1
0
forked from me/IronOS
* Refactor I2C_SOFT to new #define

* Stitch in some of TS101

Update ShowStartupWarnings.cpp

Update OLED.hpp

Update stm32f1xx_hal_msp.c

Update Setup.cpp

Update Power.cpp

Update Pins.h

Update configuration.h

Power Muxing

Working dual input Voltage handler

Scan mode required for differing injected channels

Inject both dc readings

Update configuration.h

Update configuration.h

Use htim4 for adc control on TS101

Refactor htim names

Add ADC_TRIGGER

Speed up BB I2C a lil

Update configuration.h

Update startup_stm32f103t8ux.S

Update configuration.h

Add LIS2DH clone

LIS2DH gains another clone

Create tooling to allow mapping accelerometers onto different buses

Update startup_stm32f103t8ux.S

Ensure PD IRQ is pulled up

* Stitch in some of TS101

Update ShowStartupWarnings.cpp

Update OLED.hpp

Update stm32f1xx_hal_msp.c

Update Setup.cpp

Update Power.cpp

Update Pins.h

Update configuration.h

Power Muxing

Working dual input Voltage handler

Scan mode required for differing injected channels

Inject both dc readings

Update configuration.h

Update configuration.h

Use htim4 for adc control on TS101

Refactor htim names

Add ADC_TRIGGER

Speed up BB I2C a lil

Update configuration.h

Update startup_stm32f103t8ux.S

Update configuration.h

Add LIS2DH clone

LIS2DH gains another clone

Create tooling to allow mapping accelerometers onto different buses

Update startup_stm32f103t8ux.S

Ensure PD IRQ is pulled up

Allow toggle which button enters PD debug

* Update Pins.h

* Fix hard coded IRQ Pin

Update stm32f1xx_it.c

* Enable EPR

* Tip resistance measurement

* TS101 is a direct drive tip

Update BSP.cpp

* Add S60 and TS101 to builds

Update push.yml

* Update MOVThread.cpp

* Refactor power menu handler

* Correct prescaler

Forgot to update since I changed the period

* Tune in the timer divider for tip control to make PWM less audible

---------

Co-authored-by: discip <53649486+discip@users.noreply.github.com>
This commit is contained in:
Ben V. Brown
2023-06-18 21:58:20 +10:00
committed by GitHub
parent a1b9e40f67
commit d3d8e3d2d5
38 changed files with 1130 additions and 332 deletions

View File

@@ -5,6 +5,7 @@
#include "Pins.h"
#include "Setup.h"
#include "TipThermoModel.h"
#include "USBPD.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
@@ -17,7 +18,7 @@ const uint16_t powerPWM = 255;
static const uint8_t holdoffTicks = 14; // delay of 8 ms
static const uint8_t tempMeasureTicks = 14;
uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
uint16_t totalPWM; // htimADC.Init.Period, the full PWM cycle
static bool fastPWM;
static bool infastPWM;
@@ -99,20 +100,20 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
static void switchToFastPWM(void) {
// 10Hz
infastPWM = true;
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
htim2.Instance->ARR = totalPWM;
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
htim2.Instance->PSC = 2690;
infastPWM = true;
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
htimADC.Instance->ARR = totalPWM;
htimADC.Instance->CCR1 = powerPWM + holdoffTicks;
htimADC.Instance->PSC = 2690;
}
static void switchToSlowPWM(void) {
// 5Hz
infastPWM = false;
totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2;
htim2.Instance->ARR = totalPWM;
htim2.Instance->CCR1 = powerPWM + holdoffTicks / 2;
htim2.Instance->PSC = 2690 * 2;
infastPWM = false;
totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2;
htimADC.Instance->ARR = totalPWM;
htimADC.Instance->CCR1 = powerPWM + holdoffTicks / 2;
htimADC.Instance->PSC = 2690 * 2;
}
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
@@ -126,20 +127,30 @@ void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == TIM2) {
if (htim->Instance == ADC_CONTROL_TIMER) {
// we want to turn on the output again
PWMSafetyTimer--;
// We decrement this safety value so that lockups in the
// scheduler will not cause the PWM to become locked in an
// active driving state.
// While we could assume this could never happen, its a small price for
// increased safety
htim2.Instance->CCR4 = pendingPWM;
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
// We decrement this safety value so that lockups in the
// scheduler will not cause the PWM to become locked in an
// active driving state.
// While we could assume this could never happen, its a small price for
// increased safety
#ifdef TIP_HAS_DIRECT_PWM
htimADC.Instance->CCR4 = powerPWM;
if (pendingPWM && PWMSafetyTimer) {
htimTip.Instance->CCR1 = pendingPWM;
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
} else {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
}
#else
htimADC.Instance->CCR4 = pendingPWM;
if (htimADC.Instance->CCR4 && PWMSafetyTimer) {
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
} else {
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
}
#endif
if (fastPWM != infastPWM) {
if (fastPWM) {
switchToFastPWM();
@@ -157,10 +168,11 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
// This was a when the PWM for the output has timed out
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
}
}
void unstick_I2C() {
#ifndef I2C_SOFT_BUS_1
GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100;
int timeout_cnt = 0;
@@ -227,6 +239,7 @@ void unstick_I2C() {
// Call initialization function.
HAL_I2C_Init(&hi2c1);
#endif
}
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
@@ -238,25 +251,148 @@ void reboot() { NVIC_SystemReset(); }
void delay_ms(uint16_t count) { HAL_Delay(count); }
bool isTipDisconnected() {
uint8_t lastTipResistance = 0; // default to unknown
const uint8_t numTipResistanceReadings = 3;
uint32_t tipResistanceReadings[3] = {0, 0, 0};
uint8_t tipResistanceReadingSlot = 0;
bool isTipDisconnected() {
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
uint32_t tipTemp = TipThermoModel::getTipInC();
return tipTemp > tipDisconnectedThres;
}
void setStatusLED(const enum StatusLED state) {}
void setBuzzer(bool on) {}
uint8_t preStartChecks() { return 1; }
void setStatusLED(const enum StatusLED state) {}
void setBuzzer(bool on) {}
#ifdef TIP_RESISTANCE_SENSE_Pin
// We want to calculate lastTipResistance
// If tip is connected, and the tip is cold and the tip is not being heated
// We can use the GPIO to inject a small current into the tip and measure this
// The gpio is 100k -> diode -> tip -> gnd
// Source is 3.3V-0.5V
// Which is around 0.028mA this will induce:
// 6 ohm tip -> 3.24mV (Real world ~= 3320)
// 8 ohm tip -> 4.32mV (Real world ~= 4500)
// Which is definitely measureable
// Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips
// These are reported as 60 and 75 respectively
void performTipResistanceSampleReading() {
// 0 = read then turn on pullup, 1 = read then turn off pullup, 2 = read again
tipResistanceReadings[tipResistanceReadingSlot] = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(1));
HAL_GPIO_WritePin(TIP_RESISTANCE_SENSE_GPIO_Port, TIP_RESISTANCE_SENSE_Pin, (tipResistanceReadingSlot == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
tipResistanceReadingSlot++;
}
void FinishMeasureTipResistance() {
// Otherwise we now have the 4 samples;
// _^_ order, 2 delta's, combine these
int32_t calculatedSkew = tipResistanceReadings[0] - tipResistanceReadings[2]; // If positive tip is cooling
calculatedSkew /= 2; // divide by two to get offset per time constant
int32_t reading = (((tipResistanceReadings[1] - tipResistanceReadings[0]) + calculatedSkew) // jump 1 - skew
+ // +
((tipResistanceReadings[1] - tipResistanceReadings[2]) + calculatedSkew) // jump 2 - skew
) //
/ 2; // Take average
// // As we are only detecting two resistances; we can split the difference for now
uint8_t newRes = 0;
if (reading > 1200) {
// return; // Change nothing as probably disconnected tip
tipResistanceReadingSlot = lastTipResistance = 0;
return;
} else if (reading < 800) {
newRes = 62;
} else {
newRes = 80;
}
lastTipResistance = newRes;
}
volatile bool tipMeasurementOccuring = true;
volatile TickType_t nextTipMeasurement = 100;
void performTipMeasurementStep() {
// Wait 200ms for settle time
if (xTaskGetTickCount() < (nextTipMeasurement)) {
return;
}
nextTipMeasurement = xTaskGetTickCount() + (TICKS_100MS * 5);
if (tipResistanceReadingSlot < numTipResistanceReadings) {
performTipResistanceSampleReading();
return;
}
// We are sensing the resistance
FinishMeasureTipResistance();
tipMeasurementOccuring = false;
}
#endif
uint8_t preStartChecks() {
#ifdef TIP_RESISTANCE_SENSE_Pin
performTipMeasurementStep();
if (preStartChecksDone() != 1) {
return 0;
}
#endif
#ifdef HAS_SPLIT_POWER_PATH
// We want to enable the power path that has the highest voltage
// Nominally one will be ~=0 and one will be high. Unless you jamb both in, then both _may_ be high, or device may be dead
{
uint16_t dc = getRawDCVin();
uint16_t pd = getRawPDVin();
if (dc > pd) {
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_RESET);
} else {
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_RESET);
}
}
#endif
#ifdef POW_PD
// If we are in the middle of negotiating PD, wait until timeout
// Before turning on the heater
if (!USBPowerDelivery::negotiationComplete()) {
return 0;
}
#endif
return 1;
}
uint64_t getDeviceID() {
//
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
}
uint8_t getTipResistanceX10() { return TIP_RESISTANCE; }
uint8_t preStartChecksDone() {
#ifdef TIP_RESISTANCE_SENSE_Pin
return (lastTipResistance == 0 || tipResistanceReadingSlot < numTipResistanceReadings || tipMeasurementOccuring) ? 0 : 1;
#else
return 1;
#endif
}
uint8_t preStartChecksDone() { return 1; }
uint8_t getTipResistanceX10() {
// Return tip resistance in x10 ohms
// We can measure this using the op-amp
return lastTipResistance;
}
uint8_t getTipThermalMass() { return TIP_THERMAL_MASS; }
uint8_t getTipInertia() { return TIP_THERMAL_MASS; }
uint8_t getTipThermalMass() {
if (lastTipResistance >= 80) {
return TIP_THERMAL_MASS;
}
return 45;
}
uint8_t getTipInertia() {
if (lastTipResistance >= 80) {
return TIP_THERMAL_MASS;
}
return 10;
}