1
0
forked from me/IronOS

Rebalance ram

This commit is contained in:
Ben V. Brown
2019-01-01 15:15:52 +11:00
parent 9804a989ff
commit f023761545
6 changed files with 220 additions and 121 deletions

View File

@@ -34,6 +34,7 @@ public:
private: private:
static I2C_HandleTypeDef *i2c; static I2C_HandleTypeDef *i2c;
static void I2C1_ClearBusyFlagErratum();
static SemaphoreHandle_t I2CSemaphore; static SemaphoreHandle_t I2CSemaphore;
}; };

View File

@@ -12,7 +12,7 @@
#include <stdint.h> #include <stdint.h>
#include "stm32f1xx_hal.h" #include "stm32f1xx_hal.h"
#define SETTINGSVERSION \ #define SETTINGSVERSION \
0x16 /*Change this if you change the struct below to prevent people getting \ 0x18 /*Change this if you change the struct below to prevent people getting \
out of sync*/ out of sync*/
/* /*

View File

@@ -4,95 +4,182 @@
* Created on: 14Apr.,2018 * Created on: 14Apr.,2018
* Author: Ralim * Author: Ralim
*/ */
#include "hardware.h"
#include "FRToSI2C.hpp" #include "FRToSI2C.hpp"
#define I2CUSESDMA #define I2CUSESDMA
I2C_HandleTypeDef* FRToSI2C::i2c; I2C_HandleTypeDef* FRToSI2C::i2c;
SemaphoreHandle_t FRToSI2C::I2CSemaphore; SemaphoreHandle_t FRToSI2C::I2CSemaphore;
void FRToSI2C::CpltCallback() { void FRToSI2C::CpltCallback() {
i2c->State = HAL_I2C_STATE_READY; // Force state reset (even if tx error) i2c->State = HAL_I2C_STATE_READY; // Force state reset (even if tx error)
if (I2CSemaphore) { if (I2CSemaphore) {
xSemaphoreGiveFromISR(I2CSemaphore, NULL);
xSemaphoreGiveFromISR(I2CSemaphore, NULL); }
}
} }
void FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, void FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t* pData, uint16_t Size) { uint16_t MemAddSize, uint8_t* pData, uint16_t Size) {
if (I2CSemaphore == NULL) {
// no RToS, run blocking code
HAL_I2C_Mem_Read(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000);
} else {
// RToS is active, run threading
// Get the mutex so we can use the I2C port
// Wait up to 1 second for the mutex
if (xSemaphoreTake(I2CSemaphore, (TickType_t)50) == pdTRUE) {
#ifdef I2CUSESDMA #ifdef I2CUSESDMA
if (I2CSemaphore == NULL) { if (HAL_I2C_Mem_Read_DMA(i2c, DevAddress, MemAddress, MemAddSize,
// no RToS, run blocking code pData, Size) != HAL_OK) {
HAL_I2C_Mem_Read(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000); I2C1_ClearBusyFlagErratum();
} else { xSemaphoreGive(I2CSemaphore);
// RToS is active, run threading }
// Get the mutex so we can use the I2C port
// Wait up to 1 second for the mutex
if (xSemaphoreTake(I2CSemaphore, (TickType_t)50) == pdTRUE) {
if (HAL_I2C_Mem_Read(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000) != HAL_OK) {
}
xSemaphoreGive(I2CSemaphore);
} else {
}
}
#else #else
HAL_I2C_Mem_Read(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000); HAL_I2C_Mem_Read(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000);
xSemaphoreGive(I2CSemaphore);
#endif #endif
} else {
}
}
} }
void FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) { void FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) {
Mem_Write(address, reg, I2C_MEMADD_SIZE_8BIT, &data, 1); Mem_Write(address, reg, I2C_MEMADD_SIZE_8BIT, &data, 1);
} }
uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) { uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) {
uint8_t tx_data[1]; uint8_t tx_data[1];
Mem_Read(add, reg, I2C_MEMADD_SIZE_8BIT, tx_data, 1); Mem_Read(add, reg, I2C_MEMADD_SIZE_8BIT, tx_data, 1);
return tx_data[0]; return tx_data[0];
} }
void FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, void FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t* pData, uint16_t Size) { uint16_t MemAddSize, uint8_t* pData, uint16_t Size) {
#ifdef I2CUSESDMA
if (I2CSemaphore == NULL) {
// no RToS, run blocking code
HAL_I2C_Mem_Write(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000);
} else {
// RToS is active, run threading
// Get the mutex so we can use the I2C port
// Wait up to 1 second for the mutex
if (xSemaphoreTake(I2CSemaphore, (TickType_t)50) == pdTRUE) {
if (HAL_I2C_Mem_Write(i2c, DevAddress, MemAddress, MemAddSize, pData,
Size, 5000) != HAL_OK) {
}
xSemaphoreGive(I2CSemaphore);
} else { if (I2CSemaphore == NULL) {
} // no RToS, run blocking code
} HAL_I2C_Mem_Write(i2c, DevAddress, MemAddress, MemAddSize, pData, Size,
5000);
} else {
// RToS is active, run threading
// Get the mutex so we can use the I2C port
// Wait up to 1 second for the mutex
if (xSemaphoreTake(I2CSemaphore, (TickType_t)50) == pdTRUE) {
#ifdef I2CUSESDMA
if (HAL_I2C_Mem_Write_DMA(i2c, DevAddress, MemAddress, MemAddSize,
pData, Size) != HAL_OK) {
I2C1_ClearBusyFlagErratum();
xSemaphoreGive(I2CSemaphore);
}
#else #else
HAL_I2C_Mem_Write(i2c, DevAddress, MemAddress, MemAddSize, pData, Size, if (HAL_I2C_Mem_Write(i2c, DevAddress, MemAddress, MemAddSize, pData,
5000); Size, 5000) != HAL_OK) {
}
xSemaphoreGive(I2CSemaphore);
#endif #endif
} else {
}
}
} }
void FRToSI2C::Transmit(uint16_t DevAddress, uint8_t* pData, uint16_t Size) { void FRToSI2C::Transmit(uint16_t DevAddress, uint8_t* pData, uint16_t Size) {
if (I2CSemaphore == NULL) {
// no RToS, run blocking code
HAL_I2C_Master_Transmit(i2c, DevAddress, pData, Size, 5000);
} else {
// RToS is active, run threading
// Get the mutex so we can use the I2C port
// Wait up to 1 second for the mutex
if (xSemaphoreTake(I2CSemaphore, (TickType_t)50) == pdTRUE) {
#ifdef I2CUSESDMA #ifdef I2CUSESDMA
if (I2CSemaphore == NULL) {
// no RToS, run blocking code if (HAL_I2C_Master_Transmit_DMA(i2c, DevAddress, pData, Size)
HAL_I2C_Master_Transmit(i2c, DevAddress, pData, Size, 5000); != HAL_OK) {
} else {
// RToS is active, run threading I2C1_ClearBusyFlagErratum();
// Get the mutex so we can use the I2C port xSemaphoreGive(I2CSemaphore);
// Wait up to 1 second for the mutex
if (xSemaphoreTake(I2CSemaphore, (TickType_t)50) == pdTRUE) { }
if (HAL_I2C_Master_Transmit_DMA(i2c, DevAddress, pData, Size) != HAL_OK) {
}
// xSemaphoreGive(I2CSemaphore);
} else {
}
}
#else #else
HAL_I2C_Master_Transmit(i2c, DevAddress, pData, Size, 5000); HAL_I2C_Master_Transmit(i2c, DevAddress, pData, Size, 5000);
xSemaphoreGive(I2CSemaphore);
#endif #endif
} else {
}
}
}
void FRToSI2C::I2C1_ClearBusyFlagErratum() {
GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100;
int timeout_cnt = 0;
// 1. Clear PE bit.
i2c->Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
//Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++;
if (timeout_cnt > timeout)
return;
}
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register.
i2c->Instance->CR1 |= 0x8000;
asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register.
i2c->Instance->CR1 &= ~0x8000;
asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
i2c->Instance->CR1 |= 0x0001;
// Call initialization function.
HAL_I2C_Init(i2c);
} }

View File

@@ -361,13 +361,13 @@ static void MX_DMA_Init(void) {
/* DMA interrupt init */ /* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */ /* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0); HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */ /* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 15, 0); HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */ /* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 15, 0); HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
} }

View File

@@ -69,7 +69,7 @@ int main(void) {
/* Create the thread(s) */ /* Create the thread(s) */
/* definition and creation of GUITask */ /* definition and creation of GUITask */
osThreadDef(GUITask, startGUITask, osPriorityBelowNormal, 0, 4 * 1024 / 4); osThreadDef(GUITask, startGUITask, osPriorityBelowNormal, 0, 5 * 1024 / 4);
GUITaskHandle = osThreadCreate(osThread(GUITask), NULL); GUITaskHandle = osThreadCreate(osThread(GUITask), NULL);
/* definition and creation of PIDTask */ /* definition and creation of PIDTask */
@@ -77,7 +77,7 @@ int main(void) {
PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL); PIDTaskHandle = osThreadCreate(osThread(PIDTask), NULL);
if (PCBVersion < 3) { if (PCBVersion < 3) {
/* definition and creation of MOVTask */ /* definition and creation of MOVTask */
osThreadDef(MOVTask, startMOVTask, osPriorityNormal, 0, 2 * 1024 / 4); osThreadDef(MOVTask, startMOVTask, osPriorityNormal, 0, 3 * 1024 / 4);
MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL); MOVTaskHandle = osThreadCreate(osThread(MOVTask), NULL);
} }
@@ -266,36 +266,36 @@ static void gui_drawBatteryIcon() {
// we need to calculate which of the 10 levels they are on // we need to calculate which of the 10 levels they are on
uint8_t cellCount = systemSettings.cutoutSetting + 2; uint8_t cellCount = systemSettings.cutoutSetting + 2;
uint16_t cellV = getInputVoltageX10(systemSettings.voltageDiv, 0) uint16_t cellV = getInputVoltageX10(systemSettings.voltageDiv, 0)
/ cellCount; / cellCount;
// Should give us approx cell voltage X10 // Should give us approx cell voltage X10
// Range is 42 -> 33 = 9 steps therefore we will use battery 1-10 // Range is 42 -> 33 = 9 steps therefore we will use battery 1-10
if (cellV < 33) if (cellV < 33)
cellV = 33; cellV = 33;
cellV -= 33;// Should leave us a number of 0-9 cellV -= 33; // Should leave us a number of 0-9
if (cellV > 9) if (cellV > 9)
cellV = 9; cellV = 9;
OLED::drawBattery(cellV + 1); OLED::drawBattery(cellV + 1);
} else } else
OLED::drawSymbol(15); // Draw the DC Logo OLED::drawSymbol(15); // Draw the DC Logo
#else #else
// On TS80 we replace this symbol with the voltage we are operating on // On TS80 we replace this symbol with the voltage we are operating on
// If <9V then show single digit, if not show duals // If <9V then show single digit, if not show duals
uint8_t V = getInputVoltageX10(systemSettings.voltageDiv, 0); uint8_t V = getInputVoltageX10(systemSettings.voltageDiv, 0);
if (V % 10 >= 5) if (V % 10 >= 5)
V = V / 10 + 1; // round up V = V / 10 + 1;// round up
else else
V = V / 10; V = V / 10;
if (V >= 10) { if (V >= 10) {
int16_t xPos = OLED::getCursorX(); int16_t xPos = OLED::getCursorX();
OLED::setFont(1); OLED::setFont(1);
OLED::printNumber(1, 1); OLED::printNumber(1, 1);
OLED::setCursor(xPos, 8); OLED::setCursor(xPos, 8);
OLED::printNumber(V % 10, 1); OLED::printNumber(V % 10, 1);
OLED::setFont(0); OLED::setFont(0);
OLED::setCursor(xPos + 12, 0); // need to reset this as if we drew a wide char OLED::setCursor(xPos + 12, 0); // need to reset this as if we drew a wide char
} else { } else {
OLED::printNumber(V, 1); OLED::printNumber(V, 1);
} }
#endif #endif
} }
static void gui_solderingTempAdjust() { static void gui_solderingTempAdjust() {
@@ -367,7 +367,7 @@ static void gui_solderingTempAdjust() {
#ifdef MODEL_TS80 #ifdef MODEL_TS80
if (!OLED::getRotation()) if (!OLED::getRotation())
#else #else
if (OLED::getRotation()) if (OLED::getRotation())
#endif #endif
OLED::drawChar('-'); OLED::drawChar('-');
else else
@@ -383,7 +383,7 @@ static void gui_solderingTempAdjust() {
#ifdef MODEL_TS80 #ifdef MODEL_TS80
if (!OLED::getRotation()) if (!OLED::getRotation())
#else #else
if (OLED::getRotation()) if (OLED::getRotation())
#endif #endif
OLED::drawChar('+'); OLED::drawChar('+');
else else
@@ -410,7 +410,7 @@ static int gui_SolderingSleepingMode() {
|| (xTaskGetTickCount() - lastButtonTime < 100)) || (xTaskGetTickCount() - lastButtonTime < 100))
return 0; // user moved or pressed a button, go back to soldering return 0; // user moved or pressed a button, go back to soldering
#ifdef MODEL_TS100 #ifdef MODEL_TS100
if (checkVoltageForExit()) if (checkVoltageForExit())
return 1; // return non-zero on error return 1; // return non-zero on error
#endif #endif
if (systemSettings.temperatureInF) { if (systemSettings.temperatureInF) {
@@ -501,6 +501,7 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
* --> Double button to exit * --> Double button to exit
*/ */
bool boostModeOn = false; bool boostModeOn = false;
uint8_t badTipCounter = 0;
uint32_t sleepThres = 0; uint32_t sleepThres = 0;
if (systemSettings.SleepTime < 6) if (systemSettings.SleepTime < 6)
sleepThres = systemSettings.SleepTime * 10 * 100; sleepThres = systemSettings.SleepTime * 10 * 100;
@@ -549,14 +550,10 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
OLED::clearScreen(); OLED::clearScreen();
OLED::setFont(0); OLED::setFont(0);
uint16_t tipTemp = getTipRawTemp(0); uint16_t tipTemp = getTipRawTemp(0);
if (tipTemp > 32752) { if (tipTemp > 32760) {
OLED::print(BadTipString); badTipCounter++;
OLED::refresh();
currentlyActiveTemperatureTarget = 0;
waitForButtonPress();
currentlyActiveTemperatureTarget = 0;
return;
} else { } else {
badTipCounter = 0;
if (systemSettings.detailedSoldering) { if (systemSettings.detailedSoldering) {
OLED::setFont(1); OLED::setFont(1);
OLED::print(SolderingAdvancedPowerPrompt); // Power: OLED::print(SolderingAdvancedPowerPrompt); // Power:
@@ -615,6 +612,14 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
} }
} }
} }
if (badTipCounter > 128) {
OLED::print(BadTipString);
OLED::refresh();
currentlyActiveTemperatureTarget = 0;
waitForButtonPress();
currentlyActiveTemperatureTarget = 0;
return;
}
OLED::refresh(); OLED::refresh();
// Update the setpoints for the temperature // Update the setpoints for the temperature
@@ -671,7 +676,7 @@ __DATE__, "Heap: ", "HWMG: ", "HWMP: ", "HWMM: ", "Time: ", "Move: ", "RTip: ",
"Tm ", "Ralim-", "Tm ", "Ralim-",
#endif #endif
}; };
void showVersion(void) { void showVersion(void) {
uint8_t screen = 0; uint8_t screen = 0;
@@ -681,9 +686,9 @@ void showVersion(void) {
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left) OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::setFont(1); // small font OLED::setFont(1); // small font
#ifdef MODEL_TS100 #ifdef MODEL_TS100
OLED::print((char *) "V2.06 TS100"); // Print version number OLED::print((char *) "V2.06 TS100"); // Print version number
#else #else
OLED::print((char *) "V2.06 TS80"); // Print version number OLED::print((char *) "V2.06 TS80"); // Print version number
#endif #endif
OLED::setCursor(0, 8); // second line OLED::setCursor(0, 8); // second line
OLED::print(HEADERS[screen]); OLED::print(HEADERS[screen]);
@@ -870,7 +875,7 @@ void startGUITask(void const *argument __unused) {
#ifdef MODEL_TS80 #ifdef MODEL_TS80
if (!OLED::getRotation()) { if (!OLED::getRotation()) {
#else #else
if (OLED::getRotation()) { if (OLED::getRotation()) {
#endif #endif
OLED::drawArea(12, 0, 84, 16, idleScreenBG); OLED::drawArea(12, 0, 84, 16, idleScreenBG);
OLED::setCursor(0, 0); OLED::setCursor(0, 0);
@@ -891,7 +896,7 @@ void startGUITask(void const *argument __unused) {
#ifdef MODEL_TS80 #ifdef MODEL_TS80
if (!OLED::getRotation()) { if (!OLED::getRotation()) {
#else #else
if (OLED::getRotation()) { if (OLED::getRotation()) {
#endif #endif
// in right handed mode we want to draw over the first part // in right handed mode we want to draw over the first part
OLED::fillArea(55, 0, 41, 16, 0); // clear the area for the temp OLED::fillArea(55, 0, 41, 16, 0); // clear the area for the temp
@@ -920,14 +925,14 @@ void startPIDTask(void const *argument __unused) {
*/ */
setTipMilliWatts(0); // disable the output driver if the output is set to be off setTipMilliWatts(0); // disable the output driver if the output is set to be off
#ifdef MODEL_TS80 #ifdef MODEL_TS80
idealQCVoltage = calculateMaxVoltage(systemSettings.cutoutSetting); idealQCVoltage = calculateMaxVoltage(systemSettings.cutoutSetting);
#endif #endif
uint8_t rawC = ctoTipMeasurement(101) - ctoTipMeasurement(100); // 1*C change in raw. uint8_t rawC = ctoTipMeasurement(101) - ctoTipMeasurement(100); // 1*C change in raw.
#ifdef MODEL_TS80 #ifdef MODEL_TS80
//Set power management code to the tip resistance in ohms * 10 //Set power management code to the tip resistance in ohms * 10
setupPower(calculateTipR() / 100); setupPower(calculateTipR() / 100);
size_t lastPowerPulse = 0; size_t lastPowerPulse = 0;
#else #else
setupPower(85); setupPower(85);
@@ -944,10 +949,11 @@ void startPIDTask(void const *argument __unused) {
if (currentlyActiveTemperatureTarget) { if (currentlyActiveTemperatureTarget) {
// Cap the max set point to 450C // Cap the max set point to 450C
if (currentlyActiveTemperatureTarget > ctoTipMeasurement(450)) { if (currentlyActiveTemperatureTarget > ctoTipMeasurement(450)) {
//Maximum allowed output
currentlyActiveTemperatureTarget = ctoTipMeasurement(450); currentlyActiveTemperatureTarget = ctoTipMeasurement(450);
} } else if (currentlyActiveTemperatureTarget > 32400) {
if (currentlyActiveTemperatureTarget > 32500) { //Cap to max adc reading
currentlyActiveTemperatureTarget = 32500; currentlyActiveTemperatureTarget = 32400;
} }
// As we get close to our target, temp noise causes the system // As we get close to our target, temp noise causes the system
@@ -1033,9 +1039,9 @@ void startMOVTask(void const *argument __unused) {
#ifdef MODEL_TS80 #ifdef MODEL_TS80
startQC(systemSettings.voltageDiv); startQC(systemSettings.voltageDiv);
while (pidTaskNotification == 0) while (pidTaskNotification == 0)
osDelay(20); // To ensure we return after idealQCVoltage/tip resistance osDelay(20); // To ensure we return after idealQCVoltage/tip resistance
seekQC(idealQCVoltage, systemSettings.voltageDiv); // this will move the QC output to the preferred voltage to start with seekQC(idealQCVoltage, systemSettings.voltageDiv);// this will move the QC output to the preferred voltage to start with
#else #else
osDelay(250); // wait for accelerometer to stabilize osDelay(250); // wait for accelerometer to stabilize
@@ -1121,9 +1127,9 @@ void startMOVTask(void const *argument __unused) {
osDelay(100); // Slow down update rate osDelay(100); // Slow down update rate
#ifdef MODEL_TS80 #ifdef MODEL_TS80
if (currentlyActiveTemperatureTarget) { if (currentlyActiveTemperatureTarget) {
seekQC(idealQCVoltage, systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop seekQC(idealQCVoltage, systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
} }
#endif #endif
} }
} }
@@ -1185,9 +1191,13 @@ void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
FRToSI2C::CpltCallback(); FRToSI2C::CpltCallback();
} }
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c __unused) { void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c __unused) {
asm("bkpt");
FRToSI2C::CpltCallback(); FRToSI2C::CpltCallback();
} }
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c __unused) { void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
asm("bkpt");
FRToSI2C::CpltCallback(); FRToSI2C::CpltCallback();
} }
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
@@ -1195,6 +1205,7 @@ void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) {
} }
void vApplicationStackOverflowHook(xTaskHandle *pxTask __unused, void vApplicationStackOverflowHook(xTaskHandle *pxTask __unused,
signed portCHAR *pcTaskName __unused) { signed portCHAR *pcTaskName __unused) {
asm("bkpt");
// We dont have a good way to handle a stack overflow at this point in time // We dont have a good way to handle a stack overflow at this point in time
NVIC_SystemReset(); NVIC_SystemReset();
} }

View File

@@ -88,7 +88,7 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c) {
GPIO_InitStruct.Pin = SCL_Pin | SDA_Pin; GPIO_InitStruct.Pin = SCL_Pin | SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral clock enable */ /* Peripheral clock enable */