1
0
forked from me/IronOS

tune ts100

This commit is contained in:
Ben V. Brown
2019-12-23 13:25:11 +11:00
parent 329f6fdbe7
commit c408fc0a7e
3 changed files with 162 additions and 37 deletions

View File

@@ -136,7 +136,7 @@ static void MX_ADC1_Init(void) {
*/
sConfig.Channel = TMP36_ADC1_CHANNEL;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Regular Channel
@@ -197,11 +197,10 @@ static void MX_ADC2_Init(void) {
*/
sConfig.Channel = TIP_TEMP_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = VIN_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
/**Configure Injected Channel

View File

@@ -54,7 +54,7 @@ uint32_t TipThermoModel::convertTipRawADCTouV(uint16_t rawADC) {
valueuV -= systemSettings.CalibrationOffset;
else
valueuV = 0;
//TODO
return valueuV;
}
@@ -183,7 +183,124 @@ struct HakkoThermocoupleLookup {
uint32_t values[52][2];
};
constexpr auto ThermalTable = HakkoThermocoupleLookup();
struct MiniwareThermocoupleLookup {
// 0 is the uV reading
// 1 is the deg C X10
// This was created from numbers transcribed from the patent by <Kuba Sztandera>
constexpr MiniwareThermocoupleLookup() :
values() {
values[0][0] = 0;
values[0][1] = 0;
values[1][0] = 0;
values[1][1] = 0;
values[2][0] = 0;
values[2][1] = 100;
values[3][0] = 192;
values[3][1] = 200;
values[4][0] = 490;
values[4][1] = 300;
values[5][0] = 791;
values[5][1] = 400;
values[6][0] = 373;
values[6][1] = 500;
values[7][0] = 612;
values[7][1] = 600;
values[8][0] = 874;
values[8][1] = 700;
values[9][0] = 1590;
values[9][1] = 800;
values[10][0] = 1882;
values[10][1] = 900;
values[11][0] = 2081;
values[11][1] = 1000;
values[12][0] = 2466;
values[12][1] = 1100;
values[13][0] = 2977;
values[13][1] = 1200;
values[14][0] = 3196;
values[14][1] = 1300;
values[15][0] = 3311;
values[15][1] = 1400;
values[16][0] = 3707;
values[16][1] = 1500;
values[17][0] = 3889;
values[17][1] = 1600;
values[18][0] = 4072;
values[18][1] = 1700;
values[19][0] = 4271;
values[19][1] = 1800;
values[20][0] = 4550;
values[20][1] = 1900;
values[21][0] = 4753;
values[21][1] = 2000;
values[22][0] = 4975;
values[22][1] = 2100;
values[23][0] = 5112;
values[23][1] = 2200;
values[24][0] = 5605;
values[24][1] = 2300;
values[25][0] = 5734;
values[25][1] = 2400;
values[26][0] = 5855;
values[26][1] = 2500;
values[27][0] = 5959;
values[27][1] = 2600;
values[28][0] = 6130;
values[28][1] = 2700;
values[29][0] = 6352;
values[29][1] = 2800;
values[30][0] = 6481;
values[30][1] = 2900;
values[31][0] = 6700;
values[31][1] = 3000;
values[32][0] = 6882;
values[32][1] = 3100;
values[33][0] = 7247;
values[33][1] = 3200;
values[34][0] = 7466;
values[34][1] = 3300;
values[35][0] = 7633;
values[35][1] = 3400;
values[36][0] = 7749;
values[36][1] = 3500;
values[37][0] = 8391;
values[37][1] = 3600;
values[38][0] = 8600;
values[38][1] = 3700;
values[39][0] = 8804;
values[39][1] = 3800;
values[40][0] = 8999;
values[40][1] = 3900;
values[41][0] = 9183;
values[41][1] = 4000;
values[42][0] = 9362;
values[42][1] = 4100;
values[43][0] = 9548;
values[43][1] = 4200;
values[44][0] = 9727;
values[44][1] = 4300;
values[45][0] = 9911;
values[45][1] = 4400;
values[46][0] = 10086;
values[46][1] = 4500;
values[47][0] = 10247;
values[47][1] = 4600;
values[48][0] = 10403;
values[48][1] = 4700;
values[49][0] = 10566;
values[49][1] = 4800;
values[50][0] = 10744;
values[50][1] = 4900;
values[51][0] = 10935;
values[51][1] = 5000;
}
uint32_t count = 52;
uint32_t values[52][2];
};
//constexpr auto ThermalTable = MiniwareThermocoupleLookup();
//Extrapolate between two points
// [x1, y1] = point 1
// [x2, y2] = point 2
@@ -195,43 +312,52 @@ int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2,
}
uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) {
//based on new measurements, tip is quite linear at 24.9uV per deg C = 2.49 per 0.1C
//
tipuVDelta *= 405;
tipuVDelta /= 10000;
return tipuVDelta;
//Perform lookup on table of values to find the closest two measurement points, and then linearly interpolate these
//This assumes results in the table are increasing order
// TODO -> Should this be made into a binary search? Is it much faster??
for (uint32_t i = 1; i < ThermalTable.count; i++) {
if (((uint32_t) ThermalTable.values[i][0]) > tipuVDelta) {
//Then extrapolate
//Where i= the lower raw sample, i-1 is the higher raw sample
return LinearInterpolate( //
ThermalTable.values[i][0], // x1
ThermalTable.values[i][1], // y1
ThermalTable.values[i - 1][0], // x2
ThermalTable.values[i - 1][1], // y2
tipuVDelta) / 10; // raw sample to be interpolated
}
}
return 500; // fail high -> will turn off heater
// for (uint32_t i = 1; i < ThermalTable.count; i++) {
// if (((uint32_t) ThermalTable.values[i][0]) > tipuVDelta) {
// //Then extrapolate
// //Where i= the lower raw sample, i-1 is the higher raw sample
// return LinearInterpolate( //
// ThermalTable.values[i][0], // x1
// ThermalTable.values[i][1], // y1
// ThermalTable.values[i - 1][0], // x2
// ThermalTable.values[i - 1][1], // y2
// tipuVDelta) / 10; // raw sample to be interpolated
//
// }
// }
// return 500; // fail high -> will turn off heater
}
uint32_t TipThermoModel::convertuVToDegF(uint32_t tipuVDelta) {
tipuVDelta *= 405;
tipuVDelta /= 1000;
return ((tipuVDelta * 9) / 50) + 32;
//(Y °C × 9/5) + 32 =Y°F
for (uint32_t i = 1; i < ThermalTable.count; i++) {
if (((uint32_t) ThermalTable.values[i][0]) < tipuVDelta) {
//Then extrapolate
//Where i= the lower raw sample, i-1 is the higher raw sample
return ((LinearInterpolate( //
ThermalTable.values[i][0], // x1
ThermalTable.values[i][1], // y1
ThermalTable.values[i - 1][0], // x2
ThermalTable.values[i - 1][1], // y2
tipuVDelta) // raw sample to be interpolated
* 9) / 50) + 32; // Convert C ->> F for 'mericans
}
}
return 932; // fail high -> will turn off heater
// for (uint32_t i = 1; i < ThermalTable.count; i++) {
// if (((uint32_t) ThermalTable.values[i][0]) < tipuVDelta) {
// //Then extrapolate
// //Where i= the lower raw sample, i-1 is the higher raw sample
// return ((LinearInterpolate( //
// ThermalTable.values[i][0], // x1
// ThermalTable.values[i][1], // y1
// ThermalTable.values[i - 1][0], // x2
// ThermalTable.values[i - 1][1], // y2
// tipuVDelta) // raw sample to be interpolated
// * 9) / 50) + 32; // Convert C ->> F for 'mericans
//
// }
// }
// return 932; // fail high -> will turn off heater
}
uint32_t TipThermoModel::convertCtoF(uint32_t degC) {

View File

@@ -276,9 +276,9 @@ void startMOVTask(void const *argument __unused) {
osDelay(100); // Slow down update rate
#ifdef MODEL_TS80
if (currentlyActiveTemperatureTarget) {
seekQC(idealQCVoltage, systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
}
// if (currentlyActiveTemperatureTarget) {
// seekQC(idealQCVoltage, systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
// }
#endif
}
}