1
0
forked from me/IronOS

WiP on WS2812 Protocol driver

This commit is contained in:
Ben V. Brown
2021-05-02 21:22:29 +10:00
parent 5637e1a215
commit e4f7946dcb
10 changed files with 596 additions and 329 deletions

View File

@@ -7,6 +7,7 @@
#include "Setup.h"
#include "TipThermoModel.h"
#include "Utils.h"
#include "WS2812.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
@@ -410,4 +411,7 @@ bool isTipDisconnected() {
return tipDisconnected;
}
void setStatusLED(const enum StatusLED state) {}
void setStatusLED(const enum StatusLED state) {
WS2812::led_set_color(0, 0xFF, 0, 0);
WS2812::led_update(1);
}

View File

@@ -51,6 +51,6 @@
#define PLATE_SENSOR_ADC1_CHANNEL ADC_CHANNEL_5
#define PLATE_SENSOR_ADC2_CHANNEL ADC_CHANNEL_5
#define WS2812_Pin GPIO_PIN_3
#define WS2812_Pin GPIO_PIN_8
#define WS2812_GPIO_Port GPIOA
#endif /* BSP_MINIWARE_PINS_H_ */

View File

@@ -16,10 +16,10 @@ DMA_HandleTypeDef hdma_i2c1_rx;
DMA_HandleTypeDef hdma_i2c1_tx;
IWDG_HandleTypeDef hiwdg;
TIM_HandleTypeDef htim1;
DMA_HandleTypeDef hdma_tim1_ch2;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim1;
DMA_HandleTypeDef hdma_tim1_ch1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
#define ADC_CHANNELS 4
#define ADC_SAMPLES 16
uint32_t ADCReadings[ADC_SAMPLES * ADC_CHANNELS]; // room for 32 lots of the pair of readings
@@ -35,410 +35,422 @@ static void MX_TIM1_Init(void);
static void MX_DMA_Init(void);
static void MX_GPIO_Init(void);
static void MX_ADC2_Init(void);
void Setup_HAL() {
SystemClock_Config();
void Setup_HAL() {
SystemClock_Config();
__HAL_AFIO_REMAP_SWJ_NOJTAG();
__HAL_AFIO_REMAP_SWJ_NOJTAG();
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C1_Init();
MX_ADC1_Init();
MX_ADC2_Init();
MX_TIM3_Init();
MX_TIM2_Init();
MX_TIM1_Init();
MX_IWDG_Init();
HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings,
(ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings
// HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
// HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C1_Init();
MX_ADC1_Init();
MX_ADC2_Init();
MX_TIM3_Init();
MX_TIM2_Init();
MX_TIM1_Init();
MX_IWDG_Init();
HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings,
(ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings
// HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
// HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
}
// channel 0 -> temperature sensor, 1-> VIN, 2-> tip
uint16_t getADC(uint8_t channel) {
uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_SAMPLES; i++) {
uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)];
uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16;
uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_SAMPLES; i++) {
uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)];
uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16;
sum += (adc1Sample + adc2Sample);
}
return sum >> 2;
sum += (adc1Sample + adc2Sample);
}
return sum >> 2;
}
/** System Clock Configuration
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI
| RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM
// 2,3,4,5,6,7,12,13,14
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM
// 2,3,4,5,6,7,12,13,14
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_CFGR_ADCPRE_DIV8; // 6 or 8 are the only non overclocked options
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_CFGR_ADCPRE_DIV8; // 6 or 8 are the only non overclocked options
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}
/* ADC1 init function */
static void MX_ADC1_Init(void) {
ADC_MultiModeTypeDef multimode;
ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig;
/**Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
HAL_ADC_Init(&hadc1);
ADC_ChannelConfTypeDef sConfig;
/**Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
HAL_ADC_Init(&hadc1);
/**Configure the ADC multi-mode
*/
multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
/**Configure the ADC multi-mode
*/
multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
/**Configure Regular Channel
*/
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
/**Configure Regular Channel
*/
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.Channel = TMP36_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = TMP36_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Regular Channel
*/
sConfig.Channel = VIN_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Regular Channel
*/
sConfig.Channel = VIN_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_3;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_3;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = PLATE_SENSOR_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_4;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = PLATE_SENSOR_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_4;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
SET_BIT(hadc1.Instance->CR1, (ADC_CR1_EOSIE)); // Enable end of Normal
// Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
;
SET_BIT(hadc1.Instance->CR1, (ADC_CR1_EOSIE)); // Enable end of Normal
// Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
;
}
/* ADC2 init function */
static void MX_ADC2_Init(void) {
ADC_ChannelConfTypeDef sConfig;
ADC_ChannelConfTypeDef sConfig;
/**Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = ADC_CHANNELS;
HAL_ADC_Init(&hadc2);
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
/**Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = ADC_CHANNELS;
HAL_ADC_Init(&hadc2);
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
/**Configure Regular Channel
*/
sConfig.Channel = TMP36_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
/**Configure Regular Channel
*/
sConfig.Channel = TMP36_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = VIN_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_3;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = PLATE_SENSOR_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_4;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = VIN_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_3;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = PLATE_SENSOR_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_4;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
// Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK)
;
// Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK)
;
}
/* I2C1 init function */
static void MX_I2C1_Init(void) {
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 300000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
HAL_I2C_Init(&hi2c1);
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 300000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
HAL_I2C_Init(&hi2c1);
}
/* IWDG init function */
static void MX_IWDG_Init(void) {
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
hiwdg.Init.Reload = 100;
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
hiwdg.Init.Reload = 100;
#ifndef SWD_ENABLE
HAL_IWDG_Init(&hiwdg);
HAL_IWDG_Init(&hiwdg);
#endif
}
/* TIM1 init function */
void MX_TIM1_Init(void) {
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
TIM_MasterConfigTypeDef sMasterConfig = { 0 };
TIM_OC_InitTypeDef sConfigOC = { 0 };
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = { 0 };
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 104;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK) {}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) {}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) {}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) {}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) {}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK) {}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 40;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
HAL_TIM_Base_Init(&htim1);
/* USER CODE END TIM1_Init 2 */
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
/**TIM1 GPIO Configuration
PA9 ------> TIM1_CH2
*/
GPIO_InitStruct.Pin = WS2812_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim1);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig);
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
/**TIM1 GPIO Configuration
PA8 ------> TIM1_CH1
*/
GPIO_InitStruct.Pin = WS2812_Pin;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
__HAL_AFIO_REMAP_TIM1_DISABLE();
}
/* TIM3 init function */
static void MX_TIM3_Init(void) {
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim3.Instance = TIM3;
htim3.Init.Prescaler = 1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 255; //
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 4mhz before div
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; // Preload the ARR register (though we dont use this)
HAL_TIM_Base_Init(&htim3);
htim3.Instance = TIM3;
htim3.Init.Prescaler = 1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 255; //
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 4mhz before div
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; // Preload the ARR register (though we dont use this)
HAL_TIM_Base_Init(&htim3);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim3);
HAL_TIM_PWM_Init(&htim3);
HAL_TIM_OC_Init(&htim3);
HAL_TIM_OC_Init(&htim3);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0; // Output control
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL);
// TODO need to do buzzer
GPIO_InitTypeDef GPIO_InitStruct;
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0; // Output control
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL);
// TODO need to do buzzer
GPIO_InitTypeDef GPIO_InitStruct;
/**TIM3 GPIO Configuration
PWM_Out_Pin ------> TIM3_CH1
*/
GPIO_InitStruct.Pin = PWM_Out_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct);
HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL);
/**TIM3 GPIO Configuration
PWM_Out_Pin ------> TIM3_CH1
*/
GPIO_InitStruct.Pin = PWM_Out_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct);
HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL);
}
/* TIM3 init function */
static void MX_TIM2_Init(void) {
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim2.Instance = TIM2;
htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate
htim2.Instance = TIM2;
htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
// dummy value, will be reconfigured by BSPInit()
htim2.Init.Period = 10;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
htim2.Init.RepetitionCounter = 0;
HAL_TIM_Base_Init(&htim2);
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
// dummy value, will be reconfigured by BSPInit()
htim2.Init.Period = 10;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
htim2.Init.RepetitionCounter = 0;
HAL_TIM_Base_Init(&htim2);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim2);
HAL_TIM_PWM_Init(&htim2);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp
sConfigOC.Pulse = 5;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = HEAT_EN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
HAL_GPIO_Init(HEAT_EN_GPIO_Port, &GPIO_InitStruct);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp
sConfigOC.Pulse = 5;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = HEAT_EN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
HAL_GPIO_Init(HEAT_EN_GPIO_Port, &GPIO_InitStruct);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void) {
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 6, 0); // DMA 1 ch3 is used from TIM CH2 for WS2812
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 2, 0); // DMA 1 ch2 is used from TIM CH1 for WS2812
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct;
memset(&GPIO_InitStruct, 0, sizeof(GPIO_InitStruct));
GPIO_InitTypeDef GPIO_InitStruct;
memset(&GPIO_InitStruct, 0, sizeof(GPIO_InitStruct));
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
/*Configure GPIO pins : PD0 PD1 */
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure peripheral I/O remapping */
__HAL_AFIO_REMAP_PD01_ENABLE();
//^ remap XTAL so that pins used
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
/*Configure GPIO pins : PD0 PD1 */
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure peripheral I/O remapping */
__HAL_AFIO_REMAP_PD01_ENABLE();
//^ remap XTAL so that pins used
/*
* Configure All pins as analog by default
*/
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12
| GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*
* Configure All pins as analog by default
*/
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3
| GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8
| GPIO_PIN_10 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3
| GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8
| GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13
| GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
GPIO_InitStruct.Pin = KEY_B_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = KEY_A_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(KEY_A_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
GPIO_InitStruct.Pin = KEY_B_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = KEY_A_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(KEY_A_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OLED_RESET_Pin */
GPIO_InitStruct.Pin = OLED_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : OLED_RESET_Pin */
GPIO_InitStruct.Pin = OLED_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
// Pull down LCD reset
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(30);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
// Pull down LCD reset
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(30);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
}
#ifdef USE_FULL_ASSERT

View File

@@ -25,7 +25,7 @@ extern I2C_HandleTypeDef hi2c1;
extern IWDG_HandleTypeDef hiwdg;
extern TIM_HandleTypeDef htim1;
extern DMA_HandleTypeDef hdma_tim1_ch2;
extern DMA_HandleTypeDef hdma_tim1_ch1;
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim3;
void Setup_HAL();

View File

@@ -3,6 +3,7 @@
#include "I2C_Wrapper.hpp"
#include "QC3.h"
#include "Settings.h"
#include "WS2812.h"
#include "cmsis_os.h"
#include "fusbpd.h"
#include "main.hpp"
@@ -11,4 +12,14 @@
#include "task.h"
// Initialisation to be performed with scheduler active
void postRToSInit() {}
void postRToSInit() {
WS2812::init();
WS2812::led_set_color(0, 0xAA, 0x55, 0x00);
while (true) {
// osDelay(1);
// WS2812::led_set_color(0, 0xFF, 0xFF, 0xFF);
// WS2812::led_update(1);
osDelay(10);
WS2812::led_update(1);
}
}

View File

@@ -128,16 +128,17 @@ void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim_base) {
if (htim_base->Instance == TIM1) {
__HAL_RCC_TIM1_CLK_ENABLE();
hdma_tim1_ch2.Instance = DMA1_Channel3;
hdma_tim1_ch2.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_tim1_ch2.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_tim1_ch2.Init.MemInc = DMA_MINC_ENABLE;
hdma_tim1_ch2.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_tim1_ch2.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_tim1_ch2.Init.Mode = DMA_CIRCULAR;
hdma_tim1_ch2.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_tim1_ch2) != HAL_OK) {}
__HAL_LINKDMA(htim_base, hdma[TIM_DMA_ID_CC2], hdma_tim1_ch2);
__HAL_RCC_DMA1_CLK_ENABLE();
hdma_tim1_ch1.Instance = DMA1_Channel2;
hdma_tim1_ch1.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_tim1_ch1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_tim1_ch1.Init.MemInc = DMA_MINC_ENABLE;
hdma_tim1_ch1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_tim1_ch1.Init.MemDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_tim1_ch1.Init.Mode = DMA_CIRCULAR;
hdma_tim1_ch1.Init.Priority = DMA_PRIORITY_VERY_HIGH;
HAL_DMA_Init(&hdma_tim1_ch1);
__HAL_LINKDMA(htim_base, hdma[TIM_DMA_ID_CC1], hdma_tim1_ch1);
} else if (htim_base->Instance == TIM3) {
__HAL_RCC_TIM3_CLK_ENABLE();
} else if (htim_base->Instance == TIM2) {

View File

@@ -49,7 +49,7 @@ void TIM4_IRQHandler(void) { HAL_TIM_IRQHandler(&htim4); }
void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); }
void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); }
void DMA1_Channel3_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_tim1_ch2); }
void DMA1_Channel2_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_tim1_ch1); }
void DMA1_Channel6_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_tx); }
void DMA1_Channel7_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_rx); }

View File

@@ -0,0 +1,198 @@
/*
* WS2812.cpp
*
* Created on: 2 May 2021
* Author: Ralim
*/
#include "FreeRTOS.h"
#include "task.h"
#include <WS2812.h>
#include <string.h>
uint8_t WS2812::leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
volatile uint16_t WS2812::tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
volatile uint8_t WS2812::is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
volatile uint8_t WS2812::is_updating; /*!< Is updating in progress? */
volatile uint32_t WS2812::current_led; /*!< Current LED number we are sending */
void WS2812::init(void) {
memset(leds_colors, 0, sizeof(leds_colors));
hdma_tim1_ch1.XferHalfCpltCallback = DMAHalfComplete;
hdma_tim1_ch1.XferCpltCallback = DMAComplete;
htim1.Instance->CCR1 = htim1.Instance->ARR / 2 - 1;
htim1.Instance->DIER |= TIM_DIER_CC1DE;
}
uint8_t WS2812::led_update(uint8_t block) {
if (is_updating) { /* Check if update in progress already */
return 0;
}
is_updating = 1; /* We are now updating */
led_start_reset_pulse(1); /* Start reset pulse */
if (block) {
while (!led_is_update_finished()) {
vTaskDelay(1);
}; /* Wait to finish */
}
return 1;
}
void WS2812::led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b) {
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
}
void WS2812::led_set_color_all(uint8_t r, uint8_t g, uint8_t b) {
for (int index = 0; index < WS2812_LED_COUNT; index++) {
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
}
}
uint8_t WS2812::led_is_update_finished(void) {
return !is_updating;
}
void WS2812::led_start_reset_pulse(uint8_t num) {
is_reset_pulse = num; /* Set reset pulse flag */
memset((void*)tmp_led_data, 0, sizeof(tmp_led_data)); /* Set all bytes to 0 to achieve 50us pulse */
if (num == 1) {
tmp_led_data[0] = htim1.Instance->ARR / 2; // start with half width pulse
}
/* Set DMA to normal mode, set memory to beginning of data and length to 40 elements */
/* 800kHz PWM x 40 samples = ~50us pulse low */
hdma_tim1_ch1.Instance->CCR &= (~DMA_CCR_CIRC); // clear circular flag -> normal mode
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t) tmp_led_data,
(uint32_t) &htim1.Instance->CCR1, 40);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
}
void WS2812::DMAHalfComplete(DMA_HandleTypeDef *hdma) {
led_update_sequence(0);
}
void WS2812::DMAComplete(DMA_HandleTypeDef *hdma) {
led_update_sequence(1);
}
void WS2812::led_update_sequence(uint8_t tc) {
tc = !!tc; /* Convert to 1 or 0 value only */
/* Check for reset pulse at the end of PWM stream */
if (is_reset_pulse == 2) { /* Check for reset pulse at the end */
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
HAL_DMA_Abort(&hdma_tim1_ch1);
is_updating = 0; /* We are not updating anymore */
return;
}
/* Check for reset pulse on beginning of PWM stream */
if (is_reset_pulse == 1) { /* Check if we finished with reset pulse */
/*
* When reset pulse is active, we have to wait full DMA response,
* before we can start modifying array which is shared with DMA and PWM
*/
if (!tc) { /* We must wait for transfer complete */
return; /* Return and wait to finish */
}
/* Disable timer output and disable DMA stream */
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
HAL_DMA_Abort(&hdma_tim1_ch1);
is_reset_pulse = 0; /* Not in reset pulse anymore */
current_led = 0; /* Reset current led */
} else {
/*
* When we are not in reset mode,
* go to next led and process data for it
*/
current_led++; /* Go to next LED */
}
/*
* This part is used to prepare data for "next" led,
* for which update will start once current transfer stops in circular mode
*/
if (current_led < WS2812_LED_COUNT) {
/*
* If we are preparing data for first time (current_led == 0)
* or if there was no TC event (it was HT):
*
* - Prepare first part of array, because either there is no transfer
* or second part (from HT to TC) is now in process for PWM transfer
*
* In other case (TC = 1)
*/
if (current_led == 0 || !tc) {
led_fill_led_pwm_data(current_led, &tmp_led_data[0]);
} else {
led_fill_led_pwm_data(current_led,
&tmp_led_data[WS2812_RAW_BYTES_PER_LED]);
}
/*
* If we are preparing first led (current_led = 0), then:
*
* - We setup first part of array for first led,
* - We have to prepare second part for second led to have one led prepared in advance
* - Set DMA to circular mode and start the transfer + PWM output
*/
if (current_led == 0) {
current_led++; /* Go to next LED */
led_fill_led_pwm_data(current_led,
&tmp_led_data[WS2812_RAW_BYTES_PER_LED]); /* Prepare second LED too */
hdma_tim1_ch1.Instance->CCR |= (DMA_CCR_CIRC); // set circular flag for circular mode
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t) tmp_led_data,
(uint32_t) &htim1.Instance->CCR1,
2 * WS2812_RAW_BYTES_PER_LED);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
}
/*
* When we reached all leds, we have to wait to transmit data for all leds before we can disable DMA and PWM:
*
* - If TC event is enabled and we have EVEN number of LEDS (2, 4, 6, ...)
* - If HT event is enabled and we have ODD number of LEDS (1, 3, 5, ...)
*/
} else if ((!tc && (WS2812_LED_COUNT & 0x01))
|| (tc && !(WS2812_LED_COUNT & 0x01))) {
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
HAL_DMA_Abort(&hdma_tim1_ch1);
/* It is time to send final reset pulse, 50us at least */
led_start_reset_pulse(2); /* Start reset pulse at the end */
}
}
void WS2812::led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr) {
size_t i;
uint16_t OnOffValues[] = { 2* htim1.Instance->ARR / 3,
(4 * htim1.Instance->ARR) / 3 };
if (ledx < WS2812_LED_COUNT) {
for (i = 0; i < 8; i++) {
//Also unmux RGB -> GRB in the index order here
ptr[i] =
(leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 1]
& (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
ptr[8 + i] =
(leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 0]
& (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
ptr[16 + i] =
(leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 2]
& (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
}
} else {
//Fill with zero?
}
}

View File

@@ -0,0 +1,41 @@
/*
* WS2812.h
*
* Created on: 2 May 2021
* Author: Ralim
*/
#include "Setup.h"
#include <stddef.h>
#include <stdint.h>
#ifndef CORE_DRIVERS_WS2812_H_
#define CORE_DRIVERS_WS2812_H_
#ifndef WS2812_LED_COUNT
#define WS2812_LED_COUNT 4
#endif
#ifndef WS2812_LED_CHANNEL_COUNT
#define WS2812_LED_CHANNEL_COUNT 3
#endif
#define WS2812_RAW_BYTES_PER_LED (WS2812_LED_CHANNEL_COUNT * 8)
class WS2812 {
public:
static void init(void);
static uint8_t led_update(uint8_t block);
static void led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b);
static void led_set_color_all(uint8_t r, uint8_t g, uint8_t b);
private:
static uint8_t led_is_update_finished(void);
static void led_start_reset_pulse(uint8_t num);
static void DMAHalfComplete(DMA_HandleTypeDef *hdma);
static void DMAComplete(DMA_HandleTypeDef *hdma);
static void led_update_sequence(uint8_t tc);
static void led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr);
static uint8_t leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
static volatile uint16_t tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
static volatile uint8_t is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
static volatile uint8_t is_updating; /*!< Is updating in progress? */
static volatile uint32_t current_led; /*!< Current LED number we are sending */
};
#endif /* CORE_DRIVERS_WS2812_H_ */

View File

@@ -127,7 +127,7 @@ CPUFLAGS= -mcpu=cortex-m3 \
-mthumb \
-mfloat-abi=soft
flash_size=128k
bootldr_size=0x0000
bootldr_size=0x8000
endif
ifeq ($(model),$(ALL_PINE_MODELS))
$(info Building for Pine64 )