
source [find interface/stlink.cfg]
set WORKAREASIZE 0x5000
transport select "hla_swd"
set CHIPNAME STM32F103T8Ux
# Enable debug when in low power modes
set ENABLE_LOW_POWER 1
# Stop Watchdog counters when halt
set STOP_WATCHDOG 1
# STlink Debug clock frequency
set CLOCK_FREQ 950
# use software system reset
reset_config none
set CONNECT_UNDER_RESET 0
source [find target/stm32f1x.cfg]

View File

@@ -33,5 +33,7 @@ make -j16 lang=BR
rm -rf Objects/src
make -j16 lang=LT
rm -rf Objects/src
make -j16 lang=UK
make -j16 lang=UA
rm -rf Objects/src
make -j16 lang=SR
rm -rf Objects/src

View File

@@ -0,0 +1,39 @@
/*
* FRToSI2C.hpp
*
* Created on: 14Apr.,2018
* Author: Ralim
*/
#ifndef FRTOSI2C_HPP_
#define FRTOSI2C_HPP_
#include "stm32f1xx_hal.h"
#include "cmsis_os.h"
class FRToSI2C {
public:
FRToSI2C(I2C_HandleTypeDef *i2chandle) : i2c(i2chandle),
I2CSemaphore(nullptr) {
}
void FRToSInit() {
I2CSemaphore = xSemaphoreCreateBinary();
xSemaphoreGive(I2CSemaphore);
}
void CpltCallback(); //Normal Tx Callback
void Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize,
uint8_t *pData, uint16_t Size);
void Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
private:
I2C_HandleTypeDef *i2c;
SemaphoreHandle_t I2CSemaphore;
};
#endif /* FRTOSI2C_HPP_ */

View File

@@ -490,7 +490,6 @@ const uint8_t ExtraFontChars[] = {
0x00,0xF0,0x08,0xEE,0xE2,0xFA,0xFA,0xE2,0xEE,0x08,0xF0,0x00,0x00,0x3F,0x40,0x5F,0x5F,0x5F,0x5F,0x5F,0x5F,0x40,0x3F,0x00, // Battery 10*/
0x00,0x00,0x38,0xC4,0x00,0x38,0xC4,0x00,0x38,0xC4,0x00,0x00,0x00,0x38,0x3A,0x39,0x38,0x3A,0x39,0x38,0x3A,0x39,0x10,0x10, // heating
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x38,0x38,0x38,0x38,0x38,0x38,0x38,0x38,0x38,0x10,0x10, // cooling
0x00,0x60,0xE0,0xFE,0xE0,0xE0,0xE0,0xE0,0xFE,0xE0,0x60,0x00,0x00,0x00,0x00,0x01,0x03,0xFF,0xFF,0x03,0x01,0x00,0x00,0x00, // AC
0xFC,0x02,0x02,0x02,0x02,0x02,0x02,0x82,0x62,0x1A,0x02,0xFC,0x3F,0x40,0x42,0x46,0x4C,0x58,0x46,0x41,0x40,0x40,0x40,0x3F, // ☑ (check box on, menu true)
@@ -603,16 +602,20 @@ const uint8_t SettingsMenuIcons[] = {
// Soldering
//width = 16
//height = 16
0x00,0x02,0x04,0x08,0x12,0x24,0xC4,0x42,0x82,0x04,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x07,0x0A,0x14,0x28,0x50,0x60,0x00,
0x00, 0x02, 0x04, 0x08, 0x12, 0x24, 0xC4, 0x42, 0x82, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x02, 0x07, 0x0A, 0x14, 0x28, 0x50,
0x60, 0x00,
//Sleep
//width = 16
//height = 16
0x00,0xC6,0xE6,0xF6,0xBE,0x9E,0x8E,0x86,0x00,0x00,0x40,0x40,0xC0,0xC0,0xC0,0x00,
0x00,0x01,0x01,0x01,0x45,0x65,0x75,0x5D,0x4C,0x00,0x06,0x07,0x07,0x05,0x04,0x00,
0x00, 0xC6, 0xE6, 0xF6, 0xBE, 0x9E, 0x8E, 0x86, 0x00, 0x00,
0x40, 0x40, 0xC0, 0xC0, 0xC0, 0x00, 0x00, 0x01, 0x01, 0x01,
0x45, 0x65, 0x75, 0x5D, 0x4C, 0x00, 0x06, 0x07, 0x07, 0x05,
0x04, 0x00,
@@ -625,14 +628,18 @@ const uint8_t SettingsMenuIcons[] = {
//Wrench
///width = 16
//height = 16
0x00,0x18,0x30,0x32,0x7E,0x7C,0xF0,0xC0,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x03,0x0F,0x3E,0x7E,0x4C,0x0C,0x18,0x00,
0x00, 0x18, 0x30, 0x32, 0x7E, 0x7C, 0xF0, 0xC0, 0x80, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x03, 0x0F, 0x3E, 0x7E, 0x4C, 0x0C,
0x18, 0x00,
#ifdef NOTUSED
//Calibration (Not used, kept for future menu layouts)
//width = 16
//height = 16
0x00,0x00,0x00,0x00,0x00,0x00,0x80,0xC0,0xE8,0x70,0x7A,0x5E,0x8E,0x1C,0x30,0x00,
0x00,0x10,0x38,0x1C,0x0E,0x07,0x03,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xC0, 0xE8, 0x70,
0x7A, 0x5E, 0x8E, 0x1C, 0x30, 0x00, 0x00, 0x10, 0x38, 0x1C,
0x0E, 0x07, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,
#endif
};

View File

@@ -101,12 +101,14 @@
#define configTICK_RATE_HZ ((TickType_t)100)
#define configMAX_PRIORITIES ( 4 )
#define configMINIMAL_STACK_SIZE ((uint16_t)256)
#define configTOTAL_HEAP_SIZE ((size_t)10240)
#define configMAX_TASK_NAME_LEN ( 16 )
#define configTOTAL_HEAP_SIZE ((size_t)10240) /*Currently use about 9000*/
#define configMAX_TASK_NAME_LEN ( 48 )
#define configUSE_16_BIT_TICKS 0
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 8
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#define configCHECK_FOR_STACK_OVERFLOW 2
/* Co-routine definitions. */
#define configUSE_CO_ROUTINES 0
@@ -122,6 +124,7 @@ to exclude the API function. */
#define INCLUDE_vTaskDelayUntil 0
#define INCLUDE_vTaskDelay 1
#define INCLUDE_xTaskGetSchedulerState 1
#define INCLUDE_uxTaskGetStackHighWaterMark 1
/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS

View File

@@ -8,20 +8,21 @@
#ifndef LIS2DH12_HPP_
#define LIS2DH12_HPP_
#include "stm32f1xx_hal.h"
#include "FRToSI2C.hpp"
#include "LIS2DH12_defines.hpp"
#include "hardware.h"
class LIS2DH12 {
public:
LIS2DH12(I2C_HandleTypeDef* i2cHandle);
LIS2DH12(FRToSI2C* i2cHandle) : i2c(i2cHandle) {}
void initalize();
uint8_t getOrientation();
Orientation getOrientation() { return static_cast<Orientation>((I2C_RegisterRead(LIS_INT2_SRC) >> 2) - 1); }
void getAxisReadings(int16_t *x, int16_t *y, int16_t *z);
private:
void setSensitivity(uint8_t threshold, uint8_t filterTime); // Sets the sensitivity of the unit
void I2C_RegisterWrite(uint8_t reg, uint8_t data);
uint8_t I2C_RegisterRead(uint8_t reg);
I2C_HandleTypeDef* i2c;
FRToSI2C* i2c;
};
#endif /* LIS2DH12_HPP_ */

View File

@@ -9,21 +9,23 @@
#define MMA8652FC_HPP_
#include "stm32f1xx_hal.h"
#include "MMA8652FC_defines.h"
#include "FRToSI2C.hpp"
#include "hardware.h"
class MMA8652FC {
public:
MMA8652FC(I2C_HandleTypeDef* i2cHandle);
MMA8652FC(FRToSI2C* i2cHandle) : i2c(i2cHandle) {}
void initalize(); // Initalize the system
uint8_t getOrientation();// Reads the I2C register and returns the orientation (true == left)
Orientation getOrientation();// Reads the I2C register and returns the orientation (true == left)
void getAxisReadings(int16_t *x, int16_t *y, int16_t *z);
private:
void setSensitivity(uint8_t threshold, uint8_t filterTime); // Sets the sensitivity of the unit
void I2C_RegisterWrite(uint8_t reg, uint8_t data);
uint8_t I2C_RegisterRead(uint8_t reg);
I2C_HandleTypeDef* i2c;
FRToSI2C* i2c;
};

View File

@@ -12,6 +12,8 @@
#include <hardware.h>
#include "stm32f1xx_hal.h"
#include <stdbool.h>
#include <string.h>
#include "FRToSI2C.hpp"
#include "Font.h"
#ifdef __cplusplus
extern "C" {
@@ -20,39 +22,75 @@ extern "C" {
#ifdef __cplusplus
}
#endif
#define DEVICEADDR_OLED (0x3c<<1)
#define OLED_WIDTH 96
#define DEVICEADDR_OLED (0x3c<<1)
#define OLED_WIDTH 96
#define FRAMEBUFFER_START 17
class OLED {
public:
OLED(I2C_HandleTypeDef* i2cHandle); // Initialize Driver and store I2C pointer
OLED(FRToSI2C* i2cHandle); // Initialize Driver and store I2C pointer
void initialize(); // Startup the I2C coms (brings screen out of reset etc)
void refresh(); // Draw the buffer out to the LCD using the DMA Channel
void drawChar(char c, char preCursorCommand = '\0');// Draw a character to a specific location
void displayOnOff(bool on); // Turn the screen on or not
// Draw the buffer out to the LCD using the DMA Channel
void refresh() {
i2c->Transmit( DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2));
//DMA tx time is ~ 20mS Ensure after calling this you delay for at least 25ms
//or we need to goto double buffering
}
void drawChar(char c, char preCursorCommand = '\0'); // Draw a character to a specific location
// Turn the screen on or not
void displayOnOff(bool on) {
displayOnOffState = on;
screenBuffer[1] = on ? 0xAF : 0xAE;
}
void setRotation(bool leftHanded); // Set the rotation for the screen
bool getRotation(); // Get the current rotation of the LCD
// Get the current rotation of the LCD
bool getRotation() const {
return inLeftHandedMode;
}
void print(const char* string); // Draw a string to the current location, with current font
void setCursor(int16_t x, int16_t y); // Set the cursor location by pixels
void setCharCursor(int16_t x, int16_t y); //Set cursor location by chars in current font
void setFont(uint8_t fontNumber);// (Future) Set the font that is being used
void drawImage(const uint8_t* buffer, uint8_t x, uint8_t width);
// Set the cursor location by pixels
void setCursor(int16_t x, int16_t y) {
cursor_x = x;
cursor_y = y;
}
//Set cursor location by chars in current font
void setCharCursor(int16_t x, int16_t y) {
cursor_x = x * fontWidth;
cursor_y = y * fontHeight;
}
void setFont(uint8_t fontNumber); // (Future) Set the font that is being used
void drawImage(const uint8_t* buffer, uint8_t x, uint8_t width) {
drawArea(x, 0, width, 16, buffer);
}
// Draws an image to the buffer, at x offset from top to bottom (fixed height renders)
void printNumber(uint16_t number, uint8_t places);
// Draws a number at the current cursor location
void clearScreen(); // Clears the buffer
void drawBattery(uint8_t state); // Draws the battery level symbol
void drawCheckbox(bool state); // Draws a checkbox
// Clears the buffer
void clearScreen() {
memset(&screenBuffer[FRAMEBUFFER_START], 0, OLED_WIDTH * 2);
}
// Draws the battery level symbol
void drawBattery(uint8_t state) {
drawSymbol(3 + (state > 10 ? 10 : state));
}
// Draws a checkbox
void drawCheckbox(bool state) {
drawSymbol((state) ? 16 : 17);
}
void drawSymbol(uint8_t symbolID);//Used for drawing symbols of a predictable width
void drawArea(int16_t x, int8_t y, uint8_t wide, uint8_t height,
const uint8_t* ptr);
void drawArea(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t* ptr); //Draw an area, but y must be aligned on 0/8 offset
void fillArea(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t value); //Fill an area, but y must be aligned on 0/8 offset
void drawFilledRect(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1,bool clear);
void drawHeatSymbol(uint8_t state);
private:
//Draw a buffer to the screen buffer
I2C_HandleTypeDef* i2c; //i2c Pointer
FRToSI2C* i2c; //i2c Pointer
const uint8_t* currentFont; // Pointer to the current font used for rendering to the buffer
uint8_t screenBuffer[12 + 96 + 96 + 10]; // The data buffer
uint8_t* firstStripPtr; // Pointers to the strips to allow for buffer having extra content
uint8_t* secondStripPtr; //Pointers to the strips
bool inLeftHandedMode; // Whether the screen is in left or not (used for offsets in GRAM)
@@ -60,6 +98,7 @@ private:
uint8_t fontWidth, fontHeight;
int16_t cursor_x, cursor_y;
uint8_t displayOffset;
uint8_t screenBuffer[16 + (OLED_WIDTH * 2) + 10]; // The data buffer
};
#endif /* OLED_HPP_ */

View File

@@ -11,31 +11,34 @@
#define SETTINGS_H_
#include <stdint.h>
#include "stm32f1xx_hal.h"
#define SETTINGSVERSION 0x13 /*Change this if you change the struct below to prevent people getting out of sync*/
#define SETTINGSVERSION 0x14 /*Change this if you change the struct below to prevent people getting out of sync*/
/*
* This struct must be a multiple of 2 bytes as it is saved / restored from flash in uint16_t chunks
*/
typedef struct {
uint16_t SolderingTemp; //current set point for the iron
uint16_t SleepTemp; //temp to drop to in sleep
uint8_t SleepTime; //minutes timeout to sleep
uint8_t cutoutSetting; // The voltage we cut out at for under voltage
uint8_t OrientationMode:2; //If true we want to invert the display for lefties
uint8_t sensitivity :4; //Sensitivity of accelerometer (5 bits)
uint8_t autoStartMode :2; //Should the unit automatically jump straight into soldering mode when power is applied
uint8_t ShutdownTime; //Time until unit shuts down if left alone
uint8_t boostModeEnabled :1; //Boost mode swaps BUT_A in soldering mode to temporary soldering temp over-ride
uint8_t coolingTempBlink :1; //Should the temperature blink on the cool down screen until its <50C
uint16_t SolderingTemp; //current set point for the iron
uint16_t SleepTemp; //temp to drop to in sleep
uint8_t SleepTime; //minutes timeout to sleep
uint8_t cutoutSetting; // The voltage we cut out at for under voltage
uint8_t OrientationMode:2; //If true we want to invert the display for lefties
uint8_t sensitivity :4; //Sensitivity of accelerometer (5 bits)
uint8_t autoStartMode :2; //Should the unit automatically jump straight into soldering mode when power is applied
uint8_t ShutdownTime; //Time until unit shuts down if left alone
uint8_t boostModeEnabled :1; //Boost mode swaps BUT_A in soldering mode to temporary soldering temp over-ride
uint8_t coolingTempBlink :1; //Should the temperature blink on the cool down screen until its <50C
uint8_t detailedIDLE :1; //Detailed idle screen
uint8_t detailedSoldering :1; //Detailed soldering screens
uint8_t temperatureInF; //Should the temp be in F or C (true is F)
uint8_t descriptionScrollSpeed:1; // Description scroll speed
uint16_t voltageDiv; //Voltage divisor factor
uint16_t BoostTemp; //Boost mode set point for the iron
int16_t CalibrationOffset; //This stores the temperature offset for this tip in the iron.
uint8_t version; //Used to track if a reset is needed on firmware upgrade
uint32_t padding; //This is here for in case we are not an even divisor so that nothing gets cut off
uint8_t temperatureInF; //Should the temp be in F or C (true is F)
uint8_t descriptionScrollSpeed:1; // Description scroll speed
uint16_t voltageDiv; //Voltage divisor factor
uint16_t BoostTemp; //Boost mode set point for the iron
int16_t CalibrationOffset; //This stores the temperature offset for this tip in the iron.
uint8_t PID_P; //PID P Term
uint8_t PID_I; //PID I Term
uint8_t PID_D; //PID D Term
uint8_t version; //Used to track if a reset is needed on firmware upgrade
uint32_t padding; //This is here for in case we are not an even divisor so that nothing gets cut off
} systemSettingsType;
extern volatile systemSettingsType systemSettings;

View File

@@ -17,9 +17,10 @@ extern "C" {
extern ADC_HandleTypeDef hadc1;
extern DMA_HandleTypeDef hdma_adc1;
extern DMA_HandleTypeDef hdma_i2c1_rx;
extern DMA_HandleTypeDef hdma_i2c1_tx;
extern I2C_HandleTypeDef hi2c1;
extern IWDG_HandleTypeDef hiwdg;
extern TIM_HandleTypeDef htim2;

View File

@@ -13,6 +13,12 @@
extern "C" {
#endif
enum Orientation {
ORIENTATION_LEFT_HAND = 0,
ORIENTATION_RIGHT_HAND = 1,
ORIENTATION_FLAT = 3
};
#define KEY_B_Pin GPIO_PIN_6
#define KEY_B_GPIO_Port GPIOA
#define TMP36_INPUT_Pin GPIO_PIN_7

View File

@@ -26,10 +26,19 @@ enum ButtonState {
ButtonState getButtonState();
void waitForButtonPressOrTimeout(uint32_t timeout);
#ifdef __cplusplus
extern "C" {
extern "C" {
#endif
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc);
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc);
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c);
void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed portCHAR *pcTaskName );
#ifdef __cplusplus
}
}
#endif
#endif /* __MAIN_H */

View File

@@ -0,0 +1,88 @@
/*
* FRToSI2C.cpp
*
* Created on: 14Apr.,2018
* Author: Ralim
*/
#include "FRToSI2C.hpp"
void FRToSI2C::CpltCallback() {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
i2c->State = HAL_I2C_STATE_READY;//Force state reset
if (I2CSemaphore) {
xSemaphoreGiveFromISR(I2CSemaphore, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}
void FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t* pData, uint16_t Size) {
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED
|| I2CSemaphore == NULL) {
//no RToS, run blocking code
HAL_I2C_Mem_Read(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000);
} else {
//RToS is active, run threading
//Get the mutex so we can use the I2C port
//Wait up to 1 second for the mutex
if ( xSemaphoreTake( I2CSemaphore, ( TickType_t ) 5000 ) == pdTRUE) {
if (HAL_I2C_Mem_Read(i2c, DevAddress, MemAddress, MemAddSize, pData,
Size, 5000) != HAL_OK) {
NVIC_SystemReset();
}
xSemaphoreGive(I2CSemaphore);
} else {
NVIC_SystemReset();
}
}
}
void FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t* pData, uint16_t Size) {
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED
|| I2CSemaphore == NULL) {
//no RToS, run blocking code
HAL_I2C_Mem_Write(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000);
} else {
//RToS is active, run threading
//Get the mutex so we can use the I2C port
//Wait up to 1 second for the mutex
if ( xSemaphoreTake( I2CSemaphore, ( TickType_t ) 5000 ) == pdTRUE) {
if (HAL_I2C_Mem_Write(i2c, DevAddress, MemAddress, MemAddSize,
pData, Size, 5000) != HAL_OK) {
NVIC_SystemReset();
}
xSemaphoreGive(I2CSemaphore);
} else {
NVIC_SystemReset();
}
}
}
void FRToSI2C::Transmit(uint16_t DevAddress, uint8_t* pData, uint16_t Size) {
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED
|| I2CSemaphore == NULL) {
//no RToS, run blocking code
HAL_I2C_Master_Transmit(i2c, DevAddress, pData, Size, 5000);
} else {
//RToS is active, run threading
//Get the mutex so we can use the I2C port
//Wait up to 1 second for the mutex
if ( xSemaphoreTake( I2CSemaphore, ( TickType_t ) 5000 ) == pdTRUE) {
if (HAL_I2C_Master_Transmit_DMA(i2c, DevAddress, pData, Size)
!= HAL_OK) {
NVIC_SystemReset();
}
//xSemaphoreGive(I2CSemaphore);
} else {
NVIC_SystemReset();
}
}
}

View File

@@ -7,67 +7,51 @@
#include <LIS2DH12.hpp>
#include "cmsis_os.h"
LIS2DH12::LIS2DH12(I2C_HandleTypeDef* i2cHandle) {
i2c = i2cHandle;
}
typedef struct {
const uint8_t reg;
const uint8_t value;
} LIS_REG;
static const LIS_REG i2c_registers[] = {
{LIS_CTRL_REG1, 0x17}, // 25Hz
{LIS_CTRL_REG2, 0b00001000}, // Highpass filter off
{LIS_CTRL_REG3, 0b01100000}, // Setup interrupt pins
{LIS_CTRL_REG4, 0b00001000}, // Block update mode off, HR on
{LIS_CTRL_REG5, 0b00000010},
{LIS_CTRL_REG6, 0b01100010},
//Basically setup the unit to run, and enable 4D orientation detection
{LIS_INT2_CFG, 0b01111110}, //setup for movement detection
{LIS_INT2_THS, 0x28},
{LIS_INT2_DURATION, 64},
{LIS_INT1_CFG, 0b01111110},
{LIS_INT1_THS, 0x28},
{LIS_INT1_DURATION, 64}
};
void LIS2DH12::initalize() {
I2C_RegisterWrite(LIS_CTRL_REG1, 0x17); //25Hz
I2C_RegisterWrite(LIS_CTRL_REG2, 0b00001000); //Highpass filter off
I2C_RegisterWrite(LIS_CTRL_REG3, 0b01100000); //Setup interrupt pins
I2C_RegisterWrite(LIS_CTRL_REG4, 0b00001000); //Block update mode off,HR on
I2C_RegisterWrite(LIS_CTRL_REG5, 0b00000010);
I2C_RegisterWrite(LIS_CTRL_REG6, 0b01100010);
//Basically setup the unit to run, and enable 4D orientation detection
I2C_RegisterWrite(LIS_INT2_CFG, 0b01111110); //setup for movement detection
I2C_RegisterWrite(LIS_INT2_THS, 0x28);
I2C_RegisterWrite(LIS_INT2_DURATION, 64);
I2C_RegisterWrite(LIS_INT1_CFG, 0b01111110); //setup for movement detection
I2C_RegisterWrite(LIS_INT1_THS, 0x28);
I2C_RegisterWrite(LIS_INT1_DURATION, 64);
}
//0=no change, 1= right handed, 2= left handed
uint8_t LIS2DH12::getOrientation() {
// 8=right handed,4=left,16=flat
//So we ignore if not 8/4
taskENTER_CRITICAL();
uint8_t pos = I2C_RegisterRead(LIS_INT2_SRC);
taskEXIT_CRITICAL();
if (pos == 8)
return 1;
else if (pos == 4)
return 2;
else
return 0;
for (size_t index = 0; index < (sizeof(i2c_registers) / sizeof(i2c_registers[0])); index++) {
I2C_RegisterWrite(i2c_registers[index].reg, i2c_registers[index].value);
}
}
void LIS2DH12::getAxisReadings(int16_t* x, int16_t* y, int16_t* z) {
uint8_t tempArr[6];
taskENTER_CRITICAL();
while (HAL_I2C_Mem_Read(i2c, LIS2DH_I2C_ADDRESS, 0xA8,
I2C_MEMADD_SIZE_8BIT, (uint8_t*) tempArr, 6, 5000) != HAL_OK) {
HAL_Delay(5);
}
taskEXIT_CRITICAL();
i2c->Mem_Read(LIS2DH_I2C_ADDRESS, 0xA8, I2C_MEMADD_SIZE_8BIT,
(uint8_t*) tempArr, 6);
(*x) = ((uint16_t) (tempArr[1] << 8 | tempArr[0]));
(*y) = ((uint16_t) (tempArr[3] << 8 | tempArr[2]));
(*z) = ((uint16_t) (tempArr[5] << 8 | tempArr[4]));
}
void LIS2DH12::setSensitivity(uint8_t threshold, uint8_t filterTime) {
}
void LIS2DH12::I2C_RegisterWrite(uint8_t reg, uint8_t data) {
HAL_I2C_Mem_Write(i2c, LIS2DH_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT, &data,
1, 500);
i2c->Mem_Write(LIS2DH_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT, &data, 1);
}
uint8_t LIS2DH12::I2C_RegisterRead(uint8_t reg) {
uint8_t tx_data[1];
HAL_I2C_Mem_Read(i2c, LIS2DH_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT,
tx_data, 1, 500);
i2c->Mem_Read( LIS2DH_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT, tx_data, 1);
return tx_data[0];
}

View File

@@ -8,79 +8,72 @@
#include <MMA8652FC.hpp>
#include "cmsis_os.h"
MMA8652FC::MMA8652FC(I2C_HandleTypeDef* i2cHandle) {
i2c = i2cHandle;
}
typedef struct {
const uint8_t reg;
const uint8_t val;
} MMA_REG;
static const MMA_REG i2c_registers[] = {
{CTRL_REG2, 0}, //Normal mode
{CTRL_REG2, 0x40}, // Reset all registers to POR values
{FF_MT_CFG_REG, 0x78}, // Enable motion detection for X, Y, Z axis, latch disabled
{PL_CFG_REG, 0x40}, //Enable the orientation detection
{PL_COUNT_REG, 200}, //200 count debounce
{PL_BF_ZCOMP_REG, 0b01000111}, //Set the threshold to 42 degrees
{P_L_THS_REG, 0b10011100}, //Up the trip angles
{CTRL_REG4, 0x01 | (1 << 4)}, // Enable dataready interrupt & orientation interrupt
{CTRL_REG5, 0x01}, // Route data ready interrupts to INT1 ->PB5 ->EXTI5, leaving orientation routed to INT2
{CTRL_REG2, 0x12}, //Set maximum resolution oversampling
{XYZ_DATA_CFG_REG, (1 << 4)}, //select high pass filtered data
{HP_FILTER_CUTOFF_REG, 0x03}, //select high pass filtered data
{CTRL_REG1, 0x19} // ODR=12 Hz, Active mode
};
void MMA8652FC::I2C_RegisterWrite(uint8_t reg, uint8_t data) {
HAL_I2C_Mem_Write(i2c, MMA8652FC_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT,
&data, 1, 500);
i2c->Mem_Write( MMA8652FC_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT, &data, 1);
}
uint8_t MMA8652FC::I2C_RegisterRead(uint8_t reg) {
uint8_t tx_data[1];
HAL_I2C_Mem_Read(i2c, MMA8652FC_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT,
tx_data, 1, 500);
i2c->Mem_Read( MMA8652FC_I2C_ADDRESS, reg, I2C_MEMADD_SIZE_8BIT, tx_data,
1);
return tx_data[0];
}
void MMA8652FC::initalize() {
size_t index = 0;
//send all the init commands to the unit
I2C_RegisterWrite(CTRL_REG2, 0); //Normal mode
I2C_RegisterWrite( CTRL_REG2, 0x40); // Reset all registers to POR values
HAL_Delay(2); // ~1ms delay
I2C_RegisterWrite(FF_MT_CFG_REG, 0x78); // Enable motion detection for X, Y, Z axis, latch disabled
I2C_RegisterWrite(PL_CFG_REG, 0x40); //Enable the orientation detection
I2C_RegisterWrite(PL_COUNT_REG, 200); //200 count debounce
I2C_RegisterWrite(PL_BF_ZCOMP_REG, 0b01000111); //Set the threshold to 42 degrees
I2C_RegisterWrite(P_L_THS_REG, 0b10011100); //Up the trip angles
I2C_RegisterWrite( CTRL_REG4, 0x01 | (1 << 4)); // Enable dataready interrupt & orientation interrupt
I2C_RegisterWrite( CTRL_REG5, 0x01); // Route data ready interrupts to INT1 ->PB5 ->EXTI5, leaving orientation routed to INT2
I2C_RegisterWrite( CTRL_REG2, 0x12); //Set maximum resolution oversampling
I2C_RegisterWrite( XYZ_DATA_CFG_REG, (1 << 4)); //select high pass filtered data
I2C_RegisterWrite( HP_FILTER_CUTOFF_REG, 0x03); //select high pass filtered data
I2C_RegisterWrite(i2c_registers[index].reg, i2c_registers[index].val); index++;
I2C_RegisterWrite(i2c_registers[index].reg, i2c_registers[index].val); index++;
I2C_RegisterWrite( CTRL_REG1, 0x19); // ODR=12 Hz, Active mode
HAL_Delay(2); // ~1ms delay
while (index < (sizeof(i2c_registers) / sizeof(i2c_registers[0]))) {
I2C_RegisterWrite(i2c_registers[index].reg, i2c_registers[index].val); index++;
}
}
void MMA8652FC::setSensitivity(uint8_t threshold, uint8_t filterTime) {
uint8_t sens = 9 * 2 + 17;
sens -= 2 * threshold;
taskENTER_CRITICAL();
I2C_RegisterWrite( CTRL_REG1, 0); // sleep mode
I2C_RegisterWrite(FF_MT_THS_REG, (sens & 0x7F));// Set accumulation threshold
I2C_RegisterWrite(FF_MT_COUNT_REG, filterTime); // Set debounce threshold
I2C_RegisterWrite( CTRL_REG1, 0x31); // ODR=12 Hz, Active mode
taskEXIT_CRITICAL();
}
uint8_t MMA8652FC::getOrientation() {
Orientation MMA8652FC::getOrientation() {
//First read the PL_STATUS register
taskENTER_CRITICAL();
uint8_t plStatus = I2C_RegisterRead(PL_STATUS_REG);
taskEXIT_CRITICAL();
if ((plStatus & 0b10000000) == 0b10000000) {
plStatus >>= 1; //We don't need the up/down bit
plStatus &= 0x03; //mask to the two lower bits
//0 == left handed
//1 == right handed
return plStatus==0?2:1;
} else
return 0;
return static_cast<Orientation>(plStatus);
}
return ORIENTATION_FLAT;
}
void MMA8652FC::getAxisReadings(int16_t *x, int16_t *y, int16_t *z) {
uint8_t tempArr[6];
taskENTER_CRITICAL();
while (HAL_I2C_Mem_Read(i2c, MMA8652FC_I2C_ADDRESS, OUT_X_MSB_REG,
I2C_MEMADD_SIZE_8BIT, (uint8_t*) tempArr, 6, 0xFFFF) != HAL_OK) {
HAL_Delay(5);
}
taskEXIT_CRITICAL();
i2c->Mem_Read( MMA8652FC_I2C_ADDRESS, OUT_X_MSB_REG,I2C_MEMADD_SIZE_8BIT, (uint8_t*) tempArr, 6);
(*x) = tempArr[0] << 8 | tempArr[1];
(*y) = tempArr[2] << 8 | tempArr[3];
(*z) = tempArr[4] << 8 | tempArr[5];

View File

@@ -13,7 +13,6 @@
/*http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf*/
/*All commands are prefixed with 0x80*/
/*Data packets are prefixed with 0x40*/
const uint8_t configLength = 50;
uint8_t OLED_Setup_Array[] = { /**/
0x80, 0xAE,/*Display off*/
0x80, 0xD5,/*Set display clock divide ratio / osc freq*/
@@ -43,56 +42,40 @@ uint8_t OLED_Setup_Array[] = { /**/
};
//Setup based on the SSD1307 and modified for the SSD1306
OLED::OLED(I2C_HandleTypeDef* i2cHandle) {
const uint8_t REFRESH_COMMANDS[17] = {
0x80, 0xAF,
0x80, 0x21,
0x80, 0x20,
0x80, 0x7F,
0x80, 0xC0,
0x80, 0x22,
0x80, 0x00,
0x80, 0x01,
0x40
};
OLED::OLED(FRToSI2C* i2cHandle) {
i2c = i2cHandle;
cursor_x = cursor_y = 0;
currentFont = FONT_12;
fontWidth = 12;
inLeftHandedMode = false;
firstStripPtr = &screenBuffer[13];
secondStripPtr = &screenBuffer[13 + 96];
firstStripPtr = &screenBuffer[FRAMEBUFFER_START];
secondStripPtr = &screenBuffer[FRAMEBUFFER_START + OLED_WIDTH];
fontHeight = 16;
fontWidth = 12;
displayOffset = 0;
displayOnOffState = true;
}
void OLED::initialize() {
memcpy(&screenBuffer[0], &REFRESH_COMMANDS[0], sizeof(REFRESH_COMMANDS));
HAL_Delay(5);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
HAL_Delay(5);
HAL_Delay(10);
//Send the setup settings
HAL_I2C_Master_Transmit(i2c, DEVICEADDR_OLED, (uint8_t*) OLED_Setup_Array,
configLength, 0xFFFF);
//displayOnOff(true);
}
//Write out the buffer to the OLEd & call any rendering objects
void OLED::refresh() {
screenBuffer[0] = 0x80;
screenBuffer[1] = 0x21;
screenBuffer[2] = 0x80;
screenBuffer[3] = inLeftHandedMode ? 0 : 32; //display is shifted by 32 in left handed mode as driver ram is 128 wide
screenBuffer[4] = 0x80;
screenBuffer[5] = inLeftHandedMode ? 95 : 0x7F; //End address of the ram segment we are writing to (96 wide)
screenBuffer[6] = 0x80; //Set pages to rollover after 2
screenBuffer[7] = 0x22;
screenBuffer[8] = 0x80;
screenBuffer[9] = 0x00; //start page 0
screenBuffer[10] = 0x80;
screenBuffer[11] = 0x01;
screenBuffer[12] = 0x40; //start of data marker
taskENTER_CRITICAL();
//Because I2C is shared, we cant task switch in the middle of the xfer
HAL_I2C_Master_Transmit(i2c, DEVICEADDR_OLED, screenBuffer, 12 + 96 * 2 + 1,
500);
taskEXIT_CRITICAL();
i2c->Transmit( DEVICEADDR_OLED, (uint8_t*) OLED_Setup_Array, sizeof(OLED_Setup_Array));
displayOnOff(true);
}
/*
@@ -101,10 +84,9 @@ void OLED::refresh() {
* Precursor is the command char that is used to select the table.
*/
void OLED::drawChar(char c, char PrecursorCommand) {
if( c=='\n' && cursor_y==0)
{
cursor_x=0;
cursor_y=8;
if (c == '\n' && cursor_y == 0) {
cursor_x = 0;
cursor_y = 8;
}
if (c < ' ') {
return;
@@ -128,10 +110,10 @@ void OLED::drawChar(char c, char PrecursorCommand) {
index = (128) + (c);
break;
#if defined(LANG_RU) || defined(LANG_UK) || defined(LANG_SR) || defined(LANG_BG) || defined(LANG_MK)
case 0xD0:
case 0xD0:
index = (192) + (c);
break;
case 0xD1:
case 0xD1:
index = (256) + (c);
break;
#else
@@ -156,40 +138,26 @@ void OLED::drawChar(char c, char PrecursorCommand) {
cursor_x += fontWidth;
}
void OLED::displayOnOff(bool on) {
if (on != displayOnOffState) {
uint8_t data[6] = { 0x80, 0X8D, 0x80, 0X14, 0x80, 0XAF }; //on
if (!on) {
data[3] = 0x10;
data[5] = 0xAE;
}
taskENTER_CRITICAL();
HAL_I2C_Master_Transmit(i2c, DEVICEADDR_OLED, data, 6, 0xFFFF);
taskEXIT_CRITICAL();
displayOnOffState = on;
}
}
void OLED::setRotation(bool leftHanded) {
if (inLeftHandedMode != leftHanded) {
//send command struct again with changes
if (leftHanded == 1) {
if (inLeftHandedMode == leftHanded) {
return;
}
//send command struct again with changes
if (leftHanded) {
OLED_Setup_Array[11] = 0xC8; //c1?
OLED_Setup_Array[19] = 0xA1;
} else if (leftHanded == 0) {
} else {
OLED_Setup_Array[11] = 0xC0;
OLED_Setup_Array[19] = 0xA0;
}
taskENTER_CRITICAL();
HAL_I2C_Master_Transmit(i2c, DEVICEADDR_OLED,
(uint8_t*) OLED_Setup_Array, 50, 0xFFFF);
taskEXIT_CRITICAL();
i2c->Transmit( DEVICEADDR_OLED, (uint8_t*) OLED_Setup_Array, sizeof(OLED_Setup_Array));
inLeftHandedMode = leftHanded;
screenBuffer[5] = inLeftHandedMode ? 0 : 32; //display is shifted by 32 in left handed mode as driver ram is 128 wide
screenBuffer[7] = inLeftHandedMode ? 95 : 0x7F; //End address of the ram segment we are writing to (96 wide)
screenBuffer[9] = inLeftHandedMode ? 0xC8 : 0xC0;
}
}
//print a string to the current cursor location
void OLED::print(const char* str) {
@@ -203,14 +171,6 @@ void OLED::print(const char* str) {
}
}
void OLED::setCursor(int16_t x, int16_t y) {
cursor_x = x;
cursor_y = y;
}
void OLED::setCharCursor(int16_t x, int16_t y) {
cursor_x = x * fontWidth;
cursor_y = y * fontHeight;
}
void OLED::setFont(uint8_t fontNumber) {
if (fontNumber == 1) {
//small font
@@ -228,58 +188,35 @@ void OLED::setFont(uint8_t fontNumber) {
}
}
void OLED::drawImage(const uint8_t* buffer, uint8_t x, uint8_t width) {
drawArea(x, 0, width, 16, buffer);
}
//maximum places is 5
void OLED::printNumber(uint16_t number, uint8_t places) {
char buffer[6];
buffer[5] = 0; //null
char buffer[6] = { 0 };
if (places == 5) {
buffer[4] = '0' + number % 10;
number /= 10;
} else
buffer[4] = 0;
}
if (places > 3) {
buffer[3] = '0' + number % 10;
number /= 10;
} else
buffer[3] = 0;
}
if (places > 2) {
buffer[2] = '0' + number % 10;
number /= 10;
} else
buffer[2] = 0;
}
if (places > 1) {
buffer[1] = '0' + number % 10;
number /= 10;
} else
buffer[1] = 0;
}
buffer[0] = '0' + number % 10;
number /= 10;
print(buffer);
}
void OLED::clearScreen() {
memset(firstStripPtr, 0, 96);
memset(secondStripPtr, 0, 96);
}
bool OLED::getRotation() {
return inLeftHandedMode;
}
void OLED::drawBattery(uint8_t state) {
if (state > 10)
state = 10;
drawSymbol(3 + state);
}
void OLED::drawCheckbox(bool state) {
drawSymbol((state) ? 17 : 18);
}
void OLED::drawSymbol(uint8_t symbolID) {
//draw a symbol to the current cursor location
setFont(2);
@@ -300,11 +237,11 @@ void OLED::drawArea(int16_t x, int8_t y, uint8_t wide, uint8_t height,
uint8_t visibleEnd = wide;
// trimming to draw partials
if(x < 0) {
visibleStart -= x; //subtract negative value == add absolute value
if (x < 0) {
visibleStart -= x; //subtract negative value == add absolute value
}
if(x + wide > 96) {
visibleEnd = 96 - x;
if (x + wide > 96) {
visibleEnd = 96 - x;
}
if (y == 0) {
@@ -320,3 +257,81 @@ void OLED::drawArea(int16_t x, int8_t y, uint8_t wide, uint8_t height,
}
}
}
void OLED::fillArea(int16_t x, int8_t y, uint8_t wide, uint8_t height,
const uint8_t value) {
// Splat this from x->x+wide in two strides
if (x <= -wide)
return; //cutoffleft
if (x > 96)
return; //cutoff right
uint8_t visibleStart = 0;
uint8_t visibleEnd = wide;
// trimming to draw partials
if (x < 0) {
visibleStart -= x; //subtract negative value == add absolute value
}
if (x + wide > 96) {
visibleEnd = 96 - x;
}
if (y == 0) {
//Splat first line of data
for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
firstStripPtr[xx + x] = value;
}
}
if (y == 8 || height == 16) {
// Splat the second line
for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
secondStripPtr[x + xx] = value;
}
}
}
void OLED::drawFilledRect(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1,
bool clear) {
//Draw this in 3 sections
//This is basically a N wide version of vertical line
//Step 1 : Draw in the top few pixels that are not /8 aligned
//LSB is at the top of the screen
uint8_t mask = 0xFF;
if (y0) {
mask = mask << (y0 % 8);
for (uint8_t col = x0; col < x1; col++)
if (clear)
firstStripPtr[(y0 / 8) * 96 + col] &= ~mask;
else
firstStripPtr[(y0 / 8) * 96 + col] |= mask;
}
//Next loop down the line the total number of solids
if (y0 / 8 != y1 / 8)
for (uint8_t col = x0; col < x1; col++)
for (uint8_t r = (y0 / 8); r < (y1 / 8); r++) {
//This gives us the row index r
if (clear)
firstStripPtr[(r * 96) + col] = 0;
else
firstStripPtr[(r * 96) + col] = 0xFF;
}
//Finally draw the tail
mask = ~(mask << (y1 % 8));
for (uint8_t col = x0; col < x1; col++)
if (clear)
firstStripPtr[(y1 / 8) * 96 + col] &= ~mask;
else
firstStripPtr[(y1 / 8) * 96 + col] |= mask;
}
void OLED::drawHeatSymbol(uint8_t state) {
//Draw symbol 14
//Then draw over it botom 5 pixels always stay. 8 pixels above that are the levels
state /= 12; // 0-> 8 range
//Then we want to draw down (16-(5+state)
uint8_t cursor_x_temp = cursor_x;
drawSymbol(14);
drawFilledRect(cursor_x_temp, 0, cursor_x_temp + 12, 2 + (8 - state), true);
}

View File

@@ -90,6 +90,10 @@ void resetSettings() {
systemSettings.CalibrationOffset = 10; //This appears to be quite close for both of my tips, in both of my handles
systemSettings.temperatureInF = 0; //default to 0
systemSettings.descriptionScrollSpeed=0;//default to slow
systemSettings.PID_P =42;
systemSettings.PID_I =50;
systemSettings.PID_D =15;
saveSettings();
}

View File

@@ -9,6 +9,8 @@ ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_rx;
DMA_HandleTypeDef hdma_i2c1_tx;
IWDG_HandleTypeDef hiwdg;
TIM_HandleTypeDef htim2;
@@ -36,7 +38,7 @@ void Setup_HAL() {
MX_TIM2_Init();
MX_IWDG_Init();
HAL_ADC_Start_DMA(&hadc1, (uint32_t*) ADCReadings, 64);//start DMA of normal readings
HAL_ADC_Start_DMA(&hadc1, (uint32_t*) ADCReadings, 64); //start DMA of normal readings
HAL_ADCEx_InjectedStart(&hadc1); //enable injected readings
}
@@ -75,7 +77,7 @@ void SystemClock_Config(void) {
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; //TIM 2,3,4,5,6,7,12,13,14
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; //64 mhz to soem peripherals and adc
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; //64 mhz to some peripherals and adc
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
@@ -129,7 +131,9 @@ static void MX_ADC1_Init(void) {
//F in = 10.66 MHz
/*
* Injected time is 1 delay clock + (12 adc cycles*4)+4*sampletime =~217 clocks = 0.2ms
*
* Charge time is 0.016 uS ideally
* So Sampling time must be >= 0.016uS
* 1/10.66MHz is 0.09uS, so 1 CLK is *should* be enough
* */
sConfigInjected.InjectedChannel = ADC_CHANNEL_8;
sConfigInjected.InjectedRank = 1;
@@ -141,20 +145,25 @@ static void MX_ADC1_Init(void) {
sConfigInjected.InjectedOffset = 0;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.InjectedRank = 2;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedRank = 3;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedRank = 4;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
SET_BIT(hadc1.Instance->CR1, ( ADC_CR1_JEOCIE ));//Enable end of injected conv irq
SET_BIT(hadc1.Instance->CR1, ( ADC_CR1_JEOCIE )); //Enable end of injected conv irq
// Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
;
}
/* I2C1 init function */
static void MX_I2C1_Init(void) {
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 300000; //300Khz
hi2c1.Init.ClockSpeed = 100000; // OLED doesnt handle >100k when its asleep (off).
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
@@ -286,13 +295,13 @@ static void MX_DMA_Init(void) {
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 0);
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}
@@ -334,13 +343,16 @@ static void MX_GPIO_Init(void) {
| GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
//Set PA 11 and PA 12 to GND to stop usb detection, 14 re-rused for debug
//Set PA 11 and PA 12 to GND to stop usb detection, 13/14 re-rused for debug
GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_13, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_14, GPIO_PIN_RESET);
/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
GPIO_InitStruct.Pin = KEY_B_Pin | KEY_A_Pin;
@@ -359,10 +371,11 @@ static void MX_GPIO_Init(void) {
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : INT_Orientation_Pin INT_Movement_Pin */
/* Configure GPIO pins : INT_Orientation_Pin INT_Movement_Pin */
/* Not used anymore*/
GPIO_InitStruct.Pin = INT_Orientation_Pin | INT_Movement_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP; //Technically the IMU is P-P but safer to pullup (very tiny current cost)
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure peripheral I/O remapping */

File diff suppressed because it is too large Load Diff

View File

@@ -31,7 +31,15 @@ static void settings_setAdvancedIDLEScreens(void);
static void settings_displayAdvancedIDLEScreens(void);
static void settings_setScrollSpeed(void);
static void settings_displayScrollSpeed(void);
#ifdef PIDSETTINGS
static void settings_setPIDP(void);
static void settings_displayPIDP(void);
static void settings_setPIDI(void);
static void settings_displayPIDI(void);
static void settings_setPIDD(void);
static void settings_displayPIDD(void);
#endif
static void settings_setDisplayRotation(void);
static void settings_displayDisplayRotation(void);
static void settings_setBoostModeEnabled(void);
@@ -181,7 +189,16 @@ const menuitem advancedMenu[] = {
settings_displayCalibrate } }, /*Calibrate tip*/
{ (const char*) SettingsDescriptions[14], { settings_setCalibrateVIN }, {
settings_displayCalibrateVIN } }, /*Voltage input cal*/
{ NULL, { NULL }, { NULL } } // end of menu marker. DO NOT REMOVE
#ifdef PIDSETTINGS
{ (const char*) SettingsDescriptions[17], {settings_setPIDP}, {
settings_displayPIDP}}, /*Voltage input cal*/
{ (const char*) SettingsDescriptions[18], {settings_setPIDI}, {
settings_displayPIDI}}, /*Voltage input cal*/
{ (const char*) SettingsDescriptions[19], {settings_setPIDD}, {
settings_displayPIDD}}, /*Voltage input cal*/
#endif
{ NULL, { NULL }, { NULL } } // end of menu marker. DO NOT REMOVE
};
static void printShortDescriptionSingleLine(uint32_t shortDescIndex) {
@@ -262,7 +279,7 @@ static int userConfirmation(const char* message) {
if (lcdRefresh) {
lcd.refresh();
osDelay(20);
osDelay(40);
lcdRefresh = false;
}
}
@@ -363,12 +380,12 @@ static void settings_setTempF(void) {
}
// Rescale both to be multiples of 10
systemSettings.BoostTemp = systemSettings.BoostTemp/10;
systemSettings.BoostTemp *=10;
systemSettings.SolderingTemp = systemSettings.SolderingTemp/10;
systemSettings.SolderingTemp *=10;
systemSettings.SleepTemp = systemSettings.SleepTemp/10;
systemSettings.SleepTemp *=10;
systemSettings.BoostTemp = systemSettings.BoostTemp / 10;
systemSettings.BoostTemp *= 10;
systemSettings.SolderingTemp = systemSettings.SolderingTemp / 10;
systemSettings.SolderingTemp *= 10;
systemSettings.SleepTemp = systemSettings.SleepTemp / 10;
systemSettings.SleepTemp *= 10;
}
@@ -488,6 +505,33 @@ static void settings_displayBoostTemp(void) {
lcd.printNumber(systemSettings.BoostTemp, 3);
}
#ifdef PIDSETTINGS
static void settings_setPIDP(void) {
systemSettings.PID_P++;
systemSettings.PID_P %= 100;
}
static void settings_displayPIDP(void) {
printShortDescription(17, 6);
lcd.printNumber(systemSettings.PID_P, 2);
}
static void settings_setPIDI(void) {
systemSettings.PID_I++;
systemSettings.PID_I %= 100;
}
static void settings_displayPIDI(void) {
printShortDescription(18, 6);
lcd.printNumber(systemSettings.PID_I, 2);
}
static void settings_setPIDD(void) {
systemSettings.PID_D++;
systemSettings.PID_D %= 100;
}
static void settings_displayPIDD(void) {
printShortDescription(19, 6);
lcd.printNumber(systemSettings.PID_D, 2);
}
#endif
static void settings_setAutomaticStartMode(void) {
systemSettings.autoStartMode++;
systemSettings.autoStartMode %= 2;
@@ -495,7 +539,6 @@ static void settings_setAutomaticStartMode(void) {
static void settings_displayAutomaticStartMode(void) {
printShortDescription(10, 7);
lcd.drawCheckbox(systemSettings.autoStartMode);
}
@@ -585,14 +628,14 @@ static void settings_setCalibrateVIN(void) {
case BUTTON_B_LONG:
saveSettings();
return;
break;
case BUTTON_NONE:
default:
break;
}
lcd.refresh();
osDelay(50);
osDelay(40);
// Cap to sensible values
if (systemSettings.voltageDiv < 90) {
@@ -603,55 +646,40 @@ static void settings_setCalibrateVIN(void) {
}
}
static void settings_displayCalibrateVIN(void) {
printShortDescription(14, 5);
}
static void settings_displaySolderingMenu(void) {
static void displayMenu(size_t index) {
//Call into the menu
lcd.setFont(1);
lcd.setCursor(0, 0);
//Draw title
lcd.print(SettingsMenuEntries[0]);
lcd.print(SettingsMenuEntries[index]);
//Draw symbol
//16 pixel wide image
lcd.drawArea(96 - 16, 0, 16, 16, (&SettingsMenuIcons[(16 * 2) * 0]));
lcd.drawArea(96 - 16, 0, 16, 16, (&SettingsMenuIcons[(16 * 2) * index]));
}
static void settings_displayCalibrateVIN(void) {
printShortDescription(14, 5);
}
static void settings_displaySolderingMenu(void) {
displayMenu(0);
}
static void settings_enterSolderingMenu(void) {
gui_Menu(solderingMenu);
}
static void settings_displayPowerMenu(void) {
lcd.setFont(1);
lcd.setCursor(0, 0);
//Draw title
lcd.print(SettingsMenuEntries[1]);
//Draw symbol
//16 pixel wide image
lcd.drawArea(96 - 16, 0, 16, 16, (&SettingsMenuIcons[(16 * 2) * 1]));
displayMenu(1);
}
static void settings_enterPowerMenu(void) {
gui_Menu(PowerMenu);
}
static void settings_displayUIMenu(void) {
lcd.setFont(1);
lcd.setCursor(0, 0);
//Draw title
lcd.print(SettingsMenuEntries[2]);
//Draw symbol
//16 pixel wide image
lcd.drawArea(96 - 16, 0, 16, 16, (&SettingsMenuIcons[(16 * 2) * 2]));
displayMenu(2);
}
static void settings_enterUIMenu(void) {
gui_Menu(UIMenu);
}
static void settings_displayAdvancedMenu(void) {
lcd.setFont(1);
lcd.setCursor(0, 0);
//Draw title
lcd.print(SettingsMenuEntries[3]);
//Draw symbol
//16 pixel wide image
lcd.drawArea(96 - 16, 0, 16, 16, (&SettingsMenuIcons[(16 * 2) * 3]));
displayMenu(3);
}
static void settings_enterAdvancedMenu(void) {
gui_Menu(advancedMenu);
@@ -764,7 +792,7 @@ void gui_Menu(const menuitem* menu) {
if (lcdRefresh) {
lcd.refresh(); // update the LCD
osDelay(20);
osDelay(40);
lcdRefresh = false;
}
}

View File

@@ -63,12 +63,15 @@ uint16_t getTipRawTemp(uint8_t instant) {
static int64_t filterFP = 0;
const uint8_t filterBeta = 5; //higher values smooth out more, but reduce responsiveness
if (instant) {
if (instant == 1) {
uint16_t itemp = getTipInstantTemperature();
filterFP = (filterFP << filterBeta) - filterFP;
filterFP += (itemp << 9);
filterFP = filterFP >> filterBeta;
return itemp;
} else if (instant == 2) {
filterFP = (getTipInstantTemperature() << 9);
return filterFP >> 9;
} else {
return filterFP >> 9;
}

View File

@@ -10,12 +10,14 @@
#include "string.h"
#include "LIS2DH12.hpp"
#include <gui.hpp>
#include "FRToSI2C.hpp"
#define ACCELDEBUG 0
// C++ objects
OLED lcd(&hi2c1);
MMA8652FC accel(&hi2c1);
LIS2DH12 accel2(&hi2c1);
FRToSI2C i2cDev(&hi2c1);
OLED lcd(&i2cDev);
MMA8652FC accel(&i2cDev);
LIS2DH12 accel2(&i2cDev);
uint8_t PCBVersion = 0;
// File local variables
uint16_t currentlyActiveTemperatureTarget = 0;
@@ -25,7 +27,6 @@ uint32_t lastButtonTime = 0;
// FreeRTOS variables
osThreadId GUITaskHandle;
osThreadId PIDTaskHandle;
osThreadId ROTTaskHandle;
osThreadId MOVTaskHandle;
static TaskHandle_t pidTaskNotification = NULL;
@@ -33,7 +34,6 @@ static TaskHandle_t pidTaskNotification = NULL;
void startGUITask(void const *argument);
void startPIDTask(void const *argument);
void startMOVTask(void const *argument);
void startRotationTask(void const *argument);
// End FreeRTOS
// Main sets up the hardware then hands over to the FreeRTOS kernel
@@ -42,6 +42,7 @@ int main(void) {
*/
HAL_Init();
Setup_HAL(); // Setup all the HAL objects
HAL_IWDG_Refresh(&hiwdg);
setTipPWM(0);
lcd.initialize(); // start up the LCD
lcd.setFont(0); // default to bigger font
@@ -78,9 +79,6 @@ int main(void) {
osThreadDef(PIDTask, startPIDTask, osPriorityRealtime, 0, 512); //2k
PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL);
if (PCBVersion != 3) {
/* definition and creation of ROTTask */
osThreadDef(ROTTask, startRotationTask, osPriorityLow, 0, 256); //1k
ROTTaskHandle = osThreadCreate(osThread(ROTTask), NULL);
/* definition and creation of MOVTask */
osThreadDef(MOVTask, startMOVTask, osPriorityNormal, 0, 512); //2k
MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL);
@@ -93,10 +91,15 @@ int main(void) {
while (1) {
}
}
void GUIDelay() {
osDelay(66); // 15Hz
void printVoltage() {
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10, 2);
lcd.drawChar('.');
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10, 1);
}
void gui_drawTipTemp() {
void GUIDelay() {
osDelay(50);
}
void gui_drawTipTemp(bool symbol) {
// Draw tip temp handling unit conversion & tolerance near setpoint
uint16_t Temp = getTipRawTemp(0);
@@ -109,6 +112,12 @@ void gui_drawTipTemp() {
// Temp = systemSettings.SolderingTemp;
lcd.printNumber(Temp, 3); // Draw the tip temp out finally
if (symbol) {
if (systemSettings.temperatureInF)
lcd.print("F");
else
lcd.print("C");
}
}
ButtonState getButtonState() {
/*
@@ -184,13 +193,13 @@ static void waitForButtonPress() {
ButtonState buttons = getButtonState();
while (buttons) {
buttons = getButtonState();
GUIDelay();
lcd.refresh();
GUIDelay();
}
while (!buttons) {
buttons = getButtonState();
GUIDelay();
lcd.refresh();
GUIDelay();
}
}
@@ -218,11 +227,7 @@ static bool checkVoltageForExit() {
lcd.print(UndervoltageString);
lcd.setCursor(0, 8);
lcd.print(InputVoltageString);
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
2);
lcd.drawChar('.');
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
1);
printVoltage();
lcd.print("V");
} else {
@@ -253,11 +258,13 @@ static void gui_drawBatteryIcon() {
cellV = 9;
lcd.drawBattery(cellV + 1);
} else
lcd.drawSymbol(16); // Draw the DC Logo
lcd.drawSymbol(15); // Draw the DC Logo
}
static void gui_solderingTempAdjust() {
uint32_t lastChange = xTaskGetTickCount();
currentlyActiveTemperatureTarget = 0;
uint32_t autoRepeatTimer = 0;
uint8_t autoRepeatAcceleration = 0;
for (;;) {
lcd.setCursor(0, 0);
lcd.clearScreen();
@@ -274,10 +281,30 @@ static void gui_solderingTempAdjust() {
return;
break;
case BUTTON_B_LONG:
if (xTaskGetTickCount() - autoRepeatTimer
+ autoRepeatAcceleration> PRESS_ACCEL_INTERVAL_MAX) {
if (!lcd.getRotation()) {
systemSettings.SolderingTemp += 10; // add 10
} else {
systemSettings.SolderingTemp -= 10; // sub 10
}
autoRepeatTimer = xTaskGetTickCount();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_F_LONG:
if (xTaskGetTickCount() - autoRepeatTimer
+ autoRepeatAcceleration> PRESS_ACCEL_INTERVAL_MAX) {
if (!lcd.getRotation()) {
systemSettings.SolderingTemp -= 10;
} else {
systemSettings.SolderingTemp += 10;
}
autoRepeatTimer = xTaskGetTickCount();
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_F_SHORT:
if (lcd.getRotation()) {
@@ -296,6 +323,11 @@ static void gui_solderingTempAdjust() {
default:
break;
}
if ((PRESS_ACCEL_INTERVAL_MAX - autoRepeatAcceleration)
< PRESS_ACCEL_INTERVAL_MIN) {
autoRepeatAcceleration = PRESS_ACCEL_INTERVAL_MAX
- PRESS_ACCEL_INTERVAL_MIN;
}
// constrain between 50-450 C
if (systemSettings.temperatureInF) {
if (systemSettings.SolderingTemp > 850)
@@ -329,56 +361,6 @@ static void gui_solderingTempAdjust() {
}
}
static int gui_showTipTempWarning() {
for (;;) {
uint16_t tipTemp = tipMeasurementToC(getTipRawTemp(0));
lcd.clearScreen();
lcd.setCursor(0, 0);
if (systemSettings.detailedSoldering) {
lcd.setFont(1);
lcd.print(WarningAdvancedString);
lcd.setCursor(0, 8);
lcd.print(WarningTipTempString);
if (systemSettings.temperatureInF) {
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
lcd.print("F");
} else {
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
lcd.print("C");
}
} else {
lcd.setFont(0);
lcd.drawArea(0, 0, 24, 16, WarningBlock24);
lcd.setCursor(24, 0);
// lcd.print(WarningSimpleString);
lcd.print(" ");
if (systemSettings.temperatureInF) {
lcd.printNumber(tipMeasurementToF(getTipRawTemp(0)), 3);
lcd.drawSymbol(0);
} else {
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)), 3);
lcd.drawSymbol(1);
}
}
if (systemSettings.coolingTempBlink && tipTemp > 70) {
if (xTaskGetTickCount() % 50 < 25)
lcd.clearScreen();
}
lcd.refresh();
ButtonState buttons = getButtonState();
if (buttons == BUTTON_F_SHORT)
return 1;
else if (buttons == BUTTON_B_SHORT || buttons == BUTTON_BOTH)
return 0;
if (tipTemp < 50)
return 0; //Exit the warning screen
GUIDelay();
}
return 0;
}
static uint16_t min(uint16_t a, uint16_t b) {
if (a > b)
return b;
@@ -398,14 +380,15 @@ static int gui_SolderingSleepingMode() {
if (checkVoltageForExit())
return 1; // return non-zero on error
if (systemSettings.temperatureInF)
if (systemSettings.temperatureInF) {
currentlyActiveTemperatureTarget = ftoTipMeasurement(
min(systemSettings.SleepTemp,
systemSettings.SolderingTemp));
else
} else {
currentlyActiveTemperatureTarget = ctoTipMeasurement(
min(systemSettings.SleepTemp,
systemSettings.SolderingTemp));
}
// draw the lcd
uint16_t tipTemp;
if (systemSettings.temperatureInF)
@@ -427,11 +410,7 @@ static int gui_SolderingSleepingMode() {
lcd.print("C");
lcd.print(" ");
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
2);
lcd.drawChar('.');
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
1);
printVoltage();
lcd.drawChar('V');
} else {
lcd.setFont(0);
@@ -527,24 +506,9 @@ static void gui_solderingMode() {
lcd.setCursor(0, 8);
lcd.print(SleepingTipAdvancedString);
uint16_t Temp = getTipRawTemp(0);
if (systemSettings.temperatureInF)
Temp = tipMeasurementToF(Temp);
else
Temp = tipMeasurementToC(Temp);
lcd.printNumber(Temp, 3);
if (systemSettings.temperatureInF)
lcd.print("F");
else
lcd.print("C");
gui_drawTipTemp(true);
lcd.print(" ");
lcd.printNumber(
getInputVoltageX10(systemSettings.voltageDiv) / 10, 2);
lcd.drawChar('.');
lcd.printNumber(
getInputVoltageX10(systemSettings.voltageDiv) % 10, 1);
printVoltage();
lcd.drawChar('V');
} else {
// We switch the layout direction depending on the orientation of the lcd.
@@ -553,13 +517,7 @@ static void gui_solderingMode() {
gui_drawBatteryIcon();
lcd.drawChar(' '); // Space out gap between battery <-> temp
if (systemSettings.temperatureInF) {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(0); // deg F
} else {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(1); // deg C
}
gui_drawTipTemp(true); // Draw current tip temp
// We draw boost arrow if boosting, or else gap temp <-> heat indicator
if (boostModeOn)
@@ -568,31 +526,16 @@ static void gui_solderingMode() {
lcd.drawChar(' ');
// Draw heating/cooling symbols
// If tip PWM > 10% then we are 'heating'
if (getTipPWM() > 10)
lcd.drawSymbol(14);
else
lcd.drawSymbol(15);
lcd.drawHeatSymbol(getTipPWM());
} else {
// Draw heating/cooling symbols
// If tip PWM > 10% then we are 'heating'
if (getTipPWM() > 10)
lcd.drawSymbol(14);
else
lcd.drawSymbol(15);
lcd.drawHeatSymbol(getTipPWM());
// We draw boost arrow if boosting, or else gap temp <-> heat indicator
if (boostModeOn)
lcd.drawSymbol(2);
else
lcd.drawChar(' ');
if (systemSettings.temperatureInF) {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(0); // deg F
} else {
gui_drawTipTemp(); // Draw current tip temp
lcd.drawSymbol(1); // deg C
}
gui_drawTipTemp(true); // Draw current tip temp
lcd.drawChar(' '); // Space out gap between battery <-> temp
@@ -620,6 +563,7 @@ static void gui_solderingMode() {
// Undervoltage test
if (checkVoltageForExit()) {
lastButtonTime = xTaskGetTickCount();
return;
}
@@ -628,6 +572,7 @@ static void gui_solderingMode() {
if (xTaskGetTickCount() - lastMovementTime > sleepThres
&& xTaskGetTickCount() - lastButtonTime > sleepThres) {
if (gui_SolderingSleepingMode()) {
lastButtonTime = xTaskGetTickCount();
return; // If the function returns non-0 then exit
}
}
@@ -635,46 +580,72 @@ static void gui_solderingMode() {
}
}
static const char *HEADERS[] = {
__DATE__, "Heap: ", "HWMG: ", "HWMP: ", "HWMM: ", "Time: ", "Move: ","Rtip: ","Ctip: ","Vin :" };
void showVersion(void) {
uint8_t screen = 0;
ButtonState b;
for (;;) {
lcd.clearScreen(); // Ensure the buffer starts clean
lcd.setCursor(0, 0); // Position the cursor at the 0,0 (top left)
lcd.setFont(1); // small font
lcd.print((char *) "V2.05 PCB"); // Print version number
lcd.printNumber(PCBVersion, 1); //Print PCB ID number
lcd.setCursor(0, 8); // second line
lcd.print(HEADERS[screen]);
switch (screen) {
case 1:
lcd.printNumber(xPortGetFreeHeapSize(), 5);
break;
case 2:
lcd.printNumber(uxTaskGetStackHighWaterMark(GUITaskHandle), 5);
break;
case 3:
lcd.printNumber(uxTaskGetStackHighWaterMark(PIDTaskHandle), 5);
break;
case 4:
lcd.printNumber(uxTaskGetStackHighWaterMark(MOVTaskHandle), 5);
break;
case 5:
lcd.printNumber(xTaskGetTickCount() / 100, 5);
break;
case 6:
lcd.printNumber(lastMovementTime / 100, 5);
break;
case 7:
lcd.printNumber(getTipRawTemp(0),5);
break;
case 8:
lcd.printNumber(tipMeasurementToC(getTipRawTemp(0)),5);
break;
case 9:
printVoltage();
break;
default:
break;
}
lcd.refresh();
b = getButtonState();
if (b == BUTTON_B_SHORT)
return;
else if (b == BUTTON_F_SHORT) {
screen++;
screen = screen % 10;
}
GUIDelay();
}
}
/* StartGUITask function */
void startGUITask(void const *argument) {
/*
* Main program states:
*
* * Soldering (gui_solderingMode)
* -> Main loop where we draw temp, and animations
* --> User presses buttons and they goto the temperature adjust screen
* ---> Display the current setpoint temperature
* ---> Use buttons to change forward and back on temperature
* ---> Both buttons or timeout for exiting
* --> Long hold front button to enter boost mode
* ---> Just temporarily sets the system into the alternate temperature for
* PID control
* --> Long hold back button to exit
* --> Double button to exit
* * Settings Menu (gui_settingsMenu)
* -> Show setting name
* --> If no button press for > 3 Seconds, scroll description
* -> If user presses back button, adjust the setting
* -> Currently the same as 1.x (future to make more depth based)
*/
uint8_t animationStep = 0;
i2cDev.FRToSInit();
uint8_t tempWarningState = 0;
bool buttonLockout = false;
HAL_IWDG_Refresh(&hiwdg);
switch (systemSettings.OrientationMode) {
case 0:
lcd.setRotation(false);
break;
case 1:
lcd.setRotation(true);
break;
case 2:
lcd.setRotation(false);
break;
default:
break;
}
bool tempOnDisplay = false;
getTipRawTemp(2); //reset filter
lcd.setRotation(systemSettings.OrientationMode & 1);
uint32_t ticks = xTaskGetTickCount();
ticks += 400; //4 seconds from now
while (xTaskGetTickCount() < ticks) {
@@ -685,8 +656,6 @@ void startGUITask(void const *argument) {
ticks = xTaskGetTickCount(); //make timeout now so we will exit
GUIDelay();
}
HAL_IWDG_Refresh(&hiwdg);
if (systemSettings.autoStartMode) {
// jump directly to the autostart mode
if (systemSettings.autoStartMode == 1)
@@ -704,12 +673,14 @@ void startGUITask(void const *argument) {
for (;;) {
ButtonState buttons = getButtonState();
if (tempWarningState == 2)
buttons = BUTTON_F_SHORT;
if (buttons != BUTTON_NONE && buttonLockout)
buttons = BUTTON_NONE;
else
buttonLockout = false;
switch (buttons) {
case BUTTON_NONE:
// Do nothing
@@ -721,18 +692,7 @@ void startGUITask(void const *argument) {
case BUTTON_B_LONG:
// Show the version information
{
lcd.clearScreen(); // Ensure the buffer starts clean
lcd.setCursor(0, 0); // Position the cursor at the 0,0 (top left)
lcd.setFont(1); // small font
lcd.print((char *) "V2.04 PCB"); // Print version number
lcd.printNumber(PCBVersion, 1); //Print PCB ID number
lcd.setCursor(0, 8); // second line
lcd.print(__DATE__); // print the compile date
lcd.refresh();
waitForButtonPress();
lcd.setFont(0); // reset font
}
showVersion();
break;
case BUTTON_F_LONG:
gui_solderingTempAdjust();
@@ -742,7 +702,7 @@ void startGUITask(void const *argument) {
lcd.setFont(0);
lcd.displayOnOff(true); // turn lcd on
gui_solderingMode(); // enter soldering mode
tempWarningState = 0; // make sure warning can show
buttonLockout = true;
break;
case BUTTON_B_SHORT:
lcd.setFont(0);
@@ -776,17 +736,7 @@ void startGUITask(void const *argument) {
if (tipTemp > 600)
tipTemp = 0;
if (tipTemp > 50) {
if (tempWarningState == 0) {
currentlyActiveTemperatureTarget = 0; // ensure tip is off
lcd.displayOnOff(true); // force LCD on
if (gui_showTipTempWarning() == 1) {
tempWarningState = 2; // we can re-enter the warning
} else
tempWarningState = 1;
}
} else
tempWarningState = 0;
// Clear the lcd buffer
lcd.clearScreen();
lcd.setCursor(0, 0);
@@ -805,11 +755,7 @@ void startGUITask(void const *argument) {
}
lcd.setCursor(0, 8);
lcd.print(InputVoltageString);
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) / 10,
2);
lcd.drawChar('.');
lcd.printNumber(getInputVoltageX10(systemSettings.voltageDiv) % 10,
1);
printVoltage();
lcd.print("V");
} else {
@@ -819,14 +765,35 @@ void startGUITask(void const *argument) {
lcd.setCursor(0, 0);
gui_drawBatteryIcon();
} else {
lcd.drawArea(0, 0, 84, 16, idleScreenBGF); // Needs to be flipped
lcd.drawArea(0, 0, 84, 16, idleScreenBGF); // Needs to be flipped so button ends up on right side of screen
lcd.setCursor(84, 0);
gui_drawBatteryIcon();
}
if (tipTemp > 55)
tempOnDisplay = true;
else if (tipTemp < 45)
tempOnDisplay = false;
if (tempOnDisplay) {
//draw temp over the start soldering button
//Location changes on screen rotation
if (lcd.getRotation()) {
// in right handed mode we want to draw over the first part
lcd.fillArea(55, 0, 41, 16, 0); //clear the area for the temp
lcd.setCursor(56, 0);
} else {
lcd.fillArea(0, 0, 41, 16, 0); //clear the area
lcd.setCursor(0, 0);
}
//draw in the temp
lcd.setFont(0); //big font
if (!(systemSettings.coolingTempBlink
&& (xTaskGetTickCount() % 50 < 25)))
gui_drawTipTemp(false); // draw in the temp
}
}
lcd.refresh();
animationStep++;
GUIDelay();
}
}
@@ -847,109 +814,110 @@ void startPIDTask(void const *argument) {
osDelay(500);
int32_t integralCount = 0;
int32_t derivativeLastValue = 0;
int32_t kp, ki, kd;
kp = 40;
ki = 60;
kd = 15;
// REMEBER ^^^^ These constants are backwards
// They act as dividers, so to 'increase' a P term, you make the number
// smaller.
if (getInputVoltageX10(systemSettings.voltageDiv) < 150) {
//Boot P term if < 15 Volts
kp = 30;
}
// REMEBER ^^^^ These constants are backwards
// They act as dividers, so to 'increase' a P term, you make the number
// smaller.
const int32_t itermMax = 100;
pidTaskNotification = xTaskGetCurrentTaskHandle();
uint32_t ulNotificationValue;
for (;;) {
ulNotificationValue = ulTaskNotifyTake( pdTRUE, 100);//Wait a max of 100ms
//This is a call to block this thread until the ADC does its samples
uint16_t rawTemp = getTipRawTemp(1); // get instantaneous reading
if (currentlyActiveTemperatureTarget) {
// Compute the PID loop in here
// Because our values here are quite large for all measurements (0-16k ~=
// 33 counts per C)
// P I & D are divisors, so inverse logic applies (beware)
if (ulTaskNotifyTake( pdTRUE, 50)) {
//Wait a max of 50ms
//This is a call to block this thread until the ADC does its samples
uint16_t rawTemp = getTipRawTemp(1); // get instantaneous reading
if (currentlyActiveTemperatureTarget) {
// Compute the PID loop in here
// Because our values here are quite large for all measurements (0-16k ~=
// 33 counts per C)
// P I & D are divisors, so inverse logic applies (beware)
// Cap the max set point to 450C
if (currentlyActiveTemperatureTarget > ctoTipMeasurement(450)) {
currentlyActiveTemperatureTarget = ctoTipMeasurement(450);
// Cap the max set point to 450C
if (currentlyActiveTemperatureTarget > ctoTipMeasurement(450)) {
currentlyActiveTemperatureTarget = ctoTipMeasurement(450);
}
int32_t rawTempError = currentlyActiveTemperatureTarget
- rawTemp;
int32_t ierror = (rawTempError
/ ((int32_t) systemSettings.PID_I));
integralCount += ierror;
if (integralCount > (itermMax / 2))
integralCount = itermMax / 2; // prevent too much lead
else if (integralCount < -itermMax)
integralCount = itermMax;
int32_t dInput = (rawTemp - derivativeLastValue);
/*Compute PID Output*/
int32_t output = (rawTempError
/ ((int32_t) systemSettings.PID_P));
if (((int32_t) systemSettings.PID_I))
output += integralCount;
if (((int32_t) systemSettings.PID_D))
output -= (dInput / ((int32_t) systemSettings.PID_D));
if (output > 100) {
output = 100; // saturate
} else if (output < 0) {
output = 0;
}
/*if (currentlyActiveTemperatureTarget < rawTemp) {
output = 0;
}*/
setTipPWM(output);
derivativeLastValue = rawTemp; // store for next loop
} else {
setTipPWM(0); // disable the output driver if the output is set to be off
integralCount = 0;
derivativeLastValue = 0;
}
int32_t rawTempError = currentlyActiveTemperatureTarget - rawTemp;
int32_t ierror = (rawTempError / ki);
integralCount += ierror;
if (integralCount > (itermMax / 2))
integralCount = itermMax / 2; // prevent too much lead
else if (integralCount < -itermMax)
integralCount = itermMax;
int32_t dInput = (rawTemp - derivativeLastValue);
/*Compute PID Output*/
int32_t output = (rawTempError / kp);
if (ki)
output += integralCount;
if (kd)
output -= (dInput / kd);
if (output > 100) {
output = 100; // saturate
} else if (output < 0) {
output = 0;
}
/*if (currentlyActiveTemperatureTarget < rawTemp) {
output = 0;
}*/
setTipPWM(output);
derivativeLastValue = rawTemp; // store for next loop
} else {
setTipPWM(0); // disable the output driver if the output is set to be off
integralCount = 0;
derivativeLastValue = 0;
osDelay(100); //sleep for a bit longer
HAL_IWDG_Refresh(&hiwdg);
}
HAL_IWDG_Refresh(&hiwdg);
}
}
#define MOVFilter 8
void startMOVTask(void const *argument) {
osDelay(250); // wait for accelerometer to stabilize
lcd.setRotation(systemSettings.OrientationMode & 1);
lastMovementTime = 0;
int16_t datax[MOVFilter];
int16_t datay[MOVFilter];
int16_t dataz[MOVFilter];
int16_t datax[MOVFilter] = { 0 };
int16_t datay[MOVFilter] = { 0 };
int16_t dataz[MOVFilter] = { 0 };
uint8_t currentPointer = 0;
memset(datax, 0, MOVFilter * sizeof(int16_t));
memset(datay, 0, MOVFilter * sizeof(int16_t));
memset(dataz, 0, MOVFilter * sizeof(int16_t));
int16_t tx, ty, tz;
int32_t avgx, avgy, avgz;
int16_t tx = 0, ty = 0, tz = 0;
int32_t avgx = 0, avgy = 0, avgz = 0;
if (systemSettings.sensitivity > 9)
systemSettings.sensitivity = 9;
#if ACCELDEBUG
uint32_t max = 0;
#endif
Orientation rotation = ORIENTATION_FLAT;
for (;;) {
int32_t threshold = 1500 + (9 * 200);
threshold -= systemSettings.sensitivity * 200; // 200 is the step size
if (PCBVersion == 2)
accel2.getAxisReadings(&tx, &ty, &tz);
else if (PCBVersion == 1)
accel.getAxisReadings(&tx, &ty, &tz);
if (PCBVersion == 2) {
accel2.getAxisReadings(&tx, &ty, &tz);
rotation = accel2.getOrientation();
} else if (PCBVersion == 1) {
accel.getAxisReadings(&tx, &ty, &tz);
rotation = accel.getOrientation();
}
if (systemSettings.OrientationMode == 2) {
if (rotation != ORIENTATION_FLAT) {
lcd.setRotation(rotation == ORIENTATION_LEFT_HAND); // link the data through
}
}
datax[currentPointer] = (int32_t) tx;
datay[currentPointer] = (int32_t) ty;
dataz[currentPointer] = (int32_t) tz;
currentPointer = (currentPointer + 1) % MOVFilter;
#if ACCELDEBUG
// Debug for Accel
avgx = avgy = avgz = 0;
// calculate averages
for (uint8_t i = 0; i < MOVFilter; i++) {
avgx += datax[i];
avgy += datay[i];
@@ -958,37 +926,35 @@ void startMOVTask(void const *argument) {
avgx /= MOVFilter;
avgy /= MOVFilter;
avgz /= MOVFilter;
//Sum the deltas
int32_t error = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
#if ACCELDEBUG
// Debug for Accel
lcd.setFont(1);
lcd.setCursor(0, 0);
lcd.printNumber(abs(avgx - (int32_t) tx), 5);
lcd.print(" ");
lcd.printNumber(abs(avgy - (int32_t) ty), 5);
if ((abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz)) > max)
max = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
if (error > max) {
max = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
}
lcd.setCursor(0, 8);
lcd.printNumber(max, 5);
lcd.print(" ");
lcd.printNumber((abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz)), 5);
lcd.refresh();
if (HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET)
max = 0;
#endif
// calculate averages
avgx = avgy = avgz = 0;
for (uint8_t i = 0; i < MOVFilter; i++) {
avgx += datax[i];
avgy += datay[i];
avgz += dataz[i];
if (HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET) {
max = 0;
}
avgx /= MOVFilter;
avgy /= MOVFilter;
avgz /= MOVFilter;
#endif
// So now we have averages, we want to look if these are different by more
// than the threshold
int32_t error = (abs(avgx - tx) + abs(avgy - ty) + abs(avgz - tz));
// If error has occurred then we update the tick timer
if (error > threshold) {
lastMovementTime = xTaskGetTickCount();
@@ -997,52 +963,14 @@ void startMOVTask(void const *argument) {
osDelay(100); // Slow down update rate
}
}
/* StartRotationTask function */
void startRotationTask(void const *argument) {
/*
* This task is used to manage rotation of the LCD screen & button re-mapping
*
*/
switch (systemSettings.OrientationMode) {
case 0:
lcd.setRotation(false);
break;
case 1:
lcd.setRotation(true);
break;
case 2:
lcd.setRotation(false);
break;
default:
break;
}
osDelay(250); // wait for accel to stabilize
for (;;) {
// a rotation event has occurred
uint8_t rotation = 0;
if (PCBVersion == 2) {
rotation = accel2.getOrientation();
} else if (PCBVersion == 1) {
rotation = accel.getOrientation();
}
if (systemSettings.OrientationMode == 2) {
if (rotation != 0) {
lcd.setRotation(rotation == 2); // link the data through
}
}
osDelay(500);
}
}
#define FLASH_LOGOADDR \
(0x8000000 | 0xF800) /*second last page of flash set aside for logo image*/
bool showBootLogoIfavailable() {
// check if the header is there (0xAA,0x55,0xF0,0x0D)
// If so display logo
// check if the header is there (0xAA,0x55,0xF0,0x0D)
// If so display logo
//TODO REDUCE STACK ON THIS ONE, USE DRAWING IN THE READ LOOP
uint16_t temp[98];
for (uint8_t i = 0; i < (98); i++) {
@@ -1082,3 +1010,28 @@ void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc) {
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) {
i2cDev.CpltCallback();
}
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) {
i2cDev.CpltCallback();
}
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) {
i2cDev.CpltCallback();
}
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) {
i2cDev.CpltCallback();
}
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c) {
i2cDev.CpltCallback();
}
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) {
i2cDev.CpltCallback();
}
void vApplicationStackOverflowHook( xTaskHandle *pxTask,
signed portCHAR *pcTaskName) {
//We dont have a good way to handle a stack overflow at this point in time
NVIC_SystemReset();
}

View File

@@ -28,9 +28,9 @@ void HAL_MspInit(void) {
/**NOJTAG: JTAG-DP Disabled and SW-DP Enabled
*/
__HAL_AFIO_REMAP_SWJ_NOJTAG();
// __HAL_AFIO_REMAP_SWJ_DISABLE(); /*Disable swd for debug io use*/
//__HAL_AFIO_REMAP_SWJ_NOJTAG()
//;
__HAL_AFIO_REMAP_SWJ_DISABLE(); /*Disable swd for debug io use*/
}
@@ -68,7 +68,7 @@ void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) {
__HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1);
/* ADC1 interrupt Init */
HAL_NVIC_SetPriority(ADC1_2_IRQn, 5, 0);
HAL_NVIC_SetPriority(ADC1_2_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(ADC1_2_IRQn);
}
@@ -77,22 +77,51 @@ void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) {
void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c) {
GPIO_InitTypeDef GPIO_InitStruct;
if (hi2c->Instance == I2C1) {
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = SCL_Pin | SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = SCL_Pin | SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C1_CLK_ENABLE()
;
/* Peripheral clock enable */
__HAL_RCC_I2C1_CLK_ENABLE()
;
/* I2C1 DMA Init */
/* I2C1_RX Init */
hdma_i2c1_rx.Instance = DMA1_Channel7;
hdma_i2c1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_i2c1_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_i2c1_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_i2c1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_i2c1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_i2c1_rx.Init.Mode = DMA_NORMAL;
hdma_i2c1_rx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_Init(&hdma_i2c1_rx);
}
__HAL_LINKDMA(hi2c, hdmarx, hdma_i2c1_rx);
/* I2C1_TX Init */
hdma_i2c1_tx.Instance = DMA1_Channel6;
hdma_i2c1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_i2c1_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_i2c1_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_i2c1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_i2c1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_i2c1_tx.Init.Mode = DMA_NORMAL;
hdma_i2c1_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_Init(&hdma_i2c1_tx);
__HAL_LINKDMA(hi2c, hdmatx, hdma_i2c1_tx);
/* I2C1 interrupt Init */
HAL_NVIC_SetPriority(I2C1_EV_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(I2C1_EV_IRQn);
HAL_NVIC_SetPriority(I2C1_ER_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(I2C1_ER_IRQn);
}

View File

@@ -54,7 +54,6 @@ void SysTick_Handler(void) {
void DMA1_Channel1_IRQHandler(void) {
HAL_DMA_IRQHandler(&hdma_adc1);
}
//ADC interrupt used for DMA
void ADC1_2_IRQHandler(void) {
HAL_ADC_IRQHandler(&hadc1);
@@ -63,7 +62,6 @@ void ADC1_2_IRQHandler(void) {
//Timer 1 has overflowed, used for HAL ticks
void TIM1_UP_IRQHandler(void) {
HAL_TIM_IRQHandler(&htim1);
}
//Timer 3 is used for the PWM output to the tip
void TIM3_IRQHandler(void) {
@@ -74,13 +72,18 @@ void TIM3_IRQHandler(void) {
void TIM2_IRQHandler(void) {
HAL_TIM_IRQHandler(&htim2);
}
//EXTI 3 is triggered via the accelerometer on orientation change
void EXTI3_IRQHandler(void) {
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_3);
void I2C1_EV_IRQHandler(void) {
HAL_I2C_EV_IRQHandler(&hi2c1);
}
void I2C1_ER_IRQHandler(void) {
HAL_I2C_ER_IRQHandler(&hi2c1);
}
//EXTI 5 is triggered via the accelerometer on movement
void EXTI9_5_IRQHandler(void) {
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5);
void DMA1_Channel6_IRQHandler(void) {
HAL_DMA_IRQHandler(&hdma_i2c1_tx);
}
void DMA1_Channel7_IRQHandler(void) {
HAL_DMA_IRQHandler(&hdma_i2c1_rx);
}