From ab4e5e70ca0b3df136263e04c3823d7205bb762a Mon Sep 17 00:00:00 2001 From: "Ben V. Brown" Date: Fri, 21 May 2021 20:49:58 +1000 Subject: [PATCH] =?UTF-8?q?=F0=9F=A4=B7=E2=80=8D=E2=99=82=EF=B8=8F?= =?UTF-8?q?=F0=9F=A4=B7=E2=80=8D=E2=99=82=EF=B8=8F?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../Inc/stm32f1xx_hal_tim.h | 2280 ++++++---- .../Inc/stm32f1xx_hal_tim_ex.h | 178 +- .../Src/stm32f1xx_hal_tim.c | 3850 ++++++++++++----- .../Src/stm32f1xx_hal_tim_ex.c | 1199 +++-- 4 files changed, 5053 insertions(+), 2454 deletions(-) diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h index e102d42c..f0780c9a 100644 --- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h +++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h @@ -6,36 +6,20 @@ ****************************************************************************** * @attention * - *

© COPYRIGHT(c) 2016 STMicroelectronics

+ *

© Copyright (c) 2016 STMicroelectronics. + * All rights reserved.

* - * Redistribution and use in source and binary forms, with or without modification, - * are permitted provided that the following conditions are met: - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright notice, - * this list of conditions and the following disclaimer in the documentation - * and/or other materials provided with the distribution. - * 3. Neither the name of STMicroelectronics nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, - * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ -#ifndef __STM32F1xx_HAL_TIM_H -#define __STM32F1xx_HAL_TIM_H +#ifndef STM32F1xx_HAL_TIM_H +#define STM32F1xx_HAL_TIM_H #ifdef __cplusplus extern "C" { @@ -43,7 +27,9 @@ extern "C" { /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal_def.h" - +#ifndef USE_HAL_TIM_REGISTER_CALLBACKS +#define USE_HAL_TIM_REGISTER_CALLBACKS 0 +#endif /** @addtogroup STM32F1xx_HAL_Driver * @{ */ @@ -56,6 +42,7 @@ extern "C" { /** @defgroup TIM_Exported_Types TIM Exported Types * @{ */ + /** * @brief TIM Time base Configuration Structure definition */ @@ -79,11 +66,11 @@ typedef struct { This means in PWM mode that (N+1) corresponds to: - the number of PWM periods in edge-aligned mode - the number of half PWM period in center-aligned mode - This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF. - @note This parameter is valid only for TIM1 and TIM8. */ + GP timers: this parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF. + Advanced timers: this parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */ uint32_t AutoReloadPreload; /*!< Specifies the auto-reload preload. - This parameter can be a value of @ref TIM_AutoReloadPreload */ + This parameter can be a value of @ref TIM_AutoReloadPreload */ } TIM_Base_InitTypeDef; /** @@ -101,19 +88,19 @@ typedef struct { uint32_t OCNPolarity; /*!< Specifies the complementary output polarity. This parameter can be a value of @ref TIM_Output_Compare_N_Polarity - @note This parameter is valid only for TIM1 and TIM8. */ + @note This parameter is valid only for timer instances supporting break feature. */ uint32_t OCFastMode; /*!< Specifies the Fast mode state. - This parameter can be a value of @ref TIM_Output_Fast_State - @note This parameter is valid only in PWM1 and PWM2 mode. */ + This parameter can be a value of @ref TIM_Output_Fast_State + @note This parameter is valid only in PWM1 and PWM2 mode. */ uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. This parameter can be a value of @ref TIM_Output_Compare_Idle_State - @note This parameter is valid only for TIM1 and TIM8. */ + @note This parameter is valid only for timer instances supporting break feature. */ uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State - @note This parameter is valid only for TIM1 and TIM8. */ + @note This parameter is valid only for timer instances supporting break feature. */ } TIM_OC_InitTypeDef; /** @@ -131,15 +118,15 @@ typedef struct { uint32_t OCNPolarity; /*!< Specifies the complementary output polarity. This parameter can be a value of @ref TIM_Output_Compare_N_Polarity - @note This parameter is valid only for TIM1 and TIM8. */ + @note This parameter is valid only for timer instances supporting break feature. */ uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. This parameter can be a value of @ref TIM_Output_Compare_Idle_State - @note This parameter is valid only for TIM1 and TIM8. */ + @note This parameter is valid only for timer instances supporting break feature. */ uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State - @note This parameter is valid only for TIM1 and TIM8. */ + @note This parameter is valid only for timer instances supporting break feature. */ uint32_t ICPolarity; /*!< Specifies the active edge of the input signal. This parameter can be a value of @ref TIM_Input_Capture_Polarity */ @@ -176,7 +163,7 @@ typedef struct { This parameter can be a value of @ref TIM_Encoder_Mode */ uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal. - This parameter can be a value of @ref TIM_Input_Capture_Polarity */ + This parameter can be a value of @ref TIM_Encoder_Input_Polarity */ uint32_t IC1Selection; /*!< Specifies the input. This parameter can be a value of @ref TIM_Input_Capture_Selection */ @@ -188,7 +175,7 @@ typedef struct { This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ uint32_t IC2Polarity; /*!< Specifies the active edge of the input signal. - This parameter can be a value of @ref TIM_Input_Capture_Polarity */ + This parameter can be a value of @ref TIM_Encoder_Input_Polarity */ uint32_t IC2Selection; /*!< Specifies the input. This parameter can be a value of @ref TIM_Input_Capture_Selection */ @@ -201,7 +188,7 @@ typedef struct { } TIM_Encoder_InitTypeDef; /** - * @brief TIM Clock Configuration Handle Structure definition + * @brief Clock Configuration Handle Structure definition */ typedef struct { uint32_t ClockSource; /*!< TIM clock sources @@ -225,28 +212,67 @@ typedef struct { uint32_t ClearInputPolarity; /*!< TIM Clear Input polarity This parameter can be a value of @ref TIM_ClearInput_Polarity */ uint32_t ClearInputPrescaler; /*!< TIM Clear Input prescaler - This parameter can be a value of @ref TIM_ClearInput_Prescaler */ + This parameter must be 0: When OCRef clear feature is used with ETR source, ETR prescaler must be off */ uint32_t ClearInputFilter; /*!< TIM Clear Input filter This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ } TIM_ClearInputConfigTypeDef; +/** + * @brief TIM Master configuration Structure definition + */ +typedef struct { + uint32_t MasterOutputTrigger; /*!< Trigger output (TRGO) selection + This parameter can be a value of @ref TIM_Master_Mode_Selection */ + uint32_t MasterSlaveMode; /*!< Master/slave mode selection + This parameter can be a value of @ref TIM_Master_Slave_Mode + @note When the Master/slave mode is enabled, the effect of + an event on the trigger input (TRGI) is delayed to allow a + perfect synchronization between the current timer and its + slaves (through TRGO). It is not mandatory in case of timer + synchronization mode. */ +} TIM_MasterConfigTypeDef; + /** * @brief TIM Slave configuration Structure definition */ typedef struct { uint32_t SlaveMode; /*!< Slave mode selection - This parameter can be a value of @ref TIM_Slave_Mode */ + This parameter can be a value of @ref TIM_Slave_Mode */ uint32_t InputTrigger; /*!< Input Trigger source - This parameter can be a value of @ref TIM_Trigger_Selection */ + This parameter can be a value of @ref TIM_Trigger_Selection */ uint32_t TriggerPolarity; /*!< Input Trigger polarity - This parameter can be a value of @ref TIM_Trigger_Polarity */ + This parameter can be a value of @ref TIM_Trigger_Polarity */ uint32_t TriggerPrescaler; /*!< Input trigger prescaler - This parameter can be a value of @ref TIM_Trigger_Prescaler */ + This parameter can be a value of @ref TIM_Trigger_Prescaler */ uint32_t TriggerFilter; /*!< Input trigger filter - This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ } TIM_SlaveConfigTypeDef; +/** + * @brief TIM Break input(s) and Dead time configuration Structure definition + * @note 2 break inputs can be configured (BKIN and BKIN2) with configurable + * filter and polarity. + */ +typedef struct { + uint32_t OffStateRunMode; /*!< TIM off state in run mode + This parameter can be a value of @ref TIM_OSSR_Off_State_Selection_for_Run_mode_state */ + uint32_t OffStateIDLEMode; /*!< TIM off state in IDLE mode + This parameter can be a value of @ref TIM_OSSI_Off_State_Selection_for_Idle_mode_state */ + uint32_t LockLevel; /*!< TIM Lock level + This parameter can be a value of @ref TIM_Lock_level */ + uint32_t DeadTime; /*!< TIM dead Time + This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF */ + uint32_t BreakState; /*!< TIM Break State + This parameter can be a value of @ref TIM_Break_Input_enable_disable */ + uint32_t BreakPolarity; /*!< TIM Break input polarity + This parameter can be a value of @ref TIM_Break_Polarity */ + uint32_t BreakFilter; /*!< Specifies the break input filter. + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + uint32_t AutomaticOutput; /*!< TIM Automatic Output Enable state + This parameter can be a value of @ref TIM_AOE_Bit_Set_Reset */ +} TIM_BreakDeadTimeConfigTypeDef; + /** * @brief HAL State structures definition */ @@ -258,6 +284,24 @@ typedef enum { HAL_TIM_STATE_ERROR = 0x04U /*!< Reception process is ongoing */ } HAL_TIM_StateTypeDef; +/** + * @brief TIM Channel States definition + */ +typedef enum { + HAL_TIM_CHANNEL_STATE_RESET = 0x00U, /*!< TIM Channel initial state */ + HAL_TIM_CHANNEL_STATE_READY = 0x01U, /*!< TIM Channel ready for use */ + HAL_TIM_CHANNEL_STATE_BUSY = 0x02U, /*!< An internal process is ongoing on the TIM channel */ +} HAL_TIM_ChannelStateTypeDef; + +/** + * @brief DMA Burst States definition + */ +typedef enum { + HAL_DMA_BURST_STATE_RESET = 0x00U, /*!< DMA Burst initial state */ + HAL_DMA_BURST_STATE_READY = 0x01U, /*!< DMA Burst ready for use */ + HAL_DMA_BURST_STATE_BUSY = 0x02U, /*!< Ongoing DMA Burst */ +} HAL_TIM_DMABurstStateTypeDef; + /** * @brief HAL Active channel structures definition */ @@ -272,507 +316,137 @@ typedef enum { /** * @brief TIM Time Base Handle Structure definition */ -typedef struct { - TIM_TypeDef * Instance; /*!< Register base address */ - TIM_Base_InitTypeDef Init; /*!< TIM Time Base required parameters */ - HAL_TIM_ActiveChannel Channel; /*!< Active channel */ - DMA_HandleTypeDef * hdma[7U]; /*!< DMA Handlers array - This array is accessed by a @ref TIM_DMA_Handle_index */ - HAL_LockTypeDef Lock; /*!< Locking object */ - __IO HAL_TIM_StateTypeDef State; /*!< TIM operation state */ +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +typedef struct __TIM_HandleTypeDef +#else +typedef struct +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +{ + TIM_TypeDef * Instance; /*!< Register base address */ + TIM_Base_InitTypeDef Init; /*!< TIM Time Base required parameters */ + HAL_TIM_ActiveChannel Channel; /*!< Active channel */ + DMA_HandleTypeDef * hdma[7]; /*!< DMA Handlers array + This array is accessed by a @ref DMA_Handle_index */ + HAL_LockTypeDef Lock; /*!< Locking object */ + __IO HAL_TIM_StateTypeDef State; /*!< TIM operation state */ + __IO HAL_TIM_ChannelStateTypeDef ChannelState[4]; /*!< TIM channel operation state */ + __IO HAL_TIM_ChannelStateTypeDef ChannelNState[4]; /*!< TIM complementary channel operation state */ + __IO HAL_TIM_DMABurstStateTypeDef DMABurstState; /*!< DMA burst operation state */ + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + void (*Base_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp Init Callback */ + void (*Base_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp DeInit Callback */ + void (*IC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp Init Callback */ + void (*IC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp DeInit Callback */ + void (*OC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp Init Callback */ + void (*OC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp DeInit Callback */ + void (*PWM_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp Init Callback */ + void (*PWM_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp DeInit Callback */ + void (*OnePulse_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp Init Callback */ + void (*OnePulse_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp DeInit Callback */ + void (*Encoder_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp Init Callback */ + void (*Encoder_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp DeInit Callback */ + void (*HallSensor_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp Init Callback */ + void (*HallSensor_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp DeInit Callback */ + void (*PeriodElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed Callback */ + void (*PeriodElapsedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed half complete Callback */ + void (*TriggerCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger Callback */ + void (*TriggerHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger half complete Callback */ + void (*IC_CaptureCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture Callback */ + void (*IC_CaptureHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture half complete Callback */ + void (*OC_DelayElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Output Compare Delay Elapsed Callback */ + void (*PWM_PulseFinishedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished Callback */ + void (*PWM_PulseFinishedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished half complete Callback */ + void (*ErrorCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Error Callback */ + void (*CommutationCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation Callback */ + void (*CommutationHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation half complete Callback */ + void (*BreakCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Break Callback */ +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } TIM_HandleTypeDef; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief HAL TIM Callback ID enumeration definition + */ +typedef enum { + HAL_TIM_BASE_MSPINIT_CB_ID = 0x00U /*!< TIM Base MspInit Callback ID */ + , + HAL_TIM_BASE_MSPDEINIT_CB_ID = 0x01U /*!< TIM Base MspDeInit Callback ID */ + , + HAL_TIM_IC_MSPINIT_CB_ID = 0x02U /*!< TIM IC MspInit Callback ID */ + , + HAL_TIM_IC_MSPDEINIT_CB_ID = 0x03U /*!< TIM IC MspDeInit Callback ID */ + , + HAL_TIM_OC_MSPINIT_CB_ID = 0x04U /*!< TIM OC MspInit Callback ID */ + , + HAL_TIM_OC_MSPDEINIT_CB_ID = 0x05U /*!< TIM OC MspDeInit Callback ID */ + , + HAL_TIM_PWM_MSPINIT_CB_ID = 0x06U /*!< TIM PWM MspInit Callback ID */ + , + HAL_TIM_PWM_MSPDEINIT_CB_ID = 0x07U /*!< TIM PWM MspDeInit Callback ID */ + , + HAL_TIM_ONE_PULSE_MSPINIT_CB_ID = 0x08U /*!< TIM One Pulse MspInit Callback ID */ + , + HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID = 0x09U /*!< TIM One Pulse MspDeInit Callback ID */ + , + HAL_TIM_ENCODER_MSPINIT_CB_ID = 0x0AU /*!< TIM Encoder MspInit Callback ID */ + , + HAL_TIM_ENCODER_MSPDEINIT_CB_ID = 0x0BU /*!< TIM Encoder MspDeInit Callback ID */ + , + HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID = 0x0CU /*!< TIM Hall Sensor MspDeInit Callback ID */ + , + HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID = 0x0DU /*!< TIM Hall Sensor MspDeInit Callback ID */ + , + HAL_TIM_PERIOD_ELAPSED_CB_ID = 0x0EU /*!< TIM Period Elapsed Callback ID */ + , + HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID = 0x0FU /*!< TIM Period Elapsed half complete Callback ID */ + , + HAL_TIM_TRIGGER_CB_ID = 0x10U /*!< TIM Trigger Callback ID */ + , + HAL_TIM_TRIGGER_HALF_CB_ID = 0x11U /*!< TIM Trigger half complete Callback ID */ + + , + HAL_TIM_IC_CAPTURE_CB_ID = 0x12U /*!< TIM Input Capture Callback ID */ + , + HAL_TIM_IC_CAPTURE_HALF_CB_ID = 0x13U /*!< TIM Input Capture half complete Callback ID */ + , + HAL_TIM_OC_DELAY_ELAPSED_CB_ID = 0x14U /*!< TIM Output Compare Delay Elapsed Callback ID */ + , + HAL_TIM_PWM_PULSE_FINISHED_CB_ID = 0x15U /*!< TIM PWM Pulse Finished Callback ID */ + , + HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID = 0x16U /*!< TIM PWM Pulse Finished half complete Callback ID */ + , + HAL_TIM_ERROR_CB_ID = 0x17U /*!< TIM Error Callback ID */ + , + HAL_TIM_COMMUTATION_CB_ID = 0x18U /*!< TIM Commutation Callback ID */ + , + HAL_TIM_COMMUTATION_HALF_CB_ID = 0x19U /*!< TIM Commutation half complete Callback ID */ + , + HAL_TIM_BREAK_CB_ID = 0x1AU /*!< TIM Break Callback ID */ +} HAL_TIM_CallbackIDTypeDef; + +/** + * @brief HAL TIM Callback pointer definition + */ +typedef void (*pTIM_CallbackTypeDef)(TIM_HandleTypeDef *htim); /*!< pointer to the TIM callback function */ + +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + /** * @} */ +/* End of exported types -----------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /** @defgroup TIM_Exported_Constants TIM Exported Constants * @{ */ -/** @defgroup TIM_Input_Channel_Polarity TIM Input Channel Polarity +/** @defgroup TIM_ClearInput_Source TIM Clear Input Source * @{ */ -#define TIM_INPUTCHANNELPOLARITY_RISING 0x00000000U /*!< Polarity for TIx source */ -#define TIM_INPUTCHANNELPOLARITY_FALLING (TIM_CCER_CC1P) /*!< Polarity for TIx source */ -#define TIM_INPUTCHANNELPOLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< Polarity for TIx source */ -/** - * @} - */ - -/** @defgroup TIM_ETR_Polarity TIM ETR Polarity - * @{ - */ -#define TIM_ETRPOLARITY_INVERTED (TIM_SMCR_ETP) /*!< Polarity for ETR source */ -#define TIM_ETRPOLARITY_NONINVERTED 0x00000000U /*!< Polarity for ETR source */ -/** - * @} - */ - -/** @defgroup TIM_ETR_Prescaler TIM ETR Prescaler - * @{ - */ -#define TIM_ETRPRESCALER_DIV1 0x00000000U /*!< No prescaler is used */ -#define TIM_ETRPRESCALER_DIV2 (TIM_SMCR_ETPS_0) /*!< ETR input source is divided by 2 */ -#define TIM_ETRPRESCALER_DIV4 (TIM_SMCR_ETPS_1) /*!< ETR input source is divided by 4 */ -#define TIM_ETRPRESCALER_DIV8 (TIM_SMCR_ETPS) /*!< ETR input source is divided by 8 */ -/** - * @} - */ - -/** @defgroup TIM_Counter_Mode TIM Counter Mode - * @{ - */ -#define TIM_COUNTERMODE_UP 0x00000000U -#define TIM_COUNTERMODE_DOWN TIM_CR1_DIR -#define TIM_COUNTERMODE_CENTERALIGNED1 TIM_CR1_CMS_0 -#define TIM_COUNTERMODE_CENTERALIGNED2 TIM_CR1_CMS_1 -#define TIM_COUNTERMODE_CENTERALIGNED3 TIM_CR1_CMS -/** - * @} - */ - -/** @defgroup TIM_ClockDivision TIM ClockDivision - * @{ - */ -#define TIM_CLOCKDIVISION_DIV1 0x00000000U -#define TIM_CLOCKDIVISION_DIV2 (TIM_CR1_CKD_0) -#define TIM_CLOCKDIVISION_DIV4 (TIM_CR1_CKD_1) -/** - * @} - */ - -/** @defgroup TIM_AutoReloadPreload TIM Auto-Reload Preload - * @{ - */ -#define TIM_AUTORELOAD_PRELOAD_DISABLE 0x0000U /*!< TIMx_ARR register is not buffered */ -#define TIM_AUTORELOAD_PRELOAD_ENABLE (TIM_CR1_ARPE) /*!< TIMx_ARR register is buffered */ -/** - * @} - */ - -/** @defgroup TIM_Output_Compare_and_PWM_modes TIM Output Compare and PWM modes - * @{ - */ -#define TIM_OCMODE_TIMING 0x00000000U -#define TIM_OCMODE_ACTIVE (TIM_CCMR1_OC1M_0) -#define TIM_OCMODE_INACTIVE (TIM_CCMR1_OC1M_1) -#define TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1) -#define TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) -#define TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M) -#define TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) -#define TIM_OCMODE_FORCED_INACTIVE (TIM_CCMR1_OC1M_2) -/** - * @} - */ - -/** @defgroup TIM_Output_Compare_State TIM Output Compare State - * @{ - */ -#define TIM_OUTPUTSTATE_DISABLE 0x00000000U -#define TIM_OUTPUTSTATE_ENABLE (TIM_CCER_CC1E) -/** - * @} - */ - -/** @defgroup TIM_Output_Fast_State TIM Output Fast State - * @{ - */ -#define TIM_OCFAST_DISABLE 0x00000000U -#define TIM_OCFAST_ENABLE (TIM_CCMR1_OC1FE) -/** - * @} - */ - -/** @defgroup TIM_Output_Compare_N_State TIM Complementary Output Compare State - * @{ - */ -#define TIM_OUTPUTNSTATE_DISABLE 0x00000000U -#define TIM_OUTPUTNSTATE_ENABLE (TIM_CCER_CC1NE) -/** - * @} - */ - -/** @defgroup TIM_Output_Compare_Polarity TIM Output Compare Polarity - * @{ - */ -#define TIM_OCPOLARITY_HIGH 0x00000000U -#define TIM_OCPOLARITY_LOW (TIM_CCER_CC1P) -/** - * @} - */ - -/** @defgroup TIM_Output_Compare_N_Polarity TIM Complementary Output Compare Polarity - * @{ - */ -#define TIM_OCNPOLARITY_HIGH 0x00000000U -#define TIM_OCNPOLARITY_LOW (TIM_CCER_CC1NP) -/** - * @} - */ - -/** @defgroup TIM_Output_Compare_Idle_State TIM Output Compare Idle State - * @{ - */ -#define TIM_OCIDLESTATE_SET (TIM_CR2_OIS1) -#define TIM_OCIDLESTATE_RESET 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_Output_Compare_N_Idle_State TIM Complementary Output Compare Idle State - * @{ - */ -#define TIM_OCNIDLESTATE_SET (TIM_CR2_OIS1N) -#define TIM_OCNIDLESTATE_RESET 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_Channel TIM Channel - * @{ - */ -#define TIM_CHANNEL_1 0x00000000U -#define TIM_CHANNEL_2 0x00000004U -#define TIM_CHANNEL_3 0x00000008U -#define TIM_CHANNEL_4 0x0000000CU -#define TIM_CHANNEL_ALL 0x00000018U -/** - * @} - */ - -/** @defgroup TIM_Input_Capture_Polarity TIM Input Capture Polarity - * @{ - */ -#define TIM_ICPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Capture triggered by rising edge on timer input */ -#define TIM_ICPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Capture triggered by falling edge on timer input */ -#define TIM_ICPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Capture triggered by both rising and falling edges on timer input */ -/** - * @} - */ - -/** @defgroup TIM_Input_Capture_Selection TIM Input Capture Selection - * @{ - */ -#define TIM_ICSELECTION_DIRECTTI \ - (TIM_CCMR1_CC1S_0) /*!< TIM Input 1, 2, 3 or 4 is selected to be \ - connected to IC1, IC2, IC3 or IC4, respectively */ -#define TIM_ICSELECTION_INDIRECTTI \ - (TIM_CCMR1_CC1S_1) /*!< TIM Input 1, 2, 3 or 4 is selected to be \ - connected to IC2, IC1, IC4 or IC3, respectively */ -#define TIM_ICSELECTION_TRC (TIM_CCMR1_CC1S) /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC */ -/** - * @} - */ - -/** @defgroup TIM_Input_Capture_Prescaler TIM Input Capture Prescaler - * @{ - */ -#define TIM_ICPSC_DIV1 0x00000000U /*!< Capture performed each time an edge is detected on the capture input */ -#define TIM_ICPSC_DIV2 (TIM_CCMR1_IC1PSC_0) /*!< Capture performed once every 2 events */ -#define TIM_ICPSC_DIV4 (TIM_CCMR1_IC1PSC_1) /*!< Capture performed once every 4 events */ -#define TIM_ICPSC_DIV8 (TIM_CCMR1_IC1PSC) /*!< Capture performed once every 8 events */ -/** - * @} - */ - -/** @defgroup TIM_One_Pulse_Mode TIM One Pulse Mode - * @{ - */ -#define TIM_OPMODE_SINGLE (TIM_CR1_OPM) -#define TIM_OPMODE_REPETITIVE 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_Encoder_Mode TIM Encoder Mode - * @{ - */ -#define TIM_ENCODERMODE_TI1 (TIM_SMCR_SMS_0) -#define TIM_ENCODERMODE_TI2 (TIM_SMCR_SMS_1) -#define TIM_ENCODERMODE_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) -/** - * @} - */ - -/** @defgroup TIM_Interrupt_definition TIM Interrupt Definition - * @{ - */ -#define TIM_IT_UPDATE (TIM_DIER_UIE) -#define TIM_IT_CC1 (TIM_DIER_CC1IE) -#define TIM_IT_CC2 (TIM_DIER_CC2IE) -#define TIM_IT_CC3 (TIM_DIER_CC3IE) -#define TIM_IT_CC4 (TIM_DIER_CC4IE) -#define TIM_IT_COM (TIM_DIER_COMIE) -#define TIM_IT_TRIGGER (TIM_DIER_TIE) -#define TIM_IT_BREAK (TIM_DIER_BIE) -/** - * @} - */ - -/** @defgroup TIM_Commutation_Source TIM Commutation Source - * @{ - */ -#define TIM_COMMUTATION_TRGI (TIM_CR2_CCUS) -#define TIM_COMMUTATION_SOFTWARE 0x00000000U - -/** - * @} - */ - -/** @defgroup TIM_DMA_sources TIM DMA Sources - * @{ - */ -#define TIM_DMA_UPDATE (TIM_DIER_UDE) -#define TIM_DMA_CC1 (TIM_DIER_CC1DE) -#define TIM_DMA_CC2 (TIM_DIER_CC2DE) -#define TIM_DMA_CC3 (TIM_DIER_CC3DE) -#define TIM_DMA_CC4 (TIM_DIER_CC4DE) -#define TIM_DMA_COM (TIM_DIER_COMDE) -#define TIM_DMA_TRIGGER (TIM_DIER_TDE) -/** - * @} - */ - -/** @defgroup TIM_Event_Source TIM Event Source - * @{ - */ -#define TIM_EVENTSOURCE_UPDATE TIM_EGR_UG -#define TIM_EVENTSOURCE_CC1 TIM_EGR_CC1G -#define TIM_EVENTSOURCE_CC2 TIM_EGR_CC2G -#define TIM_EVENTSOURCE_CC3 TIM_EGR_CC3G -#define TIM_EVENTSOURCE_CC4 TIM_EGR_CC4G -#define TIM_EVENTSOURCE_COM TIM_EGR_COMG -#define TIM_EVENTSOURCE_TRIGGER TIM_EGR_TG -#define TIM_EVENTSOURCE_BREAK TIM_EGR_BG -/** - * @} - */ - -/** @defgroup TIM_Flag_definition TIM Flag Definition - * @{ - */ -#define TIM_FLAG_UPDATE (TIM_SR_UIF) -#define TIM_FLAG_CC1 (TIM_SR_CC1IF) -#define TIM_FLAG_CC2 (TIM_SR_CC2IF) -#define TIM_FLAG_CC3 (TIM_SR_CC3IF) -#define TIM_FLAG_CC4 (TIM_SR_CC4IF) -#define TIM_FLAG_COM (TIM_SR_COMIF) -#define TIM_FLAG_TRIGGER (TIM_SR_TIF) -#define TIM_FLAG_BREAK (TIM_SR_BIF) -#define TIM_FLAG_CC1OF (TIM_SR_CC1OF) -#define TIM_FLAG_CC2OF (TIM_SR_CC2OF) -#define TIM_FLAG_CC3OF (TIM_SR_CC3OF) -#define TIM_FLAG_CC4OF (TIM_SR_CC4OF) -/** - * @} - */ - -/** @defgroup TIM_Clock_Source TIM Clock Source - * @{ - */ -#define TIM_CLOCKSOURCE_ETRMODE2 (TIM_SMCR_ETPS_1) -#define TIM_CLOCKSOURCE_INTERNAL (TIM_SMCR_ETPS_0) -#define TIM_CLOCKSOURCE_ITR0 ((uint32_t)0x0000) -#define TIM_CLOCKSOURCE_ITR1 (TIM_SMCR_TS_0) -#define TIM_CLOCKSOURCE_ITR2 (TIM_SMCR_TS_1) -#define TIM_CLOCKSOURCE_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) -#define TIM_CLOCKSOURCE_TI1ED (TIM_SMCR_TS_2) -#define TIM_CLOCKSOURCE_TI1 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2) -#define TIM_CLOCKSOURCE_TI2 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2) -#define TIM_CLOCKSOURCE_ETRMODE1 (TIM_SMCR_TS) -/** - * @} - */ - -/** @defgroup TIM_Clock_Polarity TIM Clock Polarity - * @{ - */ -#define TIM_CLOCKPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx clock sources */ -#define TIM_CLOCKPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx clock sources */ -#define TIM_CLOCKPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIx clock sources */ -#define TIM_CLOCKPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIx clock sources */ -#define TIM_CLOCKPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIx clock sources */ -/** - * @} - */ - -/** @defgroup TIM_Clock_Prescaler TIM Clock Prescaler - * @{ - */ -#define TIM_CLOCKPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ -#define TIM_CLOCKPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Clock: Capture performed once every 2 events. */ -#define TIM_CLOCKPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Clock: Capture performed once every 4 events. */ -#define TIM_CLOCKPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Clock: Capture performed once every 8 events. */ -/** - * @} - */ - -/** @defgroup TIM_ClearInput_Source TIM ClearInput Source - * @{ - */ -#define TIM_CLEARINPUTSOURCE_ETR 0x00000001U -#define TIM_CLEARINPUTSOURCE_NONE 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_ClearInput_Polarity TIM Clear Input Polarity - * @{ - */ -#define TIM_CLEARINPUTPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx pin */ -#define TIM_CLEARINPUTPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx pin */ -/** - * @} - */ - -/** @defgroup TIM_ClearInput_Prescaler TIM Clear Input Prescaler - * @{ - */ -#define TIM_CLEARINPUTPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ -#define TIM_CLEARINPUTPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR pin: Capture performed once every 2 events. */ -#define TIM_CLEARINPUTPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR pin: Capture performed once every 4 events. */ -#define TIM_CLEARINPUTPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR pin: Capture performed once every 8 events. */ -/** - * @} - */ - -/** @defgroup TIM_OSSR_Off_State_Selection_for_Run_mode_state TIM OSSR Off State Selection for Run mode state - * @{ - */ -#define TIM_OSSR_ENABLE (TIM_BDTR_OSSR) -#define TIM_OSSR_DISABLE 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_OSSI_Off_State_Selection_for_Idle_mode_state TIM OSSI Off State Selection for Idle mode state - * @{ - */ -#define TIM_OSSI_ENABLE (TIM_BDTR_OSSI) -#define TIM_OSSI_DISABLE 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_Lock_level TIM Lock level - * @{ - */ -#define TIM_LOCKLEVEL_OFF 0x00000000U -#define TIM_LOCKLEVEL_1 (TIM_BDTR_LOCK_0) -#define TIM_LOCKLEVEL_2 (TIM_BDTR_LOCK_1) -#define TIM_LOCKLEVEL_3 (TIM_BDTR_LOCK) -/** - * @} - */ - -/** @defgroup TIM_Break_Input_enable_disable TIM Break Input Enable Disable - * @{ - */ -#define TIM_BREAK_ENABLE (TIM_BDTR_BKE) -#define TIM_BREAK_DISABLE 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_Break_Polarity TIM Break Input Polarity - * @{ - */ -#define TIM_BREAKPOLARITY_LOW 0x00000000U -#define TIM_BREAKPOLARITY_HIGH (TIM_BDTR_BKP) -/** - * @} - */ -/** @defgroup TIM_AOE_Bit_Set_Reset TIM Automatic Output Enable - * @{ - */ -#define TIM_AUTOMATICOUTPUT_ENABLE (TIM_BDTR_AOE) -#define TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_Master_Mode_Selection TIM Master Mode Selection - * @{ - */ -#define TIM_TRGO_RESET 0x00000000U -#define TIM_TRGO_ENABLE (TIM_CR2_MMS_0) -#define TIM_TRGO_UPDATE (TIM_CR2_MMS_1) -#define TIM_TRGO_OC1 ((TIM_CR2_MMS_1 | TIM_CR2_MMS_0)) -#define TIM_TRGO_OC1REF (TIM_CR2_MMS_2) -#define TIM_TRGO_OC2REF ((TIM_CR2_MMS_2 | TIM_CR2_MMS_0)) -#define TIM_TRGO_OC3REF ((TIM_CR2_MMS_2 | TIM_CR2_MMS_1)) -#define TIM_TRGO_OC4REF ((TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0)) -/** - * @} - */ - -/** @defgroup TIM_Slave_Mode TIM Slave Mode - * @{ - */ -#define TIM_SLAVEMODE_DISABLE 0x00000000U -#define TIM_SLAVEMODE_RESET 0x00000004U -#define TIM_SLAVEMODE_GATED 0x00000005U -#define TIM_SLAVEMODE_TRIGGER 0x00000006U -#define TIM_SLAVEMODE_EXTERNAL1 0x00000007U -/** - * @} - */ - -/** @defgroup TIM_Master_Slave_Mode TIM Master Slave Mode - * @{ - */ -#define TIM_MASTERSLAVEMODE_ENABLE 0x00000080U -#define TIM_MASTERSLAVEMODE_DISABLE 0x00000000U -/** - * @} - */ - -/** @defgroup TIM_Trigger_Selection TIM Trigger Selection - * @{ - */ -#define TIM_TS_ITR0 0x00000000U -#define TIM_TS_ITR1 0x00000010U -#define TIM_TS_ITR2 0x00000020U -#define TIM_TS_ITR3 0x00000030U -#define TIM_TS_TI1F_ED 0x00000040U -#define TIM_TS_TI1FP1 0x00000050U -#define TIM_TS_TI2FP2 0x00000060U -#define TIM_TS_ETRF 0x00000070U -#define TIM_TS_NONE 0x0000FFFFU -/** - * @} - */ - -/** @defgroup TIM_Trigger_Polarity TIM Trigger Polarity - * @{ - */ -#define TIM_TRIGGERPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx trigger sources */ -#define TIM_TRIGGERPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx trigger sources */ -#define TIM_TRIGGERPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIxFPx or TI1_ED trigger sources */ -#define TIM_TRIGGERPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIxFPx or TI1_ED trigger sources */ -#define TIM_TRIGGERPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIxFPx or TI1_ED trigger sources */ -/** - * @} - */ - -/** @defgroup TIM_Trigger_Prescaler TIM Trigger Prescaler - * @{ - */ -#define TIM_TRIGGERPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ -#define TIM_TRIGGERPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Trigger: Capture performed once every 2 events. */ -#define TIM_TRIGGERPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Trigger: Capture performed once every 4 events. */ -#define TIM_TRIGGERPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Trigger: Capture performed once every 8 events. */ -/** - * @} - */ - -/** @defgroup TIM_TI1_Selection TIM TI1 Input Selection - * @{ - */ -#define TIM_TI1SELECTION_CH1 0x00000000U -#define TIM_TI1SELECTION_XORCOMBINATION (TIM_CR2_TI1S) +#define TIM_CLEARINPUTSOURCE_NONE 0x00000000U /*!< OCREF_CLR is disabled */ +#define TIM_CLEARINPUTSOURCE_ETR 0x00000001U /*!< OCREF_CLR is connected to ETRF input */ /** * @} */ @@ -799,6 +473,495 @@ typedef struct { #define TIM_DMABASE_CCR4 0x00000010U #define TIM_DMABASE_BDTR 0x00000011U #define TIM_DMABASE_DCR 0x00000012U +#define TIM_DMABASE_DMAR 0x00000013U +/** + * @} + */ + +/** @defgroup TIM_Event_Source TIM Event Source + * @{ + */ +#define TIM_EVENTSOURCE_UPDATE TIM_EGR_UG /*!< Reinitialize the counter and generates an update of the registers */ +#define TIM_EVENTSOURCE_CC1 TIM_EGR_CC1G /*!< A capture/compare event is generated on channel 1 */ +#define TIM_EVENTSOURCE_CC2 TIM_EGR_CC2G /*!< A capture/compare event is generated on channel 2 */ +#define TIM_EVENTSOURCE_CC3 TIM_EGR_CC3G /*!< A capture/compare event is generated on channel 3 */ +#define TIM_EVENTSOURCE_CC4 TIM_EGR_CC4G /*!< A capture/compare event is generated on channel 4 */ +#define TIM_EVENTSOURCE_COM TIM_EGR_COMG /*!< A commutation event is generated */ +#define TIM_EVENTSOURCE_TRIGGER TIM_EGR_TG /*!< A trigger event is generated */ +#define TIM_EVENTSOURCE_BREAK TIM_EGR_BG /*!< A break event is generated */ +/** + * @} + */ + +/** @defgroup TIM_Input_Channel_Polarity TIM Input Channel polarity + * @{ + */ +#define TIM_INPUTCHANNELPOLARITY_RISING 0x00000000U /*!< Polarity for TIx source */ +#define TIM_INPUTCHANNELPOLARITY_FALLING TIM_CCER_CC1P /*!< Polarity for TIx source */ +#define TIM_INPUTCHANNELPOLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< Polarity for TIx source */ +/** + * @} + */ + +/** @defgroup TIM_ETR_Polarity TIM ETR Polarity + * @{ + */ +#define TIM_ETRPOLARITY_INVERTED TIM_SMCR_ETP /*!< Polarity for ETR source */ +#define TIM_ETRPOLARITY_NONINVERTED 0x00000000U /*!< Polarity for ETR source */ +/** + * @} + */ + +/** @defgroup TIM_ETR_Prescaler TIM ETR Prescaler + * @{ + */ +#define TIM_ETRPRESCALER_DIV1 0x00000000U /*!< No prescaler is used */ +#define TIM_ETRPRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR input source is divided by 2 */ +#define TIM_ETRPRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR input source is divided by 4 */ +#define TIM_ETRPRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR input source is divided by 8 */ +/** + * @} + */ + +/** @defgroup TIM_Counter_Mode TIM Counter Mode + * @{ + */ +#define TIM_COUNTERMODE_UP 0x00000000U /*!< Counter used as up-counter */ +#define TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as down-counter */ +#define TIM_COUNTERMODE_CENTERALIGNED1 TIM_CR1_CMS_0 /*!< Center-aligned mode 1 */ +#define TIM_COUNTERMODE_CENTERALIGNED2 TIM_CR1_CMS_1 /*!< Center-aligned mode 2 */ +#define TIM_COUNTERMODE_CENTERALIGNED3 TIM_CR1_CMS /*!< Center-aligned mode 3 */ +/** + * @} + */ + +/** @defgroup TIM_ClockDivision TIM Clock Division + * @{ + */ +#define TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< Clock division: tDTS=tCK_INT */ +#define TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< Clock division: tDTS=2*tCK_INT */ +#define TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< Clock division: tDTS=4*tCK_INT */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_State TIM Output Compare State + * @{ + */ +#define TIM_OUTPUTSTATE_DISABLE 0x00000000U /*!< Capture/Compare 1 output disabled */ +#define TIM_OUTPUTSTATE_ENABLE TIM_CCER_CC1E /*!< Capture/Compare 1 output enabled */ +/** + * @} + */ + +/** @defgroup TIM_AutoReloadPreload TIM Auto-Reload Preload + * @{ + */ +#define TIM_AUTORELOAD_PRELOAD_DISABLE 0x00000000U /*!< TIMx_ARR register is not buffered */ +#define TIM_AUTORELOAD_PRELOAD_ENABLE TIM_CR1_ARPE /*!< TIMx_ARR register is buffered */ + +/** + * @} + */ + +/** @defgroup TIM_Output_Fast_State TIM Output Fast State + * @{ + */ +#define TIM_OCFAST_DISABLE 0x00000000U /*!< Output Compare fast disable */ +#define TIM_OCFAST_ENABLE TIM_CCMR1_OC1FE /*!< Output Compare fast enable */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_N_State TIM Complementary Output Compare State + * @{ + */ +#define TIM_OUTPUTNSTATE_DISABLE 0x00000000U /*!< OCxN is disabled */ +#define TIM_OUTPUTNSTATE_ENABLE TIM_CCER_CC1NE /*!< OCxN is enabled */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_Polarity TIM Output Compare Polarity + * @{ + */ +#define TIM_OCPOLARITY_HIGH 0x00000000U /*!< Capture/Compare output polarity */ +#define TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< Capture/Compare output polarity */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_N_Polarity TIM Complementary Output Compare Polarity + * @{ + */ +#define TIM_OCNPOLARITY_HIGH 0x00000000U /*!< Capture/Compare complementary output polarity */ +#define TIM_OCNPOLARITY_LOW TIM_CCER_CC1NP /*!< Capture/Compare complementary output polarity */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_Idle_State TIM Output Compare Idle State + * @{ + */ +#define TIM_OCIDLESTATE_SET TIM_CR2_OIS1 /*!< Output Idle state: OCx=1 when MOE=0 */ +#define TIM_OCIDLESTATE_RESET 0x00000000U /*!< Output Idle state: OCx=0 when MOE=0 */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_N_Idle_State TIM Complementary Output Compare Idle State + * @{ + */ +#define TIM_OCNIDLESTATE_SET TIM_CR2_OIS1N /*!< Complementary output Idle state: OCxN=1 when MOE=0 */ +#define TIM_OCNIDLESTATE_RESET 0x00000000U /*!< Complementary output Idle state: OCxN=0 when MOE=0 */ +/** + * @} + */ + +/** @defgroup TIM_Input_Capture_Polarity TIM Input Capture Polarity + * @{ + */ +#define TIM_ICPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Capture triggered by rising edge on timer input */ +#define TIM_ICPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Capture triggered by falling edge on timer input */ +#define TIM_ICPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Capture triggered by both rising and falling edges on timer input*/ +/** + * @} + */ + +/** @defgroup TIM_Encoder_Input_Polarity TIM Encoder Input Polarity + * @{ + */ +#define TIM_ENCODERINPUTPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Encoder input with rising edge polarity */ +#define TIM_ENCODERINPUTPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Encoder input with falling edge polarity */ +/** + * @} + */ + +/** @defgroup TIM_Input_Capture_Selection TIM Input Capture Selection + * @{ + */ +#define TIM_ICSELECTION_DIRECTTI \ + TIM_CCMR1_CC1S_0 /*!< TIM Input 1, 2, 3 or 4 is selected to be \ + connected to IC1, IC2, IC3 or IC4, respectively */ +#define TIM_ICSELECTION_INDIRECTTI \ + TIM_CCMR1_CC1S_1 /*!< TIM Input 1, 2, 3 or 4 is selected to be \ + connected to IC2, IC1, IC4 or IC3, respectively */ +#define TIM_ICSELECTION_TRC TIM_CCMR1_CC1S /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC */ +/** + * @} + */ + +/** @defgroup TIM_Input_Capture_Prescaler TIM Input Capture Prescaler + * @{ + */ +#define TIM_ICPSC_DIV1 0x00000000U /*!< Capture performed each time an edge is detected on the capture input */ +#define TIM_ICPSC_DIV2 TIM_CCMR1_IC1PSC_0 /*!< Capture performed once every 2 events */ +#define TIM_ICPSC_DIV4 TIM_CCMR1_IC1PSC_1 /*!< Capture performed once every 4 events */ +#define TIM_ICPSC_DIV8 TIM_CCMR1_IC1PSC /*!< Capture performed once every 8 events */ +/** + * @} + */ + +/** @defgroup TIM_One_Pulse_Mode TIM One Pulse Mode + * @{ + */ +#define TIM_OPMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */ +#define TIM_OPMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */ +/** + * @} + */ + +/** @defgroup TIM_Encoder_Mode TIM Encoder Mode + * @{ + */ +#define TIM_ENCODERMODE_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode, counts up/down on TI1FP1 edge depending on TI2FP2 level */ +#define TIM_ENCODERMODE_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode, counts up/down on TI2FP2 edge depending on TI1FP1 level. */ +#define TIM_ENCODERMODE_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode, counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. */ +/** + * @} + */ + +/** @defgroup TIM_Interrupt_definition TIM interrupt Definition + * @{ + */ +#define TIM_IT_UPDATE TIM_DIER_UIE /*!< Update interrupt */ +#define TIM_IT_CC1 TIM_DIER_CC1IE /*!< Capture/Compare 1 interrupt */ +#define TIM_IT_CC2 TIM_DIER_CC2IE /*!< Capture/Compare 2 interrupt */ +#define TIM_IT_CC3 TIM_DIER_CC3IE /*!< Capture/Compare 3 interrupt */ +#define TIM_IT_CC4 TIM_DIER_CC4IE /*!< Capture/Compare 4 interrupt */ +#define TIM_IT_COM TIM_DIER_COMIE /*!< Commutation interrupt */ +#define TIM_IT_TRIGGER TIM_DIER_TIE /*!< Trigger interrupt */ +#define TIM_IT_BREAK TIM_DIER_BIE /*!< Break interrupt */ +/** + * @} + */ + +/** @defgroup TIM_Commutation_Source TIM Commutation Source + * @{ + */ +#define TIM_COMMUTATION_TRGI TIM_CR2_CCUS /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit or when an rising edge occurs on trigger input */ +#define TIM_COMMUTATION_SOFTWARE 0x00000000U /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit */ +/** + * @} + */ + +/** @defgroup TIM_DMA_sources TIM DMA Sources + * @{ + */ +#define TIM_DMA_UPDATE TIM_DIER_UDE /*!< DMA request is triggered by the update event */ +#define TIM_DMA_CC1 TIM_DIER_CC1DE /*!< DMA request is triggered by the capture/compare macth 1 event */ +#define TIM_DMA_CC2 TIM_DIER_CC2DE /*!< DMA request is triggered by the capture/compare macth 2 event event */ +#define TIM_DMA_CC3 TIM_DIER_CC3DE /*!< DMA request is triggered by the capture/compare macth 3 event event */ +#define TIM_DMA_CC4 TIM_DIER_CC4DE /*!< DMA request is triggered by the capture/compare macth 4 event event */ +#define TIM_DMA_COM TIM_DIER_COMDE /*!< DMA request is triggered by the commutation event */ +#define TIM_DMA_TRIGGER TIM_DIER_TDE /*!< DMA request is triggered by the trigger event */ +/** + * @} + */ + +/** @defgroup TIM_Flag_definition TIM Flag Definition + * @{ + */ +#define TIM_FLAG_UPDATE TIM_SR_UIF /*!< Update interrupt flag */ +#define TIM_FLAG_CC1 TIM_SR_CC1IF /*!< Capture/Compare 1 interrupt flag */ +#define TIM_FLAG_CC2 TIM_SR_CC2IF /*!< Capture/Compare 2 interrupt flag */ +#define TIM_FLAG_CC3 TIM_SR_CC3IF /*!< Capture/Compare 3 interrupt flag */ +#define TIM_FLAG_CC4 TIM_SR_CC4IF /*!< Capture/Compare 4 interrupt flag */ +#define TIM_FLAG_COM TIM_SR_COMIF /*!< Commutation interrupt flag */ +#define TIM_FLAG_TRIGGER TIM_SR_TIF /*!< Trigger interrupt flag */ +#define TIM_FLAG_BREAK TIM_SR_BIF /*!< Break interrupt flag */ +#define TIM_FLAG_CC1OF TIM_SR_CC1OF /*!< Capture 1 overcapture flag */ +#define TIM_FLAG_CC2OF TIM_SR_CC2OF /*!< Capture 2 overcapture flag */ +#define TIM_FLAG_CC3OF TIM_SR_CC3OF /*!< Capture 3 overcapture flag */ +#define TIM_FLAG_CC4OF TIM_SR_CC4OF /*!< Capture 4 overcapture flag */ +/** + * @} + */ + +/** @defgroup TIM_Channel TIM Channel + * @{ + */ +#define TIM_CHANNEL_1 0x00000000U /*!< Capture/compare channel 1 identifier */ +#define TIM_CHANNEL_2 0x00000004U /*!< Capture/compare channel 2 identifier */ +#define TIM_CHANNEL_3 0x00000008U /*!< Capture/compare channel 3 identifier */ +#define TIM_CHANNEL_4 0x0000000CU /*!< Capture/compare channel 4 identifier */ +#define TIM_CHANNEL_ALL 0x0000003CU /*!< Global Capture/compare channel identifier */ +/** + * @} + */ + +/** @defgroup TIM_Clock_Source TIM Clock Source + * @{ + */ +#define TIM_CLOCKSOURCE_ETRMODE2 TIM_SMCR_ETPS_1 /*!< External clock source mode 2 */ +#define TIM_CLOCKSOURCE_INTERNAL TIM_SMCR_ETPS_0 /*!< Internal clock source */ +#define TIM_CLOCKSOURCE_ITR0 TIM_TS_ITR0 /*!< External clock source mode 1 (ITR0) */ +#define TIM_CLOCKSOURCE_ITR1 TIM_TS_ITR1 /*!< External clock source mode 1 (ITR1) */ +#define TIM_CLOCKSOURCE_ITR2 TIM_TS_ITR2 /*!< External clock source mode 1 (ITR2) */ +#define TIM_CLOCKSOURCE_ITR3 TIM_TS_ITR3 /*!< External clock source mode 1 (ITR3) */ +#define TIM_CLOCKSOURCE_TI1ED TIM_TS_TI1F_ED /*!< External clock source mode 1 (TTI1FP1 + edge detect.) */ +#define TIM_CLOCKSOURCE_TI1 TIM_TS_TI1FP1 /*!< External clock source mode 1 (TTI1FP1) */ +#define TIM_CLOCKSOURCE_TI2 TIM_TS_TI2FP2 /*!< External clock source mode 1 (TTI2FP2) */ +#define TIM_CLOCKSOURCE_ETRMODE1 TIM_TS_ETRF /*!< External clock source mode 1 (ETRF) */ +/** + * @} + */ + +/** @defgroup TIM_Clock_Polarity TIM Clock Polarity + * @{ + */ +#define TIM_CLOCKPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx clock sources */ +#define TIM_CLOCKPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx clock sources */ +#define TIM_CLOCKPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIx clock sources */ +#define TIM_CLOCKPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIx clock sources */ +#define TIM_CLOCKPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIx clock sources */ +/** + * @} + */ + +/** @defgroup TIM_Clock_Prescaler TIM Clock Prescaler + * @{ + */ +#define TIM_CLOCKPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ +#define TIM_CLOCKPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Clock: Capture performed once every 2 events. */ +#define TIM_CLOCKPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Clock: Capture performed once every 4 events. */ +#define TIM_CLOCKPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Clock: Capture performed once every 8 events. */ +/** + * @} + */ + +/** @defgroup TIM_ClearInput_Polarity TIM Clear Input Polarity + * @{ + */ +#define TIM_CLEARINPUTPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx pin */ +#define TIM_CLEARINPUTPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx pin */ +/** + * @} + */ + +/** @defgroup TIM_ClearInput_Prescaler TIM Clear Input Prescaler + * @{ + */ +#define TIM_CLEARINPUTPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ +#define TIM_CLEARINPUTPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR pin: Capture performed once every 2 events. */ +#define TIM_CLEARINPUTPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR pin: Capture performed once every 4 events. */ +#define TIM_CLEARINPUTPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR pin: Capture performed once every 8 events. */ +/** + * @} + */ + +/** @defgroup TIM_OSSR_Off_State_Selection_for_Run_mode_state TIM OSSR OffState Selection for Run mode state + * @{ + */ +#define TIM_OSSR_ENABLE TIM_BDTR_OSSR /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */ +#define TIM_OSSR_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */ +/** + * @} + */ + +/** @defgroup TIM_OSSI_Off_State_Selection_for_Idle_mode_state TIM OSSI OffState Selection for Idle mode state + * @{ + */ +#define TIM_OSSI_ENABLE TIM_BDTR_OSSI /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */ +#define TIM_OSSI_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */ +/** + * @} + */ +/** @defgroup TIM_Lock_level TIM Lock level + * @{ + */ +#define TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF */ +#define TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */ +#define TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */ +#define TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */ +/** + * @} + */ + +/** @defgroup TIM_Break_Input_enable_disable TIM Break Input Enable + * @{ + */ +#define TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break input BRK is enabled */ +#define TIM_BREAK_DISABLE 0x00000000U /*!< Break input BRK is disabled */ +/** + * @} + */ + +/** @defgroup TIM_Break_Polarity TIM Break Input Polarity + * @{ + */ +#define TIM_BREAKPOLARITY_LOW 0x00000000U /*!< Break input BRK is active low */ +#define TIM_BREAKPOLARITY_HIGH TIM_BDTR_BKP /*!< Break input BRK is active high */ +/** + * @} + */ + +/** @defgroup TIM_AOE_Bit_Set_Reset TIM Automatic Output Enable + * @{ + */ +#define TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */ +#define TIM_AUTOMATICOUTPUT_ENABLE \ + TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event \ + (if none of the break inputs BRK and BRK2 is active) */ +/** + * @} + */ + +/** @defgroup TIM_Master_Mode_Selection TIM Master Mode Selection + * @{ + */ +#define TIM_TRGO_RESET 0x00000000U /*!< TIMx_EGR.UG bit is used as trigger output (TRGO) */ +#define TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< TIMx_CR1.CEN bit is used as trigger output (TRGO) */ +#define TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output (TRGO) */ +#define TIM_TRGO_OC1 (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< Capture or a compare match 1 is used as trigger output (TRGO) */ +#define TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output (TRGO) */ +#define TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output(TRGO) */ +#define TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output(TRGO) */ +#define TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output(TRGO) */ +/** + * @} + */ + +/** @defgroup TIM_Master_Slave_Mode TIM Master/Slave Mode + * @{ + */ +#define TIM_MASTERSLAVEMODE_ENABLE TIM_SMCR_MSM /*!< No action */ +#define TIM_MASTERSLAVEMODE_DISABLE 0x00000000U /*!< Master/slave mode is selected */ +/** + * @} + */ + +/** @defgroup TIM_Slave_Mode TIM Slave mode + * @{ + */ +#define TIM_SLAVEMODE_DISABLE 0x00000000U /*!< Slave mode disabled */ +#define TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode */ +#define TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode */ +#define TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode */ +#define TIM_SLAVEMODE_EXTERNAL1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< External Clock Mode 1 */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_and_PWM_modes TIM Output Compare and PWM Modes + * @{ + */ +#define TIM_OCMODE_TIMING 0x00000000U /*!< Frozen */ +#define TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!< Set channel to active level on match */ +#define TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!< Set channel to inactive level on match */ +#define TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< Toggle */ +#define TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!< PWM mode 1 */ +#define TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< PWM mode 2 */ +#define TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!< Force active level */ +#define TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!< Force inactive level */ +/** + * @} + */ + +/** @defgroup TIM_Trigger_Selection TIM Trigger Selection + * @{ + */ +#define TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) */ +#define TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) */ +#define TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) */ +#define TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) */ +#define TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) */ +#define TIM_TS_TI1FP1 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 1 (TI1FP1) */ +#define TIM_TS_TI2FP2 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 2 (TI2FP2) */ +#define TIM_TS_ETRF (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered External Trigger input (ETRF) */ +#define TIM_TS_NONE 0x0000FFFFU /*!< No trigger selected */ +/** + * @} + */ + +/** @defgroup TIM_Trigger_Polarity TIM Trigger Polarity + * @{ + */ +#define TIM_TRIGGERPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx trigger sources */ +#define TIM_TRIGGERPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx trigger sources */ +#define TIM_TRIGGERPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIxFPx or TI1_ED trigger sources */ +#define TIM_TRIGGERPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIxFPx or TI1_ED trigger sources */ +#define TIM_TRIGGERPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIxFPx or TI1_ED trigger sources */ +/** + * @} + */ + +/** @defgroup TIM_Trigger_Prescaler TIM Trigger Prescaler + * @{ + */ +#define TIM_TRIGGERPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ +#define TIM_TRIGGERPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Trigger: Capture performed once every 2 events. */ +#define TIM_TRIGGERPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Trigger: Capture performed once every 4 events. */ +#define TIM_TRIGGERPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Trigger: Capture performed once every 8 events. */ +/** + * @} + */ + +/** @defgroup TIM_TI1_Selection TIM TI1 Input Selection + * @{ + */ +#define TIM_TI1SELECTION_CH1 0x00000000U /*!< The TIMx_CH1 pin is connected to TI1 input */ +#define TIM_TI1SELECTION_XORCOMBINATION TIM_CR2_TI1S /*!< The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) */ /** * @} */ @@ -806,49 +969,49 @@ typedef struct { /** @defgroup TIM_DMA_Burst_Length TIM DMA Burst Length * @{ */ -#define TIM_DMABURSTLENGTH_1TRANSFER 0x00000000U -#define TIM_DMABURSTLENGTH_2TRANSFERS 0x00000100U -#define TIM_DMABURSTLENGTH_3TRANSFERS 0x00000200U -#define TIM_DMABURSTLENGTH_4TRANSFERS 0x00000300U -#define TIM_DMABURSTLENGTH_5TRANSFERS 0x00000400U -#define TIM_DMABURSTLENGTH_6TRANSFERS 0x00000500U -#define TIM_DMABURSTLENGTH_7TRANSFERS 0x00000600U -#define TIM_DMABURSTLENGTH_8TRANSFERS 0x00000700U -#define TIM_DMABURSTLENGTH_9TRANSFERS 0x00000800U -#define TIM_DMABURSTLENGTH_10TRANSFERS 0x00000900U -#define TIM_DMABURSTLENGTH_11TRANSFERS 0x00000A00U -#define TIM_DMABURSTLENGTH_12TRANSFERS 0x00000B00U -#define TIM_DMABURSTLENGTH_13TRANSFERS 0x00000C00U -#define TIM_DMABURSTLENGTH_14TRANSFERS 0x00000D00U -#define TIM_DMABURSTLENGTH_15TRANSFERS 0x00000E00U -#define TIM_DMABURSTLENGTH_16TRANSFERS 0x00000F00U -#define TIM_DMABURSTLENGTH_17TRANSFERS 0x00001000U -#define TIM_DMABURSTLENGTH_18TRANSFERS 0x00001100U +#define TIM_DMABURSTLENGTH_1TRANSFER 0x00000000U /*!< The transfer is done to 1 register starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_2TRANSFERS 0x00000100U /*!< The transfer is done to 2 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_3TRANSFERS 0x00000200U /*!< The transfer is done to 3 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_4TRANSFERS 0x00000300U /*!< The transfer is done to 4 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_5TRANSFERS 0x00000400U /*!< The transfer is done to 5 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_6TRANSFERS 0x00000500U /*!< The transfer is done to 6 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_7TRANSFERS 0x00000600U /*!< The transfer is done to 7 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_8TRANSFERS 0x00000700U /*!< The transfer is done to 8 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_9TRANSFERS 0x00000800U /*!< The transfer is done to 9 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_10TRANSFERS 0x00000900U /*!< The transfer is done to 10 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_11TRANSFERS 0x00000A00U /*!< The transfer is done to 11 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_12TRANSFERS 0x00000B00U /*!< The transfer is done to 12 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_13TRANSFERS 0x00000C00U /*!< The transfer is done to 13 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_14TRANSFERS 0x00000D00U /*!< The transfer is done to 14 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_15TRANSFERS 0x00000E00U /*!< The transfer is done to 15 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_16TRANSFERS 0x00000F00U /*!< The transfer is done to 16 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_17TRANSFERS 0x00001000U /*!< The transfer is done to 17 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_18TRANSFERS 0x00001100U /*!< The transfer is done to 18 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */ /** * @} */ -/** @defgroup TIM_DMA_Handle_index TIM DMA Handle Index +/** @defgroup DMA_Handle_index TIM DMA Handle Index * @{ */ -#define TIM_DMA_ID_UPDATE ((uint16_t)0x0) /*!< Index of the DMA handle used for Update DMA requests */ -#define TIM_DMA_ID_CC1 ((uint16_t)0x1) /*!< Index of the DMA handle used for Capture/Compare 1 DMA requests */ -#define TIM_DMA_ID_CC2 ((uint16_t)0x2) /*!< Index of the DMA handle used for Capture/Compare 2 DMA requests */ -#define TIM_DMA_ID_CC3 ((uint16_t)0x3) /*!< Index of the DMA handle used for Capture/Compare 3 DMA requests */ -#define TIM_DMA_ID_CC4 ((uint16_t)0x4) /*!< Index of the DMA handle used for Capture/Compare 4 DMA requests */ -#define TIM_DMA_ID_COMMUTATION ((uint16_t)0x5) /*!< Index of the DMA handle used for Commutation DMA requests */ -#define TIM_DMA_ID_TRIGGER ((uint16_t)0x6) /*!< Index of the DMA handle used for Trigger DMA requests */ +#define TIM_DMA_ID_UPDATE ((uint16_t)0x0000) /*!< Index of the DMA handle used for Update DMA requests */ +#define TIM_DMA_ID_CC1 ((uint16_t)0x0001) /*!< Index of the DMA handle used for Capture/Compare 1 DMA requests */ +#define TIM_DMA_ID_CC2 ((uint16_t)0x0002) /*!< Index of the DMA handle used for Capture/Compare 2 DMA requests */ +#define TIM_DMA_ID_CC3 ((uint16_t)0x0003) /*!< Index of the DMA handle used for Capture/Compare 3 DMA requests */ +#define TIM_DMA_ID_CC4 ((uint16_t)0x0004) /*!< Index of the DMA handle used for Capture/Compare 4 DMA requests */ +#define TIM_DMA_ID_COMMUTATION ((uint16_t)0x0005) /*!< Index of the DMA handle used for Commutation DMA requests */ +#define TIM_DMA_ID_TRIGGER ((uint16_t)0x0006) /*!< Index of the DMA handle used for Trigger DMA requests */ /** * @} */ -/** @defgroup TIM_Channel_CC_State TIM Capture/Compare Channel State +/** @defgroup Channel_CC_State TIM Capture/Compare Channel State * @{ */ -#define TIM_CCx_ENABLE 0x00000001U -#define TIM_CCx_DISABLE 0x00000000U -#define TIM_CCxN_ENABLE 0x00000004U -#define TIM_CCxN_DISABLE 0x00000000U +#define TIM_CCx_ENABLE 0x00000001U /*!< Input or output channel is enabled */ +#define TIM_CCx_DISABLE 0x00000000U /*!< Input or output channel is disabled */ +#define TIM_CCxN_ENABLE 0x00000004U /*!< Complementary output channel is enabled */ +#define TIM_CCxN_DISABLE 0x00000000U /*!< Complementary output channel is enabled */ /** * @} */ @@ -856,344 +1019,177 @@ typedef struct { /** * @} */ - -/* Private Constants -----------------------------------------------------------*/ -/** @defgroup TIM_Private_Constants TIM Private Constants - * @{ - */ - -/* The counter of a timer instance is disabled only if all the CCx and CCxN - channels have been disabled */ -#define TIM_CCER_CCxE_MASK ((uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E)) -#define TIM_CCER_CCxNE_MASK ((uint32_t)(TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) - -/** - * @} - */ - -/* Private Macros -----------------------------------------------------------*/ -/** @defgroup TIM_Private_Macros TIM Private Macros - * @{ - */ - -#define IS_TIM_COUNTER_MODE(MODE) \ - (((MODE) == TIM_COUNTERMODE_UP) || ((MODE) == TIM_COUNTERMODE_DOWN) || ((MODE) == TIM_COUNTERMODE_CENTERALIGNED1) || ((MODE) == TIM_COUNTERMODE_CENTERALIGNED2) \ - || ((MODE) == TIM_COUNTERMODE_CENTERALIGNED3)) - -#define IS_TIM_CLOCKDIVISION_DIV(DIV) (((DIV) == TIM_CLOCKDIVISION_DIV1) || ((DIV) == TIM_CLOCKDIVISION_DIV2) || ((DIV) == TIM_CLOCKDIVISION_DIV4)) - -#define IS_TIM_AUTORELOAD_PRELOAD(PRELOAD) (((PRELOAD) == TIM_AUTORELOAD_PRELOAD_DISABLE) || ((PRELOAD) == TIM_AUTORELOAD_PRELOAD_ENABLE)) - -#define IS_TIM_PWM_MODE(MODE) (((MODE) == TIM_OCMODE_PWM1) || ((MODE) == TIM_OCMODE_PWM2)) - -#define IS_TIM_OC_MODE(MODE) \ - (((MODE) == TIM_OCMODE_TIMING) || ((MODE) == TIM_OCMODE_ACTIVE) || ((MODE) == TIM_OCMODE_INACTIVE) || ((MODE) == TIM_OCMODE_TOGGLE) || ((MODE) == TIM_OCMODE_FORCED_ACTIVE) \ - || ((MODE) == TIM_OCMODE_FORCED_INACTIVE)) - -#define IS_TIM_FAST_STATE(STATE) (((STATE) == TIM_OCFAST_DISABLE) || ((STATE) == TIM_OCFAST_ENABLE)) - -#define IS_TIM_OC_POLARITY(POLARITY) (((POLARITY) == TIM_OCPOLARITY_HIGH) || ((POLARITY) == TIM_OCPOLARITY_LOW)) - -#define IS_TIM_OCN_POLARITY(POLARITY) (((POLARITY) == TIM_OCNPOLARITY_HIGH) || ((POLARITY) == TIM_OCNPOLARITY_LOW)) - -#define IS_TIM_OCIDLE_STATE(STATE) (((STATE) == TIM_OCIDLESTATE_SET) || ((STATE) == TIM_OCIDLESTATE_RESET)) - -#define IS_TIM_OCNIDLE_STATE(STATE) (((STATE) == TIM_OCNIDLESTATE_SET) || ((STATE) == TIM_OCNIDLESTATE_RESET)) - -#define IS_TIM_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3) || ((CHANNEL) == TIM_CHANNEL_4) || ((CHANNEL) == TIM_CHANNEL_ALL)) - -#define IS_TIM_OPM_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2)) - -#define IS_TIM_COMPLEMENTARY_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3)) - -#define IS_TIM_IC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ICPOLARITY_RISING) || ((__POLARITY__) == TIM_ICPOLARITY_FALLING) || ((__POLARITY__) == TIM_ICPOLARITY_BOTHEDGE)) - -#define IS_TIM_IC_SELECTION(SELECTION) (((SELECTION) == TIM_ICSELECTION_DIRECTTI) || ((SELECTION) == TIM_ICSELECTION_INDIRECTTI) || ((SELECTION) == TIM_ICSELECTION_TRC)) - -#define IS_TIM_IC_PRESCALER(PRESCALER) (((PRESCALER) == TIM_ICPSC_DIV1) || ((PRESCALER) == TIM_ICPSC_DIV2) || ((PRESCALER) == TIM_ICPSC_DIV4) || ((PRESCALER) == TIM_ICPSC_DIV8)) - -#define IS_TIM_OPM_MODE(MODE) (((MODE) == TIM_OPMODE_SINGLE) || ((MODE) == TIM_OPMODE_REPETITIVE)) - -#define IS_TIM_ENCODER_MODE(MODE) (((MODE) == TIM_ENCODERMODE_TI1) || ((MODE) == TIM_ENCODERMODE_TI2) || ((MODE) == TIM_ENCODERMODE_TI12)) - -#define IS_TIM_DMA_SOURCE(SOURCE) ((((SOURCE)&0xFFFF80FFU) == 0x00000000U) && ((SOURCE) != 0x00000000U)) - -#define IS_TIM_EVENT_SOURCE(SOURCE) ((((SOURCE)&0xFFFFFF00U) == 0x00000000U) && ((SOURCE) != 0x00000000U)) - -#define IS_TIM_CLOCKSOURCE(CLOCK) \ - (((CLOCK) == TIM_CLOCKSOURCE_INTERNAL) || ((CLOCK) == TIM_CLOCKSOURCE_ETRMODE2) || ((CLOCK) == TIM_CLOCKSOURCE_ITR0) || ((CLOCK) == TIM_CLOCKSOURCE_ITR1) || ((CLOCK) == TIM_CLOCKSOURCE_ITR2) \ - || ((CLOCK) == TIM_CLOCKSOURCE_ITR3) || ((CLOCK) == TIM_CLOCKSOURCE_TI1ED) || ((CLOCK) == TIM_CLOCKSOURCE_TI1) || ((CLOCK) == TIM_CLOCKSOURCE_TI2) || ((CLOCK) == TIM_CLOCKSOURCE_ETRMODE1)) - -#define IS_TIM_CLOCKPOLARITY(POLARITY) \ - (((POLARITY) == TIM_CLOCKPOLARITY_INVERTED) || ((POLARITY) == TIM_CLOCKPOLARITY_NONINVERTED) || ((POLARITY) == TIM_CLOCKPOLARITY_RISING) || ((POLARITY) == TIM_CLOCKPOLARITY_FALLING) \ - || ((POLARITY) == TIM_CLOCKPOLARITY_BOTHEDGE)) - -#define IS_TIM_CLOCKPRESCALER(PRESCALER) \ - (((PRESCALER) == TIM_CLOCKPRESCALER_DIV1) || ((PRESCALER) == TIM_CLOCKPRESCALER_DIV2) || ((PRESCALER) == TIM_CLOCKPRESCALER_DIV4) || ((PRESCALER) == TIM_CLOCKPRESCALER_DIV8)) - -#define IS_TIM_CLOCKFILTER(ICFILTER) ((ICFILTER) <= 0x0FU) - -#define IS_TIM_CLEARINPUT_SOURCE(SOURCE) (((SOURCE) == TIM_CLEARINPUTSOURCE_ETR) || ((SOURCE) == TIM_CLEARINPUTSOURCE_NONE)) - -#define IS_TIM_CLEARINPUT_POLARITY(POLARITY) (((POLARITY) == TIM_CLEARINPUTPOLARITY_INVERTED) || ((POLARITY) == TIM_CLEARINPUTPOLARITY_NONINVERTED)) - -#define IS_TIM_CLEARINPUT_PRESCALER(PRESCALER) \ - (((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV1) || ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV2) || ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV4) || ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV8)) - -#define IS_TIM_CLEARINPUT_FILTER(ICFILTER) ((ICFILTER) <= 0x0FU) - -#define IS_TIM_OSSR_STATE(STATE) (((STATE) == TIM_OSSR_ENABLE) || ((STATE) == TIM_OSSR_DISABLE)) - -#define IS_TIM_OSSI_STATE(STATE) (((STATE) == TIM_OSSI_ENABLE) || ((STATE) == TIM_OSSI_DISABLE)) - -#define IS_TIM_LOCK_LEVEL(LEVEL) (((LEVEL) == TIM_LOCKLEVEL_OFF) || ((LEVEL) == TIM_LOCKLEVEL_1) || ((LEVEL) == TIM_LOCKLEVEL_2) || ((LEVEL) == TIM_LOCKLEVEL_3)) - -#define IS_TIM_BREAK_STATE(STATE) (((STATE) == TIM_BREAK_ENABLE) || ((STATE) == TIM_BREAK_DISABLE)) - -#define IS_TIM_BREAK_POLARITY(POLARITY) (((POLARITY) == TIM_BREAKPOLARITY_LOW) || ((POLARITY) == TIM_BREAKPOLARITY_HIGH)) - -#define IS_TIM_AUTOMATIC_OUTPUT_STATE(STATE) (((STATE) == TIM_AUTOMATICOUTPUT_ENABLE) || ((STATE) == TIM_AUTOMATICOUTPUT_DISABLE)) - -#define IS_TIM_TRGO_SOURCE(SOURCE) \ - (((SOURCE) == TIM_TRGO_RESET) || ((SOURCE) == TIM_TRGO_ENABLE) || ((SOURCE) == TIM_TRGO_UPDATE) || ((SOURCE) == TIM_TRGO_OC1) || ((SOURCE) == TIM_TRGO_OC1REF) || ((SOURCE) == TIM_TRGO_OC2REF) \ - || ((SOURCE) == TIM_TRGO_OC3REF) || ((SOURCE) == TIM_TRGO_OC4REF)) - -#define IS_TIM_SLAVE_MODE(MODE) \ - (((MODE) == TIM_SLAVEMODE_DISABLE) || ((MODE) == TIM_SLAVEMODE_GATED) || ((MODE) == TIM_SLAVEMODE_RESET) || ((MODE) == TIM_SLAVEMODE_TRIGGER) || ((MODE) == TIM_SLAVEMODE_EXTERNAL1)) - -#define IS_TIM_MSM_STATE(STATE) (((STATE) == TIM_MASTERSLAVEMODE_ENABLE) || ((STATE) == TIM_MASTERSLAVEMODE_DISABLE)) - -#define IS_TIM_TRIGGER_SELECTION(SELECTION) \ - (((SELECTION) == TIM_TS_ITR0) || ((SELECTION) == TIM_TS_ITR1) || ((SELECTION) == TIM_TS_ITR2) || ((SELECTION) == TIM_TS_ITR3) || ((SELECTION) == TIM_TS_TI1F_ED) || ((SELECTION) == TIM_TS_TI1FP1) \ - || ((SELECTION) == TIM_TS_TI2FP2) || ((SELECTION) == TIM_TS_ETRF)) - -#define IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(SELECTION) \ - (((SELECTION) == TIM_TS_ITR0) || ((SELECTION) == TIM_TS_ITR1) || ((SELECTION) == TIM_TS_ITR2) || ((SELECTION) == TIM_TS_ITR3) || ((SELECTION) == TIM_TS_NONE)) - -#define IS_TIM_TRIGGERPOLARITY(POLARITY) \ - (((POLARITY) == TIM_TRIGGERPOLARITY_INVERTED) || ((POLARITY) == TIM_TRIGGERPOLARITY_NONINVERTED) || ((POLARITY) == TIM_TRIGGERPOLARITY_RISING) || ((POLARITY) == TIM_TRIGGERPOLARITY_FALLING) \ - || ((POLARITY) == TIM_TRIGGERPOLARITY_BOTHEDGE)) - -#define IS_TIM_TRIGGERPRESCALER(PRESCALER) \ - (((PRESCALER) == TIM_TRIGGERPRESCALER_DIV1) || ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV2) || ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV4) || ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV8)) - -#define IS_TIM_TRIGGERFILTER(ICFILTER) ((ICFILTER) <= 0x0FU) - -#define IS_TIM_TI1SELECTION(TI1SELECTION) (((TI1SELECTION) == TIM_TI1SELECTION_CH1) || ((TI1SELECTION) == TIM_TI1SELECTION_XORCOMBINATION)) - -#define IS_TIM_DMA_BASE(BASE) \ - (((BASE) == TIM_DMABASE_CR1) || ((BASE) == TIM_DMABASE_CR2) || ((BASE) == TIM_DMABASE_SMCR) || ((BASE) == TIM_DMABASE_DIER) || ((BASE) == TIM_DMABASE_SR) || ((BASE) == TIM_DMABASE_EGR) \ - || ((BASE) == TIM_DMABASE_CCMR1) || ((BASE) == TIM_DMABASE_CCMR2) || ((BASE) == TIM_DMABASE_CCER) || ((BASE) == TIM_DMABASE_CNT) || ((BASE) == TIM_DMABASE_PSC) || ((BASE) == TIM_DMABASE_ARR) \ - || ((BASE) == TIM_DMABASE_RCR) || ((BASE) == TIM_DMABASE_CCR1) || ((BASE) == TIM_DMABASE_CCR2) || ((BASE) == TIM_DMABASE_CCR3) || ((BASE) == TIM_DMABASE_CCR4) || ((BASE) == TIM_DMABASE_BDTR) \ - || ((BASE) == TIM_DMABASE_DCR)) - -#define IS_TIM_DMA_LENGTH(LENGTH) \ - (((LENGTH) == TIM_DMABURSTLENGTH_1TRANSFER) || ((LENGTH) == TIM_DMABURSTLENGTH_2TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_3TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_4TRANSFERS) \ - || ((LENGTH) == TIM_DMABURSTLENGTH_5TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_6TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_7TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_8TRANSFERS) \ - || ((LENGTH) == TIM_DMABURSTLENGTH_9TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_10TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_11TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_12TRANSFERS) \ - || ((LENGTH) == TIM_DMABURSTLENGTH_13TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_14TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_15TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_16TRANSFERS) \ - || ((LENGTH) == TIM_DMABURSTLENGTH_17TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_18TRANSFERS)) - -#define IS_TIM_IC_FILTER(ICFILTER) ((ICFILTER) <= 0x0FU) - -/** @brief Set TIM IC prescaler - * @param __HANDLE__: TIM handle - * @param __CHANNEL__: specifies TIM Channel - * @param __ICPSC__: specifies the prescaler value. - * @retval None - */ -#define TIM_SET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__, __ICPSC__) \ - (((__CHANNEL__) == TIM_CHANNEL_1) \ - ? ((__HANDLE__)->Instance->CCMR1 |= (__ICPSC__)) \ - : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= ((__ICPSC__) << 8U)) \ - : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= (__ICPSC__)) : ((__HANDLE__)->Instance->CCMR2 |= ((__ICPSC__) << 8U))) - -/** @brief Reset TIM IC prescaler - * @param __HANDLE__: TIM handle - * @param __CHANNEL__: specifies TIM Channel - * @retval None - */ -#define TIM_RESET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__) \ - (((__CHANNEL__) == TIM_CHANNEL_1) \ - ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC) \ - : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC) \ - : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC)) - -/** @brief Set TIM IC polarity - * @param __HANDLE__: TIM handle - * @param __CHANNEL__: specifies TIM Channel - * @param __POLARITY__: specifies TIM Channel Polarity - * @retval None - */ -#define TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \ - (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCER |= (__POLARITY__)) \ - : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 4U)) \ - : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 8U)) \ - : ((__HANDLE__)->Instance->CCER |= (((__POLARITY__) << 12U) & TIM_CCER_CC4P))) - -/** @brief Reset TIM IC polarity - * @param __HANDLE__: TIM handle - * @param __CHANNEL__: specifies TIM Channel - * @retval None - */ -#define TIM_RESET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__) \ - (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCER &= (uint16_t) ~(TIM_CCER_CC1P | TIM_CCER_CC1NP)) \ - : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER &= (uint16_t) ~(TIM_CCER_CC2P | TIM_CCER_CC2NP)) \ - : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER &= (uint16_t) ~(TIM_CCER_CC3P | TIM_CCER_CC3NP)) \ - : ((__HANDLE__)->Instance->CCER &= (uint16_t)~TIM_CCER_CC4P)) - -/** - * @} - */ - -/* Private Functions --------------------------------------------------------*/ -/** @addtogroup TIM_Private_Functions - * @{ - */ -void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure); -void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); -void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); -void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); -void TIM_DMAError(DMA_HandleTypeDef *hdma); -void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma); -void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState); -/** - * @} - */ +/* End of exported constants -------------------------------------------------*/ /* Exported macros -----------------------------------------------------------*/ /** @defgroup TIM_Exported_Macros TIM Exported Macros * @{ */ -/** @brief Reset TIM handle state - * @param __HANDLE__: TIM handle. +/** @brief Reset TIM handle state. + * @param __HANDLE__ TIM handle. * @retval None */ -#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_TIM_STATE_RESET) +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) \ + do { \ + (__HANDLE__)->State = HAL_TIM_STATE_RESET; \ + (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \ + (__HANDLE__)->Base_MspInitCallback = NULL; \ + (__HANDLE__)->Base_MspDeInitCallback = NULL; \ + (__HANDLE__)->IC_MspInitCallback = NULL; \ + (__HANDLE__)->IC_MspDeInitCallback = NULL; \ + (__HANDLE__)->OC_MspInitCallback = NULL; \ + (__HANDLE__)->OC_MspDeInitCallback = NULL; \ + (__HANDLE__)->PWM_MspInitCallback = NULL; \ + (__HANDLE__)->PWM_MspDeInitCallback = NULL; \ + (__HANDLE__)->OnePulse_MspInitCallback = NULL; \ + (__HANDLE__)->OnePulse_MspDeInitCallback = NULL; \ + (__HANDLE__)->Encoder_MspInitCallback = NULL; \ + (__HANDLE__)->Encoder_MspDeInitCallback = NULL; \ + (__HANDLE__)->HallSensor_MspInitCallback = NULL; \ + (__HANDLE__)->HallSensor_MspDeInitCallback = NULL; \ + } while (0) +#else +#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) \ + do { \ + (__HANDLE__)->State = HAL_TIM_STATE_RESET; \ + (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \ + } while (0) +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /** * @brief Enable the TIM peripheral. - * @param __HANDLE__: TIM handle + * @param __HANDLE__ TIM handle * @retval None */ #define __HAL_TIM_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= (TIM_CR1_CEN)) /** * @brief Enable the TIM main Output. - * @param __HANDLE__: TIM handle + * @param __HANDLE__ TIM handle * @retval None */ #define __HAL_TIM_MOE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->BDTR |= (TIM_BDTR_MOE)) /** * @brief Disable the TIM peripheral. - * @param __HANDLE__: TIM handle + * @param __HANDLE__ TIM handle * @retval None */ -#define __HAL_TIM_DISABLE(__HANDLE__) \ - do { \ - if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0U) { \ - if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0U) { \ - (__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN); \ - } \ - } \ - } while (0U) -/* The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN - channels have been disabled */ -/** - * @brief Disable the TIM main Output. - * @param __HANDLE__: TIM handle - * @retval None - * @note The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN channels have been disabled - */ -#define __HAL_TIM_MOE_DISABLE(__HANDLE__) \ - do { \ - if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0U) { \ - if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0U) { \ - (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE); \ - } \ - } \ - } while (0U) +#define __HAL_TIM_DISABLE(__HANDLE__) \ + do { \ + if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) { \ + if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) { \ + (__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN); \ + } \ + } \ + } while (0) /** * @brief Disable the TIM main Output. - * @param __HANDLE__: TIM handle + * @param __HANDLE__ TIM handle + * @retval None + * @note The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN channels have been disabled + */ +#define __HAL_TIM_MOE_DISABLE(__HANDLE__) \ + do { \ + if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) { \ + if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) { \ + (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE); \ + } \ + } \ + } while (0) + +/** + * @brief Disable the TIM main Output. + * @param __HANDLE__ TIM handle * @retval None * @note The Main Output Enable of a timer instance is disabled unconditionally */ #define __HAL_TIM_MOE_DISABLE_UNCONDITIONALLY(__HANDLE__) (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE) -/** - * @brief Enables the specified TIM interrupt. - * @param __HANDLE__: specifies the TIM Handle. - * @param __INTERRUPT__: specifies the TIM interrupt source to enable. +/** @brief Enable the specified TIM interrupt. + * @param __HANDLE__ specifies the TIM Handle. + * @param __INTERRUPT__ specifies the TIM interrupt source to enable. * This parameter can be one of the following values: * @arg TIM_IT_UPDATE: Update interrupt - * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt * @arg TIM_IT_CC2: Capture/Compare 2 interrupt * @arg TIM_IT_CC3: Capture/Compare 3 interrupt * @arg TIM_IT_CC4: Capture/Compare 4 interrupt - * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_COM: Commutation interrupt * @arg TIM_IT_TRIGGER: Trigger interrupt * @arg TIM_IT_BREAK: Break interrupt * @retval None */ #define __HAL_TIM_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER |= (__INTERRUPT__)) -/** - * @brief Disables the specified TIM interrupt. - * @param __HANDLE__: specifies the TIM Handle. - * @param __INTERRUPT__: specifies the TIM interrupt source to disable. +/** @brief Disable the specified TIM interrupt. + * @param __HANDLE__ specifies the TIM Handle. + * @param __INTERRUPT__ specifies the TIM interrupt source to disable. * This parameter can be one of the following values: * @arg TIM_IT_UPDATE: Update interrupt - * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt * @arg TIM_IT_CC2: Capture/Compare 2 interrupt * @arg TIM_IT_CC3: Capture/Compare 3 interrupt * @arg TIM_IT_CC4: Capture/Compare 4 interrupt - * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_COM: Commutation interrupt * @arg TIM_IT_TRIGGER: Trigger interrupt * @arg TIM_IT_BREAK: Break interrupt * @retval None */ #define __HAL_TIM_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER &= ~(__INTERRUPT__)) -/** - * @brief Enables the specified DMA request. - * @param __HANDLE__: specifies the TIM Handle. - * @param __DMA__: specifies the TIM DMA request to enable. +/** @brief Enable the specified DMA request. + * @param __HANDLE__ specifies the TIM Handle. + * @param __DMA__ specifies the TIM DMA request to enable. * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: Update DMA request - * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request + * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request * @arg TIM_DMA_CC2: Capture/Compare 2 DMA request * @arg TIM_DMA_CC3: Capture/Compare 3 DMA request * @arg TIM_DMA_CC4: Capture/Compare 4 DMA request - * @arg TIM_DMA_COM: Commutation DMA request + * @arg TIM_DMA_COM: Commutation DMA request * @arg TIM_DMA_TRIGGER: Trigger DMA request * @retval None */ #define __HAL_TIM_ENABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER |= (__DMA__)) -/** - * @brief Disables the specified DMA request. - * @param __HANDLE__: specifies the TIM Handle. - * @param __DMA__: specifies the TIM DMA request to disable. +/** @brief Disable the specified DMA request. + * @param __HANDLE__ specifies the TIM Handle. + * @param __DMA__ specifies the TIM DMA request to disable. * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: Update DMA request - * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request + * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request * @arg TIM_DMA_CC2: Capture/Compare 2 DMA request * @arg TIM_DMA_CC3: Capture/Compare 3 DMA request * @arg TIM_DMA_CC4: Capture/Compare 4 DMA request - * @arg TIM_DMA_COM: Commutation DMA request + * @arg TIM_DMA_COM: Commutation DMA request * @arg TIM_DMA_TRIGGER: Trigger DMA request * @retval None */ #define __HAL_TIM_DISABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER &= ~(__DMA__)) -/** - * @brief Checks whether the specified TIM interrupt flag is set or not. - * @param __HANDLE__: specifies the TIM Handle. - * @param __FLAG__: specifies the TIM interrupt flag to check. +/** @brief Check whether the specified TIM interrupt flag is set or not. + * @param __HANDLE__ specifies the TIM Handle. + * @param __FLAG__ specifies the TIM interrupt flag to check. * This parameter can be one of the following values: * @arg TIM_FLAG_UPDATE: Update interrupt flag * @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag @@ -1211,10 +1207,9 @@ void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelStat */ #define __HAL_TIM_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__)) -/** - * @brief Clears the specified TIM interrupt flag. - * @param __HANDLE__: specifies the TIM Handle. - * @param __FLAG__: specifies the TIM interrupt flag to clear. +/** @brief Clear the specified TIM interrupt flag. + * @param __HANDLE__ specifies the TIM Handle. + * @param __FLAG__ specifies the TIM interrupt flag to clear. * This parameter can be one of the following values: * @arg TIM_FLAG_UPDATE: Update interrupt flag * @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag @@ -1233,122 +1228,109 @@ void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelStat #define __HAL_TIM_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__)) /** - * @brief Checks whether the specified TIM interrupt has occurred or not. - * @param __HANDLE__: TIM handle - * @param __INTERRUPT__: specifies the TIM interrupt source to check. + * @brief Check whether the specified TIM interrupt source is enabled or not. + * @param __HANDLE__ TIM handle + * @param __INTERRUPT__ specifies the TIM interrupt source to check. + * This parameter can be one of the following values: + * @arg TIM_IT_UPDATE: Update interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC2: Capture/Compare 2 interrupt + * @arg TIM_IT_CC3: Capture/Compare 3 interrupt + * @arg TIM_IT_CC4: Capture/Compare 4 interrupt + * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_TRIGGER: Trigger interrupt + * @arg TIM_IT_BREAK: Break interrupt * @retval The state of TIM_IT (SET or RESET). */ #define __HAL_TIM_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->DIER & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET) -/** - * @brief Clear the TIM interrupt pending bits - * @param __HANDLE__: TIM handle - * @param __INTERRUPT__: specifies the interrupt pending bit to clear. +/** @brief Clear the TIM interrupt pending bits. + * @param __HANDLE__ TIM handle + * @param __INTERRUPT__ specifies the interrupt pending bit to clear. + * This parameter can be one of the following values: + * @arg TIM_IT_UPDATE: Update interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC2: Capture/Compare 2 interrupt + * @arg TIM_IT_CC3: Capture/Compare 3 interrupt + * @arg TIM_IT_CC4: Capture/Compare 4 interrupt + * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_TRIGGER: Trigger interrupt + * @arg TIM_IT_BREAK: Break interrupt * @retval None */ #define __HAL_TIM_CLEAR_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->SR = ~(__INTERRUPT__)) /** - * @brief Indicates whether or not the TIM Counter is used as downcounter - * @param __HANDLE__: TIM handle. + * @brief Indicates whether or not the TIM Counter is used as downcounter. + * @param __HANDLE__ TIM handle. * @retval False (Counter used as upcounter) or True (Counter used as downcounter) - * @note This macro is particularly usefull to get the counting mode when the timer operates in Center-aligned mode or Encoder + * @note This macro is particularly useful to get the counting mode when the timer operates in Center-aligned mode or Encoder mode. */ #define __HAL_TIM_IS_TIM_COUNTING_DOWN(__HANDLE__) (((__HANDLE__)->Instance->CR1 & (TIM_CR1_DIR)) == (TIM_CR1_DIR)) /** - * @brief Sets the TIM active prescaler register value on update event. - * @param __HANDLE__: TIM handle. - * @param __PRESC__: specifies the active prescaler register new value. + * @brief Set the TIM Prescaler on runtime. + * @param __HANDLE__ TIM handle. + * @param __PRESC__ specifies the Prescaler new value. * @retval None */ #define __HAL_TIM_SET_PRESCALER(__HANDLE__, __PRESC__) ((__HANDLE__)->Instance->PSC = (__PRESC__)) /** - * @brief Sets the TIM Capture Compare Register value on runtime without - * calling another time ConfigChannel function. - * @param __HANDLE__: TIM handle. - * @param __CHANNEL__ : TIM Channels to be configured. - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param __COMPARE__: specifies the Capture Compare register new value. - * @retval None - */ -#define __HAL_TIM_SET_COMPARE(__HANDLE__, __CHANNEL__, __COMPARE__) (*(__IO uint32_t *)(&((__HANDLE__)->Instance->CCR1) + ((__CHANNEL__) >> 2U)) = (__COMPARE__)) - -/** - * @brief Gets the TIM Capture Compare Register value on runtime - * @param __HANDLE__: TIM handle. - * @param __CHANNEL__ : TIM Channel associated with the capture compare register - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: get capture/compare 1 register value - * @arg TIM_CHANNEL_2: get capture/compare 2 register value - * @arg TIM_CHANNEL_3: get capture/compare 3 register value - * @arg TIM_CHANNEL_4: get capture/compare 4 register value - * @retval 16-bit or 32-bit value of the capture/compare register (TIMx_CCRy) - */ -#define __HAL_TIM_GET_COMPARE(__HANDLE__, __CHANNEL__) (*(__IO uint32_t *)(&((__HANDLE__)->Instance->CCR1) + ((__CHANNEL__) >> 2U))) - -/** - * @brief Sets the TIM Counter Register value on runtime. - * @param __HANDLE__: TIM handle. - * @param __COUNTER__: specifies the Counter register new value. + * @brief Set the TIM Counter Register value on runtime. + * @param __HANDLE__ TIM handle. + * @param __COUNTER__ specifies the Counter register new value. * @retval None */ #define __HAL_TIM_SET_COUNTER(__HANDLE__, __COUNTER__) ((__HANDLE__)->Instance->CNT = (__COUNTER__)) /** - * @brief Gets the TIM Counter Register value on runtime. - * @param __HANDLE__: TIM handle. + * @brief Get the TIM Counter Register value on runtime. + * @param __HANDLE__ TIM handle. * @retval 16-bit or 32-bit value of the timer counter register (TIMx_CNT) */ #define __HAL_TIM_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNT) /** - * @brief Sets the TIM Autoreload Register value on runtime without calling - * another time any Init function. - * @param __HANDLE__: TIM handle. - * @param __AUTORELOAD__: specifies the Counter register new value. + * @brief Set the TIM Autoreload Register value on runtime without calling another time any Init function. + * @param __HANDLE__ TIM handle. + * @param __AUTORELOAD__ specifies the Counter register new value. * @retval None */ #define __HAL_TIM_SET_AUTORELOAD(__HANDLE__, __AUTORELOAD__) \ do { \ (__HANDLE__)->Instance->ARR = (__AUTORELOAD__); \ (__HANDLE__)->Init.Period = (__AUTORELOAD__); \ - } while (0U) + } while (0) /** - * @brief Gets the TIM Autoreload Register value on runtime - * @param __HANDLE__: TIM handle. - * @retval @retval 16-bit or 32-bit value of the timer auto-reload register(TIMx_ARR) + * @brief Get the TIM Autoreload Register value on runtime. + * @param __HANDLE__ TIM handle. + * @retval 16-bit or 32-bit value of the timer auto-reload register(TIMx_ARR) */ #define __HAL_TIM_GET_AUTORELOAD(__HANDLE__) ((__HANDLE__)->Instance->ARR) /** - * @brief Sets the TIM Clock Division value on runtime without calling - * another time any Init function. - * @param __HANDLE__: TIM handle. - * @param __CKD__: specifies the clock division value. + * @brief Set the TIM Clock Division value on runtime without calling another time any Init function. + * @param __HANDLE__ TIM handle. + * @param __CKD__ specifies the clock division value. * This parameter can be one of the following value: * @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT * @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT * @arg TIM_CLOCKDIVISION_DIV4: tDTS=4*tCK_INT * @retval None */ -#define __HAL_TIM_SET_CLOCKDIVISION(__HANDLE__, __CKD__) \ - do { \ - (__HANDLE__)->Instance->CR1 &= (uint16_t)(~TIM_CR1_CKD); \ - (__HANDLE__)->Instance->CR1 |= (__CKD__); \ - (__HANDLE__)->Init.ClockDivision = (__CKD__); \ - } while (0U) +#define __HAL_TIM_SET_CLOCKDIVISION(__HANDLE__, __CKD__) \ + do { \ + (__HANDLE__)->Instance->CR1 &= (~TIM_CR1_CKD); \ + (__HANDLE__)->Instance->CR1 |= (__CKD__); \ + (__HANDLE__)->Init.ClockDivision = (__CKD__); \ + } while (0) /** - * @brief Gets the TIM Clock Division value on runtime - * @param __HANDLE__: TIM handle. + * @brief Get the TIM Clock Division value on runtime. + * @param __HANDLE__ TIM handle. * @retval The clock division can be one of the following values: * @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT * @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT @@ -1357,16 +1339,15 @@ mode. #define __HAL_TIM_GET_CLOCKDIVISION(__HANDLE__) ((__HANDLE__)->Instance->CR1 & TIM_CR1_CKD) /** - * @brief Sets the TIM Input Capture prescaler on runtime without calling - * another time HAL_TIM_IC_ConfigChannel() function. - * @param __HANDLE__: TIM handle. - * @param __CHANNEL__ : TIM Channels to be configured. + * @brief Set the TIM Input Capture prescaler on runtime without calling another time HAL_TIM_IC_ConfigChannel() function. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param __ICPSC__: specifies the Input Capture4 prescaler new value. + * @param __ICPSC__ specifies the Input Capture4 prescaler new value. * This parameter can be one of the following values: * @arg TIM_ICPSC_DIV1: no prescaler * @arg TIM_ICPSC_DIV2: capture is done once every 2 events @@ -1378,12 +1359,12 @@ mode. do { \ TIM_RESET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__)); \ TIM_SET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__), (__ICPSC__)); \ - } while (0U) + } while (0) /** - * @brief Gets the TIM Input Capture prescaler on runtime - * @param __HANDLE__: TIM handle. - * @param __CHANNEL__: TIM Channels to be configured. + * @brief Get the TIM Input Capture prescaler on runtime. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: get input capture 1 prescaler value * @arg TIM_CHANNEL_2: get input capture 2 prescaler value @@ -1402,63 +1383,393 @@ mode. : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC3PSC) : (((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC4PSC)) >> 8U) /** - * @brief Set the Update Request Source (URS) bit of the TIMx_CR1 register - * @param __HANDLE__: TIM handle. - * @note When the USR bit of the TIMx_CR1 register is set, only counter - * overflow/underflow generates an update interrupt or DMA request (if - * enabled) - * @retval None - */ -#define __HAL_TIM_URS_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= (TIM_CR1_URS)) - -/** - * @brief Reset the Update Request Source (URS) bit of the TIMx_CR1 register - * @param __HANDLE__: TIM handle. - * @note When the USR bit of the TIMx_CR1 register is reset, any of the - * following events generate an update interrupt or DMA request (if - * enabled): - * (+) Counter overflow/underflow - * (+) Setting the UG bit - * (+) Update generation through the slave mode controller - * @retval None - */ -#define __HAL_TIM_URS_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_URS)) - -/** - * @brief Sets the TIM Capture x input polarity on runtime. - * @param __HANDLE__: TIM handle. - * @param __CHANNEL__: TIM Channels to be configured. + * @brief Set the TIM Capture Compare Register value on runtime without calling another time ConfigChannel function. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param __POLARITY__: Polarity for TIx source + * @param __COMPARE__ specifies the Capture Compare register new value. + * @retval None + */ +#define __HAL_TIM_SET_COMPARE(__HANDLE__, __CHANNEL__, __COMPARE__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCR1 = (__COMPARE__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2 = (__COMPARE__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3 = (__COMPARE__)) : ((__HANDLE__)->Instance->CCR4 = (__COMPARE__))) + +/** + * @brief Get the TIM Capture Compare Register value on runtime. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channel associated with the capture compare register + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: get capture/compare 1 register value + * @arg TIM_CHANNEL_2: get capture/compare 2 register value + * @arg TIM_CHANNEL_3: get capture/compare 3 register value + * @arg TIM_CHANNEL_4: get capture/compare 4 register value + * @retval 16-bit or 32-bit value of the capture/compare register (TIMx_CCRy) + */ +#define __HAL_TIM_GET_COMPARE(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCR1) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2) : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3) : ((__HANDLE__)->Instance->CCR4)) + +/** + * @brief Set the TIM Output compare preload. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval None + */ +#define __HAL_TIM_ENABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1PE) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2PE) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3PE) : ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4PE)) + +/** + * @brief Reset the TIM Output compare preload. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval None + */ +#define __HAL_TIM_DISABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1PE) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2PE) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3PE) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4PE)) + +/** + * @brief Enable fast mode for a given channel. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @note When fast mode is enabled an active edge on the trigger input acts + * like a compare match on CCx output. Delay to sample the trigger + * input and to activate CCx output is reduced to 3 clock cycles. + * @note Fast mode acts only if the channel is configured in PWM1 or PWM2 mode. + * @retval None + */ +#define __HAL_TIM_ENABLE_OCxFAST(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1FE) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2FE) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3FE) : ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4FE)) + +/** + * @brief Disable fast mode for a given channel. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @note When fast mode is disabled CCx output behaves normally depending + * on counter and CCRx values even when the trigger is ON. The minimum + * delay to activate CCx output when an active edge occurs on the + * trigger input is 5 clock cycles. + * @retval None + */ +#define __HAL_TIM_DISABLE_OCxFAST(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE)) + +/** + * @brief Set the Update Request Source (URS) bit of the TIMx_CR1 register. + * @param __HANDLE__ TIM handle. + * @note When the URS bit of the TIMx_CR1 register is set, only counter + * overflow/underflow generates an update interrupt or DMA request (if + * enabled) + * @retval None + */ +#define __HAL_TIM_URS_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= TIM_CR1_URS) + +/** + * @brief Reset the Update Request Source (URS) bit of the TIMx_CR1 register. + * @param __HANDLE__ TIM handle. + * @note When the URS bit of the TIMx_CR1 register is reset, any of the + * following events generate an update interrupt or DMA request (if + * enabled): + * _ Counter overflow underflow + * _ Setting the UG bit + * _ Update generation through the slave mode controller + * @retval None + */ +#define __HAL_TIM_URS_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~TIM_CR1_URS) + +/** + * @brief Set the TIM Capture x input polarity on runtime. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param __POLARITY__ Polarity for TIx source * @arg TIM_INPUTCHANNELPOLARITY_RISING: Rising Edge * @arg TIM_INPUTCHANNELPOLARITY_FALLING: Falling Edge * @arg TIM_INPUTCHANNELPOLARITY_BOTHEDGE: Rising and Falling Edge - * @note The polarity TIM_INPUTCHANNELPOLARITY_BOTHEDGE is not authorized for TIM Channel 4. * @retval None */ #define __HAL_TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \ do { \ TIM_RESET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__)); \ TIM_SET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__), (__POLARITY__)); \ - } while (0U) + } while (0) /** * @} */ +/* End of exported macros ----------------------------------------------------*/ -/* Include TIM HAL Extension module */ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup TIM_Private_Constants TIM Private Constants + * @{ + */ +/* The counter of a timer instance is disabled only if all the CCx and CCxN + channels have been disabled */ +#define TIM_CCER_CCxE_MASK ((uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E)) +#define TIM_CCER_CCxNE_MASK ((uint32_t)(TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) +/** + * @} + */ +/* End of private constants --------------------------------------------------*/ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup TIM_Private_Macros TIM Private Macros + * @{ + */ +#define IS_TIM_CLEARINPUT_SOURCE(__MODE__) (((__MODE__) == TIM_CLEARINPUTSOURCE_NONE) || ((__MODE__) == TIM_CLEARINPUTSOURCE_ETR)) + +#define IS_TIM_DMA_BASE(__BASE__) \ + (((__BASE__) == TIM_DMABASE_CR1) || ((__BASE__) == TIM_DMABASE_CR2) || ((__BASE__) == TIM_DMABASE_SMCR) || ((__BASE__) == TIM_DMABASE_DIER) || ((__BASE__) == TIM_DMABASE_SR) \ + || ((__BASE__) == TIM_DMABASE_EGR) || ((__BASE__) == TIM_DMABASE_CCMR1) || ((__BASE__) == TIM_DMABASE_CCMR2) || ((__BASE__) == TIM_DMABASE_CCER) || ((__BASE__) == TIM_DMABASE_CNT) \ + || ((__BASE__) == TIM_DMABASE_PSC) || ((__BASE__) == TIM_DMABASE_ARR) || ((__BASE__) == TIM_DMABASE_RCR) || ((__BASE__) == TIM_DMABASE_CCR1) || ((__BASE__) == TIM_DMABASE_CCR2) \ + || ((__BASE__) == TIM_DMABASE_CCR3) || ((__BASE__) == TIM_DMABASE_CCR4) || ((__BASE__) == TIM_DMABASE_BDTR)) + +#define IS_TIM_EVENT_SOURCE(__SOURCE__) ((((__SOURCE__)&0xFFFFFF00U) == 0x00000000U) && ((__SOURCE__) != 0x00000000U)) + +#define IS_TIM_COUNTER_MODE(__MODE__) \ + (((__MODE__) == TIM_COUNTERMODE_UP) || ((__MODE__) == TIM_COUNTERMODE_DOWN) || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED1) || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED2) \ + || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED3)) + +#define IS_TIM_CLOCKDIVISION_DIV(__DIV__) (((__DIV__) == TIM_CLOCKDIVISION_DIV1) || ((__DIV__) == TIM_CLOCKDIVISION_DIV2) || ((__DIV__) == TIM_CLOCKDIVISION_DIV4)) + +#define IS_TIM_AUTORELOAD_PRELOAD(PRELOAD) (((PRELOAD) == TIM_AUTORELOAD_PRELOAD_DISABLE) || ((PRELOAD) == TIM_AUTORELOAD_PRELOAD_ENABLE)) + +#define IS_TIM_FAST_STATE(__STATE__) (((__STATE__) == TIM_OCFAST_DISABLE) || ((__STATE__) == TIM_OCFAST_ENABLE)) + +#define IS_TIM_OC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCPOLARITY_HIGH) || ((__POLARITY__) == TIM_OCPOLARITY_LOW)) + +#define IS_TIM_OCN_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCNPOLARITY_HIGH) || ((__POLARITY__) == TIM_OCNPOLARITY_LOW)) + +#define IS_TIM_OCIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCIDLESTATE_SET) || ((__STATE__) == TIM_OCIDLESTATE_RESET)) + +#define IS_TIM_OCNIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCNIDLESTATE_SET) || ((__STATE__) == TIM_OCNIDLESTATE_RESET)) + +#define IS_TIM_ENCODERINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_RISING) || ((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_FALLING)) + +#define IS_TIM_IC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ICPOLARITY_RISING) || ((__POLARITY__) == TIM_ICPOLARITY_FALLING) || ((__POLARITY__) == TIM_ICPOLARITY_BOTHEDGE)) + +#define IS_TIM_IC_SELECTION(__SELECTION__) (((__SELECTION__) == TIM_ICSELECTION_DIRECTTI) || ((__SELECTION__) == TIM_ICSELECTION_INDIRECTTI) || ((__SELECTION__) == TIM_ICSELECTION_TRC)) + +#define IS_TIM_IC_PRESCALER(__PRESCALER__) (((__PRESCALER__) == TIM_ICPSC_DIV1) || ((__PRESCALER__) == TIM_ICPSC_DIV2) || ((__PRESCALER__) == TIM_ICPSC_DIV4) || ((__PRESCALER__) == TIM_ICPSC_DIV8)) + +#define IS_TIM_OPM_MODE(__MODE__) (((__MODE__) == TIM_OPMODE_SINGLE) || ((__MODE__) == TIM_OPMODE_REPETITIVE)) + +#define IS_TIM_ENCODER_MODE(__MODE__) (((__MODE__) == TIM_ENCODERMODE_TI1) || ((__MODE__) == TIM_ENCODERMODE_TI2) || ((__MODE__) == TIM_ENCODERMODE_TI12)) + +#define IS_TIM_DMA_SOURCE(__SOURCE__) ((((__SOURCE__)&0xFFFF80FFU) == 0x00000000U) && ((__SOURCE__) != 0x00000000U)) + +#define IS_TIM_CHANNELS(__CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2) || ((__CHANNEL__) == TIM_CHANNEL_3) || ((__CHANNEL__) == TIM_CHANNEL_4) || ((__CHANNEL__) == TIM_CHANNEL_ALL)) + +#define IS_TIM_OPM_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2)) + +#define IS_TIM_COMPLEMENTARY_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2) || ((__CHANNEL__) == TIM_CHANNEL_3)) + +#define IS_TIM_CLOCKSOURCE(__CLOCK__) \ + (((__CLOCK__) == TIM_CLOCKSOURCE_INTERNAL) || ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR0) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR1) \ + || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR3) || ((__CLOCK__) == TIM_CLOCKSOURCE_TI1ED) || ((__CLOCK__) == TIM_CLOCKSOURCE_TI1) \ + || ((__CLOCK__) == TIM_CLOCKSOURCE_TI2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE1)) + +#define IS_TIM_CLOCKPOLARITY(__POLARITY__) \ + (((__POLARITY__) == TIM_CLOCKPOLARITY_INVERTED) || ((__POLARITY__) == TIM_CLOCKPOLARITY_NONINVERTED) || ((__POLARITY__) == TIM_CLOCKPOLARITY_RISING) \ + || ((__POLARITY__) == TIM_CLOCKPOLARITY_FALLING) || ((__POLARITY__) == TIM_CLOCKPOLARITY_BOTHEDGE)) + +#define IS_TIM_CLOCKPRESCALER(__PRESCALER__) \ + (((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV1) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV2) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV4) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV8)) + +#define IS_TIM_CLOCKFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_CLEARINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_CLEARINPUTPOLARITY_INVERTED) || ((__POLARITY__) == TIM_CLEARINPUTPOLARITY_NONINVERTED)) + +#define IS_TIM_CLEARINPUT_PRESCALER(__PRESCALER__) \ + (((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV1) || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV2) || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV4) \ + || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV8)) + +#define IS_TIM_CLEARINPUT_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_OSSR_STATE(__STATE__) (((__STATE__) == TIM_OSSR_ENABLE) || ((__STATE__) == TIM_OSSR_DISABLE)) + +#define IS_TIM_OSSI_STATE(__STATE__) (((__STATE__) == TIM_OSSI_ENABLE) || ((__STATE__) == TIM_OSSI_DISABLE)) + +#define IS_TIM_LOCK_LEVEL(__LEVEL__) (((__LEVEL__) == TIM_LOCKLEVEL_OFF) || ((__LEVEL__) == TIM_LOCKLEVEL_1) || ((__LEVEL__) == TIM_LOCKLEVEL_2) || ((__LEVEL__) == TIM_LOCKLEVEL_3)) + +#define IS_TIM_BREAK_FILTER(__BRKFILTER__) ((__BRKFILTER__) <= 0xFUL) + +#define IS_TIM_BREAK_STATE(__STATE__) (((__STATE__) == TIM_BREAK_ENABLE) || ((__STATE__) == TIM_BREAK_DISABLE)) + +#define IS_TIM_BREAK_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_BREAKPOLARITY_LOW) || ((__POLARITY__) == TIM_BREAKPOLARITY_HIGH)) + +#define IS_TIM_AUTOMATIC_OUTPUT_STATE(__STATE__) (((__STATE__) == TIM_AUTOMATICOUTPUT_ENABLE) || ((__STATE__) == TIM_AUTOMATICOUTPUT_DISABLE)) + +#define IS_TIM_TRGO_SOURCE(__SOURCE__) \ + (((__SOURCE__) == TIM_TRGO_RESET) || ((__SOURCE__) == TIM_TRGO_ENABLE) || ((__SOURCE__) == TIM_TRGO_UPDATE) || ((__SOURCE__) == TIM_TRGO_OC1) || ((__SOURCE__) == TIM_TRGO_OC1REF) \ + || ((__SOURCE__) == TIM_TRGO_OC2REF) || ((__SOURCE__) == TIM_TRGO_OC3REF) || ((__SOURCE__) == TIM_TRGO_OC4REF)) + +#define IS_TIM_MSM_STATE(__STATE__) (((__STATE__) == TIM_MASTERSLAVEMODE_ENABLE) || ((__STATE__) == TIM_MASTERSLAVEMODE_DISABLE)) + +#define IS_TIM_SLAVE_MODE(__MODE__) \ + (((__MODE__) == TIM_SLAVEMODE_DISABLE) || ((__MODE__) == TIM_SLAVEMODE_RESET) || ((__MODE__) == TIM_SLAVEMODE_GATED) || ((__MODE__) == TIM_SLAVEMODE_TRIGGER) \ + || ((__MODE__) == TIM_SLAVEMODE_EXTERNAL1)) + +#define IS_TIM_PWM_MODE(__MODE__) (((__MODE__) == TIM_OCMODE_PWM1) || ((__MODE__) == TIM_OCMODE_PWM2)) + +#define IS_TIM_OC_MODE(__MODE__) \ + (((__MODE__) == TIM_OCMODE_TIMING) || ((__MODE__) == TIM_OCMODE_ACTIVE) || ((__MODE__) == TIM_OCMODE_INACTIVE) || ((__MODE__) == TIM_OCMODE_TOGGLE) || ((__MODE__) == TIM_OCMODE_FORCED_ACTIVE) \ + || ((__MODE__) == TIM_OCMODE_FORCED_INACTIVE)) + +#define IS_TIM_TRIGGER_SELECTION(__SELECTION__) \ + (((__SELECTION__) == TIM_TS_ITR0) || ((__SELECTION__) == TIM_TS_ITR1) || ((__SELECTION__) == TIM_TS_ITR2) || ((__SELECTION__) == TIM_TS_ITR3) || ((__SELECTION__) == TIM_TS_TI1F_ED) \ + || ((__SELECTION__) == TIM_TS_TI1FP1) || ((__SELECTION__) == TIM_TS_TI2FP2) || ((__SELECTION__) == TIM_TS_ETRF)) + +#define IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(__SELECTION__) \ + (((__SELECTION__) == TIM_TS_ITR0) || ((__SELECTION__) == TIM_TS_ITR1) || ((__SELECTION__) == TIM_TS_ITR2) || ((__SELECTION__) == TIM_TS_ITR3) || ((__SELECTION__) == TIM_TS_NONE)) + +#define IS_TIM_TRIGGERPOLARITY(__POLARITY__) \ + (((__POLARITY__) == TIM_TRIGGERPOLARITY_INVERTED) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_NONINVERTED) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_RISING) \ + || ((__POLARITY__) == TIM_TRIGGERPOLARITY_FALLING) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_BOTHEDGE)) + +#define IS_TIM_TRIGGERPRESCALER(__PRESCALER__) \ + (((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV1) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV2) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV4) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV8)) + +#define IS_TIM_TRIGGERFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_TI1SELECTION(__TI1SELECTION__) (((__TI1SELECTION__) == TIM_TI1SELECTION_CH1) || ((__TI1SELECTION__) == TIM_TI1SELECTION_XORCOMBINATION)) + +#define IS_TIM_DMA_LENGTH(__LENGTH__) \ + (((__LENGTH__) == TIM_DMABURSTLENGTH_1TRANSFER) || ((__LENGTH__) == TIM_DMABURSTLENGTH_2TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_3TRANSFERS) \ + || ((__LENGTH__) == TIM_DMABURSTLENGTH_4TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_5TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_6TRANSFERS) \ + || ((__LENGTH__) == TIM_DMABURSTLENGTH_7TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_8TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_9TRANSFERS) \ + || ((__LENGTH__) == TIM_DMABURSTLENGTH_10TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_11TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_12TRANSFERS) \ + || ((__LENGTH__) == TIM_DMABURSTLENGTH_13TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_14TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_15TRANSFERS) \ + || ((__LENGTH__) == TIM_DMABURSTLENGTH_16TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_17TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_18TRANSFERS)) + +#define IS_TIM_DMA_DATA_LENGTH(LENGTH) (((LENGTH) >= 0x1U) && ((LENGTH) < 0x10000U)) + +#define IS_TIM_IC_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_DEADTIME(__DEADTIME__) ((__DEADTIME__) <= 0xFFU) + +#define IS_TIM_SLAVEMODE_TRIGGER_ENABLED(__TRIGGER__) ((__TRIGGER__) == TIM_SLAVEMODE_TRIGGER) + +#define TIM_SET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__, __ICPSC__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCMR1 |= (__ICPSC__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= ((__ICPSC__) << 8U)) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= (__ICPSC__)) : ((__HANDLE__)->Instance->CCMR2 |= ((__ICPSC__) << 8U))) + +#define TIM_RESET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC)) + +#define TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCER |= (__POLARITY__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 4U)) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 8U)) : ((__HANDLE__)->Instance->CCER |= (((__POLARITY__) << 12U)))) + +#define TIM_RESET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP)) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP)) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC3P)) : ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC4P))) + +#define TIM_CHANNEL_STATE_GET(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? (__HANDLE__)->ChannelState[0] \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelState[1] : ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelState[2] : (__HANDLE__)->ChannelState[3]) + +#define TIM_CHANNEL_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__)) : ((__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__))) + +#define TIM_CHANNEL_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) \ + do { \ + (__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__); \ + } while (0) + +#define TIM_CHANNEL_N_STATE_GET(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? (__HANDLE__)->ChannelNState[0] \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelNState[1] : ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelNState[2] : (__HANDLE__)->ChannelNState[3]) + +#define TIM_CHANNEL_N_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) \ + ? ((__HANDLE__)->ChannelNState[0] = (__CHANNEL_STATE__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelNState[1] = (__CHANNEL_STATE__)) \ + : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelNState[2] = (__CHANNEL_STATE__)) : ((__HANDLE__)->ChannelNState[3] = (__CHANNEL_STATE__))) + +#define TIM_CHANNEL_N_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) \ + do { \ + (__HANDLE__)->ChannelNState[0] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelNState[1] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelNState[2] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelNState[3] = (__CHANNEL_STATE__); \ + } while (0) + +/** + * @} + */ +/* End of private macros -----------------------------------------------------*/ + +/* Include TIM HAL Extended module */ #include "stm32f1xx_hal_tim_ex.h" /* Exported functions --------------------------------------------------------*/ -/** @addtogroup TIM_Exported_Functions +/** @addtogroup TIM_Exported_Functions TIM Exported Functions * @{ */ -/** @addtogroup TIM_Exported_Functions_Group1 +/** @addtogroup TIM_Exported_Functions_Group1 TIM Time Base functions + * @brief Time Base functions * @{ */ /* Time Base functions ********************************************************/ @@ -1479,10 +1790,11 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim); * @} */ -/** @addtogroup TIM_Exported_Functions_Group2 +/** @addtogroup TIM_Exported_Functions_Group2 TIM Output Compare functions + * @brief TIM Output Compare functions * @{ */ -/* Timer Output Compare functions **********************************************/ +/* Timer Output Compare functions *********************************************/ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim); HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim); void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim); @@ -1496,15 +1808,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel); /* Non-Blocking mode: DMA */ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length); HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); - /** * @} */ -/** @addtogroup TIM_Exported_Functions_Group3 +/** @addtogroup TIM_Exported_Functions_Group3 TIM PWM functions + * @brief TIM PWM functions * @{ */ -/* Timer PWM functions *********************************************************/ +/* Timer PWM functions ********************************************************/ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim); HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim); void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim); @@ -1522,10 +1834,11 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel * @} */ -/** @addtogroup TIM_Exported_Functions_Group4 +/** @addtogroup TIM_Exported_Functions_Group4 TIM Input Capture functions + * @brief TIM Input Capture functions * @{ */ -/* Timer Input Capture functions ***********************************************/ +/* Timer Input Capture functions **********************************************/ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim); HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim); void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim); @@ -1543,10 +1856,11 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) * @} */ -/** @addtogroup TIM_Exported_Functions_Group5 +/** @addtogroup TIM_Exported_Functions_Group5 TIM One Pulse functions + * @brief TIM One Pulse functions * @{ */ -/* Timer One Pulse functions ***************************************************/ +/* Timer One Pulse functions **************************************************/ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode); HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim); void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim); @@ -1561,10 +1875,11 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Out * @} */ -/** @addtogroup TIM_Exported_Functions_Group6 +/** @addtogroup TIM_Exported_Functions_Group6 TIM Encoder functions + * @brief TIM Encoder functions * @{ */ -/* Timer Encoder functions *****************************************************/ +/* Timer Encoder functions ****************************************************/ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig); HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim); void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim); @@ -1578,21 +1893,22 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chan /* Non-Blocking mode: DMA */ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length); HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); - /** * @} */ -/** @addtogroup TIM_Exported_Functions_Group7 +/** @addtogroup TIM_Exported_Functions_Group7 TIM IRQ handler management + * @brief IRQ handler management * @{ */ -/* Interrupt Handler functions **********************************************/ +/* Interrupt Handler functions ***********************************************/ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim); /** * @} */ -/** @addtogroup TIM_Exported_Functions_Group8 +/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions + * @brief Peripheral Control functions * @{ */ /* Control functions *********************************************************/ @@ -1603,37 +1919,52 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef *sClearInputConfig, uint32_t Channel); HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig); HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection); -HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig); -HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig); +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig); +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig); HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength); +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength); HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc); HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength); +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength); HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc); HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource); uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel); - /** * @} */ -/** @addtogroup TIM_Exported_Functions_Group9 +/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions + * @brief TIM Callbacks functions * @{ */ /* Callback in non blocking modes (Interrupt and DMA) *************************/ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim); void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim); void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim); void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim); void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim); void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim); + +/* Callbacks Register/UnRegister functions ***********************************/ + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, pTIM_CallbackTypeDef pCallback); +HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + /** * @} */ -/** @addtogroup TIM_Exported_Functions_Group10 +/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions + * @brief Peripheral State functions * @{ */ -/* Peripheral State functions **************************************************/ +/* Peripheral State functions ************************************************/ HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim); HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim); HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim); @@ -1641,6 +1972,10 @@ HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim); HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim); HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim); +/* Peripheral Channel state functions ************************************************/ +HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim); +HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim); /** * @} */ @@ -1648,6 +1983,31 @@ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim); /** * @} */ +/* End of exported functions -------------------------------------------------*/ + +/* Private functions----------------------------------------------------------*/ +/** @defgroup TIM_Private_Functions TIM Private Functions + * @{ + */ +void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure); +void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); +void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); + +void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma); +void TIM_DMAError(DMA_HandleTypeDef *hdma); +void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma); +void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma); +void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +void TIM_ResetCallback(TIM_HandleTypeDef *htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ +/* End of private functions --------------------------------------------------*/ /** * @} @@ -1661,6 +2021,6 @@ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim); } #endif -#endif /* __STM32F1xx_HAL_TIM_H */ +#endif /* STM32F1xx_HAL_TIM_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h index c0f48190..278b4594 100644 --- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h +++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h @@ -2,40 +2,24 @@ ****************************************************************************** * @file stm32f1xx_hal_tim_ex.h * @author MCD Application Team - * @brief Header file of TIM HAL Extension module. + * @brief Header file of TIM HAL Extended module. ****************************************************************************** * @attention * - *

© COPYRIGHT(c) 2016 STMicroelectronics

+ *

© Copyright (c) 2016 STMicroelectronics. + * All rights reserved.

* - * Redistribution and use in source and binary forms, with or without modification, - * are permitted provided that the following conditions are met: - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright notice, - * this list of conditions and the following disclaimer in the documentation - * and/or other materials provided with the distribution. - * 3. Neither the name of STMicroelectronics nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, - * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ -#ifndef __STM32F1xx_HAL_TIM_EX_H -#define __STM32F1xx_HAL_TIM_EX_H +#ifndef STM32F1xx_HAL_TIM_EX_H +#define STM32F1xx_HAL_TIM_EX_H #ifdef __cplusplus extern "C" { @@ -53,7 +37,7 @@ extern "C" { */ /* Exported types ------------------------------------------------------------*/ -/** @defgroup TIMEx_Exported_Types TIMEx Exported Types +/** @defgroup TIMEx_Exported_Types TIM Extended Exported Types * @{ */ @@ -62,69 +46,31 @@ extern "C" { */ typedef struct { - uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal. This parameter can be a value of @ref TIM_Input_Capture_Polarity */ uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler. This parameter can be a value of @ref TIM_Input_Capture_Prescaler */ - uint32_t IC1Filter; /*!< Specifies the input capture filter. - This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + uint32_t IC1Filter; /*!< Specifies the input capture filter. + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + uint32_t Commutation_Delay; /*!< Specifies the pulse value to be loaded into the Capture Compare Register. This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */ } TIM_HallSensor_InitTypeDef; - -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) - -/** - * @brief TIM Break and Dead time configuration Structure definition - */ -typedef struct { - uint32_t OffStateRunMode; /*!< TIM off state in run mode - This parameter can be a value of @ref TIM_OSSR_Off_State_Selection_for_Run_mode_state */ - uint32_t OffStateIDLEMode; /*!< TIM off state in IDLE mode - This parameter can be a value of @ref TIM_OSSI_Off_State_Selection_for_Idle_mode_state */ - uint32_t LockLevel; /*!< TIM Lock level - This parameter can be a value of @ref TIM_Lock_level */ - uint32_t DeadTime; /*!< TIM dead Time - This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF */ - uint32_t BreakState; /*!< TIM Break State - This parameter can be a value of @ref TIM_Break_Input_enable_disable */ - uint32_t BreakPolarity; /*!< TIM Break input polarity - This parameter can be a value of @ref TIM_Break_Polarity */ - uint32_t AutomaticOutput; /*!< TIM Automatic Output Enable state - This parameter can be a value of @ref TIM_AOE_Bit_Set_Reset */ -} TIM_BreakDeadTimeConfigTypeDef; - -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ - -/** - * @brief TIM Master configuration Structure definition - */ -typedef struct { - uint32_t MasterOutputTrigger; /*!< Trigger output (TRGO) selection - This parameter can be a value of @ref TIM_Master_Mode_Selection */ - uint32_t MasterSlaveMode; /*!< Master/slave mode selection - This parameter can be a value of @ref TIM_Master_Slave_Mode */ -} TIM_MasterConfigTypeDef; - /** * @} */ +/* End of exported types -----------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) -/** @defgroup TIMEx_Exported_Constants TIMEx Exported Constants +/** @defgroup TIMEx_Exported_Constants TIM Extended Exported Constants * @{ */ -/** @defgroup TIMEx_Clock_Filter TIMEx Clock Filter +/** @defgroup TIMEx_Remap TIM Extended Remapping * @{ */ -#define IS_TIM_DEADTIME(DEADTIME) ((DEADTIME) <= 0xFFU) /*!< BreakDead Time */ /** * @} */ @@ -132,19 +78,38 @@ typedef struct { /** * @} */ -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ +/* End of exported constants -------------------------------------------------*/ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Macros TIM Extended Exported Macros + * @{ + */ + +/** + * @} + */ +/* End of exported macro -----------------------------------------------------*/ + +/* Private macro -------------------------------------------------------------*/ +/** @defgroup TIMEx_Private_Macros TIM Extended Private Macros + * @{ + */ + +/** + * @} + */ +/* End of private macro ------------------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ -/** @addtogroup TIMEx_Exported_Functions +/** @addtogroup TIMEx_Exported_Functions TIM Extended Exported Functions * @{ */ -/** @addtogroup TIMEx_Exported_Functions_Group1 +/** @addtogroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions + * @brief Timer Hall Sensor functions * @{ */ -/* Timer Hall Sensor functions **********************************************/ +/* Timer Hall Sensor functions **********************************************/ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig); HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim); @@ -164,12 +129,11 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim); * @} */ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) - -/** @addtogroup TIMEx_Exported_Functions_Group2 +/** @addtogroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions + * @brief Timer Complementary Output Compare functions * @{ */ -/* Timer Complementary Output Compare functions *****************************/ +/* Timer Complementary Output Compare functions *****************************/ /* Blocking mode: Polling */ HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel); HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); @@ -185,10 +149,11 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann * @} */ -/** @addtogroup TIMEx_Exported_Functions_Group3 +/** @addtogroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions + * @brief Timer Complementary PWM functions * @{ */ -/* Timer Complementary PWM functions ****************************************/ +/* Timer Complementary PWM functions ****************************************/ /* Blocking mode: Polling */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel); HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); @@ -203,10 +168,11 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan * @} */ -/** @addtogroup TIMEx_Exported_Functions_Group4 +/** @addtogroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions + * @brief Timer Complementary One Pulse functions * @{ */ -/* Timer Complementary One Pulse functions **********************************/ +/* Timer Complementary One Pulse functions **********************************/ /* Blocking mode: Polling */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel); HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel); @@ -217,49 +183,44 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t /** * @} */ -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ -/** @addtogroup TIMEx_Exported_Functions_Group5 +/** @addtogroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions + * @brief Peripheral Control functions * @{ */ /* Extended Control functions ************************************************/ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource); -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource); -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource); -HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig); -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource); +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource); +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource); HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig); +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig); +HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap); /** * @} */ -/** @addtogroup TIMEx_Exported_Functions_Group6 +/** @addtogroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions + * @brief Extended Callbacks functions * @{ */ -/* Extension Callback *********************************************************/ -void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim); +/* Extended Callback **********************************************************/ +void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim); +void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim); void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim); /** * @} */ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) -/** @addtogroup TIMEx_Exported_Functions_Group7 +/** @addtogroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions + * @brief Extended Peripheral State functions * @{ */ -/* Extension Peripheral State functions **************************************/ -HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim); +/* Extended Peripheral State functions ***************************************/ +HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim); +HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN); /** * @} */ -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ /** * @} @@ -267,10 +228,11 @@ HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim); /* End of exported functions -------------------------------------------------*/ /* Private functions----------------------------------------------------------*/ -/** @defgroup TIMEx_Private_Functions TIMEx Private Functions +/** @addtogroup TIMEx_Private_Functions TIMEx Private Functions * @{ */ void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma); +void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma); /** * @} */ @@ -288,6 +250,6 @@ void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma); } #endif -#endif /* __STM32F1xx_HAL_TIM_EX_H */ +#endif /* STM32F1xx_HAL_TIM_EX_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c index 010f50dd..1990dcc5 100644 --- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c +++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c @@ -2,33 +2,33 @@ ****************************************************************************** * @file stm32f1xx_hal_tim.c * @author MCD Application Team - * @brief TIM HAL module driver + * @brief TIM HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Timer (TIM) peripheral: - * + Time Base Initialization - * + Time Base Start - * + Time Base Start Interruption - * + Time Base Start DMA - * + Time Output Compare/PWM Initialization - * + Time Output Compare/PWM Channel Configuration - * + Time Output Compare/PWM Start - * + Time Output Compare/PWM Start Interruption - * + Time Output Compare/PWM Start DMA - * + Time Input Capture Initialization - * + Time Input Capture Channel Configuration - * + Time Input Capture Start - * + Time Input Capture Start Interruption - * + Time Input Capture Start DMA - * + Time One Pulse Initialization - * + Time One Pulse Channel Configuration - * + Time One Pulse Start - * + Time Encoder Interface Initialization - * + Time Encoder Interface Start - * + Time Encoder Interface Start Interruption - * + Time Encoder Interface Start DMA + * + TIM Time Base Initialization + * + TIM Time Base Start + * + TIM Time Base Start Interruption + * + TIM Time Base Start DMA + * + TIM Output Compare/PWM Initialization + * + TIM Output Compare/PWM Channel Configuration + * + TIM Output Compare/PWM Start + * + TIM Output Compare/PWM Start Interruption + * + TIM Output Compare/PWM Start DMA + * + TIM Input Capture Initialization + * + TIM Input Capture Channel Configuration + * + TIM Input Capture Start + * + TIM Input Capture Start Interruption + * + TIM Input Capture Start DMA + * + TIM One Pulse Initialization + * + TIM One Pulse Channel Configuration + * + TIM One Pulse Start + * + TIM Encoder Interface Initialization + * + TIM Encoder Interface Start + * + TIM Encoder Interface Start Interruption + * + TIM Encoder Interface Start DMA * + Commutation Event configuration with Interruption and DMA - * + Time OCRef clear configuration - * + Time External Clock configuration + * + TIM OCRef clear configuration + * + TIM External Clock configuration @verbatim ============================================================================== ##### TIMER Generic features ##### @@ -42,12 +42,15 @@ (++) Output Compare (++) PWM generation (Edge and Center-aligned Mode) (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to interconnect + several timers together. + (#) Supports incremental encoder for positioning purposes ##### How to use this driver ##### ============================================================================== [..] (#) Initialize the TIM low level resources by implementing the following functions - depending from feature used : + depending on the selected feature: (++) Time Base : HAL_TIM_Base_MspInit() (++) Input Capture : HAL_TIM_IC_MspInit() (++) Output Compare : HAL_TIM_OC_MspInit() @@ -76,8 +79,8 @@ PWM signal. (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an external signal. - (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer - in One Pulse Mode. + (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer + in One Pulse Mode. (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. (#) Activate the TIM peripheral using one of the start functions depending from the feature used: @@ -92,33 +95,89 @@ HAL_TIM_DMABurst_WriteStart() HAL_TIM_DMABurst_ReadStart() + *** Callback registration *** + ============================================= + + [..] + The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function @ref HAL_TIM_RegisterCallback() to register a callback. + @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, + the Callback ID and a pointer to the user callback function. + + [..] + Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default + weak function. + @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + + [..] + These functions allow to register/unregister following callbacks: + (+) Base_MspInitCallback : TIM Base Msp Init Callback. + (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. + (+) IC_MspInitCallback : TIM IC Msp Init Callback. + (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. + (+) OC_MspInitCallback : TIM OC Msp Init Callback. + (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. + (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. + (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. + (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. + (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. + (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. + (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. + (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. + (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. + (+) PeriodElapsedCallback : TIM Period Elapsed Callback. + (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. + (+) TriggerCallback : TIM Trigger Callback. + (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. + (+) IC_CaptureCallback : TIM Input Capture Callback. + (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. + (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. + (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. + (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. + (+) ErrorCallback : TIM Error Callback. + (+) CommutationCallback : TIM Commutation Callback. + (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. + (+) BreakCallback : TIM Break Callback. + + [..] +By default, after the Init and when the state is HAL_TIM_STATE_RESET +all interrupt callbacks are set to the corresponding weak functions: + examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback(). + + [..] + Exception done for MspInit and MspDeInit functions that are reset to the legacy weak + functionalities in the Init / DeInit only when these callbacks are null + (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit + keep and use the user MspInit / MspDeInit callbacks(registered beforehand) + + [..] + Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. + Exception done MspInit / MspDeInit that can be registered / unregistered + in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, + thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function. + + [..] + When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + @endverbatim ****************************************************************************** * @attention * - *

© COPYRIGHT(c) 2016 STMicroelectronics

+ *

© Copyright (c) 2016 STMicroelectronics. + * All rights reserved.

* - * Redistribution and use in source and binary forms, with or without modification, - * are permitted provided that the following conditions are met: - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright notice, - * this list of conditions and the following disclaimer in the documentation - * and/or other materials provided with the distribution. - * 3. Neither the name of STMicroelectronics nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, - * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ @@ -139,38 +198,39 @@ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ -/** @defgroup TIM_Private_Functions TIM Private Functions +/** @addtogroup TIM_Private_Functions * @{ */ -static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); -static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); -static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); -static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); -static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); -static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); -static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); -static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); -static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); -static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); -static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); -static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig); - +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig); /** * @} */ - -/* Exported functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ /** @defgroup TIM_Exported_Functions TIM Exported Functions * @{ */ -/** @defgroup TIM_Exported_Functions_Group1 Time Base functions - * @brief Time Base functions - * +/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions + * @brief Time Base functions + * @verbatim ============================================================================== ##### Time Base functions ##### @@ -191,12 +251,12 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp */ /** * @brief Initializes the TIM Time base Unit according to the specified - * parameters in the TIM_HandleTypeDef and create the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() - * @param htim : TIM Base handle + * parameters in the TIM_HandleTypeDef and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() + * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) { @@ -215,8 +275,19 @@ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Base_MspInitCallback == NULL) { + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Base_MspInitCallback(htim); +#else /* Init the low level hardware : GPIO, CLOCK, NVIC */ HAL_TIM_Base_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ @@ -225,6 +296,13 @@ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) { /* Set the Time Base configuration */ TIM_Base_SetConfig(htim->Instance, &htim->Init); + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; @@ -233,7 +311,7 @@ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) { /** * @brief DeInitializes the TIM Base peripheral - * @param htim : TIM Base handle + * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) { @@ -245,8 +323,23 @@ HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) { /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Base_MspDeInitCallback == NULL) { + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Base_MspDeInitCallback(htim); +#else /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIM_Base_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; @@ -259,47 +352,60 @@ HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM Base MSP. - * @param htim : TIM handle + * @param htim TIM Base handle * @retval None */ __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Base_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Base MSP. - * @param htim : TIM handle + * @param htim TIM Base handle * @retval None */ __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Base_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Base generation. - * @param htim : TIM handle + * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Check the TIM state */ + if (htim->State != HAL_TIM_STATE_READY) { + return HAL_ERROR; + } + /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); - - /* Change the TIM state*/ - htim->State = HAL_TIM_STATE_READY; + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -307,20 +413,17 @@ HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) { /** * @brief Stops the TIM Base generation. - * @param htim : TIM handle + * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the TIM state*/ + /* Set the TIM state */ htim->State = HAL_TIM_STATE_READY; /* Return function status */ @@ -329,18 +432,35 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) { /** * @brief Starts the TIM Base generation in interrupt mode. - * @param htim : TIM handle + * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Check the TIM state */ + if (htim->State != HAL_TIM_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + /* Enable the TIM Update interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -348,56 +468,77 @@ HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) { /** * @brief Stops the TIM Base generation in interrupt mode. - * @param htim : TIM handle + * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Disable the TIM Update interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_READY; + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Base generation in DMA mode. - * @param htim : TIM handle - * @param pData : The source Buffer address. - * @param Length : The length of data to be transferred from memory to peripheral. + * @param htim TIM Base handle + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to peripheral. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + /* Set the TIM state */ + if (htim->State == HAL_TIM_STATE_BUSY) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if ((pData == 0U) && (Length > 0U)) { + } else if (htim->State == HAL_TIM_STATE_READY) { + if ((pData == NULL) && (Length > 0U)) { return HAL_ERROR; } else { htim->State = HAL_TIM_STATE_BUSY; } + } else { + return HAL_ERROR; } - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length); + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Update DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -405,7 +546,7 @@ HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pDat /** * @brief Stops the TIM Base generation in DMA mode. - * @param htim : TIM handle + * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) { @@ -415,10 +556,12 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) { /* Disable the TIM Update DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ + /* Set the TIM state */ htim->State = HAL_TIM_STATE_READY; /* Return function status */ @@ -429,35 +572,35 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) { * @} */ -/** @defgroup TIM_Exported_Functions_Group2 Time Output Compare functions - * @brief Time Output Compare functions - * +/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions + * @brief TIM Output Compare functions + * @verbatim ============================================================================== - ##### Time Output Compare functions ##### + ##### TIM Output Compare functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM Output Compare. (+) De-initialize the TIM Output Compare. - (+) Start the Time Output Compare. - (+) Stop the Time Output Compare. - (+) Start the Time Output Compare and enable interrupt. - (+) Stop the Time Output Compare and disable interrupt. - (+) Start the Time Output Compare and enable DMA transfer. - (+) Stop the Time Output Compare and disable DMA transfer. + (+) Start the TIM Output Compare. + (+) Stop the TIM Output Compare. + (+) Start the TIM Output Compare and enable interrupt. + (+) Stop the TIM Output Compare and disable interrupt. + (+) Start the TIM Output Compare and enable DMA transfer. + (+) Stop the TIM Output Compare and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM Output Compare according to the specified - * parameters in the TIM_HandleTypeDef and create the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() - * @param htim : TIM Output Compare handle + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() + * @param htim TIM Output Compare handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) { @@ -476,8 +619,19 @@ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OC_MspInitCallback == NULL) { + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OC_MspInitCallback(htim); +#else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_OC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ @@ -486,6 +640,13 @@ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) { /* Init the base time for the Output Compare */ TIM_Base_SetConfig(htim->Instance, &htim->Init); + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; @@ -494,7 +655,7 @@ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) { /** * @brief DeInitializes the TIM peripheral - * @param htim : TIM Output Compare handle + * @param htim TIM Output Compare handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) { @@ -506,8 +667,23 @@ HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) { /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OC_MspDeInitCallback == NULL) { + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OC_MspDeInitCallback(htim); +#else /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ HAL_TIM_OC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; @@ -520,34 +696,36 @@ HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM Output Compare MSP. - * @param htim : TIM handle + * @param htim TIM Output Compare handle * @retval None */ __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OC_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Output Compare MSP. - * @param htim : TIM handle + * @param htim TIM Output Compare handle * @retval None */ __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OC_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Output Compare signal generation. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -556,9 +734,19 @@ __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the Output compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); @@ -567,8 +755,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { __HAL_TIM_MOE_ENABLE(htim); } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -576,8 +771,8 @@ HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { /** * @brief Stops the TIM Output Compare signal generation. - * @param htim : TIM handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -593,21 +788,24 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Output Compare signal generation in interrupt mode. - * @param htim : TIM OC handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -616,29 +814,43 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } case TIM_CHANNEL_4: { /* Enable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); - } break; + break; + } default: break; @@ -652,8 +864,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) __HAL_TIM_MOE_ENABLE(htim); } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -661,8 +880,8 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) /** * @brief Stops the TIM Output Compare signal generation in interrupt mode. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -678,22 +897,26 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); - } break; + break; + } default: break; @@ -703,99 +926,126 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Output Compare signal generation in DMA mode. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param pData : The source Buffer address. - * @param Length : The length of data to be transferred from memory to TIM peripheral + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + /* Set the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if (((uint32_t)pData == 0U) && (Length > 0U)) { + } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) { + if ((pData == NULL) && (Length > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } + } else { + return HAL_ERROR; } + switch (Channel) { case TIM_CHANNEL_1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - } break; + break; + } case TIM_CHANNEL_2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - } break; + break; + } case TIM_CHANNEL_3: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - } break; + break; + } case TIM_CHANNEL_4: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); - } break; + break; + } default: break; @@ -809,8 +1059,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel __HAL_TIM_MOE_ENABLE(htim); } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -818,8 +1075,8 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel /** * @brief Stops the TIM Output Compare signal generation in DMA mode. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -835,22 +1092,30 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } default: break; @@ -860,15 +1125,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; @@ -878,35 +1143,35 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) * @} */ -/** @defgroup TIM_Exported_Functions_Group3 Time PWM functions - * @brief Time PWM functions - * +/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions + * @brief TIM PWM functions + * @verbatim ============================================================================== - ##### Time PWM functions ##### + ##### TIM PWM functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM PWM. (+) De-initialize the TIM PWM. - (+) Start the Time PWM. - (+) Stop the Time PWM. - (+) Start the Time PWM and enable interrupt. - (+) Stop the Time PWM and disable interrupt. - (+) Start the Time PWM and enable DMA transfer. - (+) Stop the Time PWM and disable DMA transfer. + (+) Start the TIM PWM. + (+) Stop the TIM PWM. + (+) Start the TIM PWM and enable interrupt. + (+) Stop the TIM PWM and disable interrupt. + (+) Start the TIM PWM and enable DMA transfer. + (+) Stop the TIM PWM and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM PWM Time Base according to the specified - * parameters in the TIM_HandleTypeDef and create the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() - * @param htim : TIM handle + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() + * @param htim TIM PWM handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) { @@ -925,8 +1190,19 @@ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->PWM_MspInitCallback == NULL) { + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->PWM_MspInitCallback(htim); +#else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_PWM_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ @@ -935,6 +1211,13 @@ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) { /* Init the base time for the PWM */ TIM_Base_SetConfig(htim->Instance, &htim->Init); + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; @@ -943,7 +1226,7 @@ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) { /** * @brief DeInitializes the TIM peripheral - * @param htim : TIM handle + * @param htim TIM PWM handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) { @@ -955,8 +1238,23 @@ HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) { /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->PWM_MspDeInitCallback == NULL) { + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + } + /* DeInit the low level hardware */ + htim->PWM_MspDeInitCallback(htim); +#else /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ HAL_TIM_PWM_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; @@ -969,34 +1267,36 @@ HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM PWM MSP. - * @param htim : TIM handle + * @param htim TIM PWM handle * @retval None */ __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PWM_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM PWM MSP. - * @param htim : TIM handle + * @param htim TIM PWM handle * @retval None */ __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PWM_MspDeInit could be implemented in the user file */ } /** * @brief Starts the PWM signal generation. - * @param htim : TIM handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1005,9 +1305,19 @@ __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); @@ -1016,8 +1326,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { __HAL_TIM_MOE_ENABLE(htim); } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -1025,8 +1342,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { /** * @brief Stops the PWM signal generation. - * @param htim : TIM handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1042,15 +1359,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; @@ -1058,8 +1375,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /** * @brief Starts the PWM signal generation in interrupt mode. - * @param htim : TIM handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM PWM handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1068,29 +1385,42 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } case TIM_CHANNEL_4: { /* Enable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); - } break; + break; + } default: break; @@ -1104,8 +1434,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel __HAL_TIM_MOE_ENABLE(htim); } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -1113,8 +1450,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel /** * @brief Stops the PWM signal generation in interrupt mode. - * @param htim : TIM handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1130,22 +1467,26 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); - } break; + break; + } default: break; @@ -1155,99 +1496,125 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM PWM signal generation in DMA mode. - * @param htim : TIM handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM PWM handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param pData : The source Buffer address. - * @param Length : The length of data to be transferred from memory to TIM peripheral + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + /* Set the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if (((uint32_t)pData == 0U) && (Length > 0U)) { + } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) { + if ((pData == NULL) && (Length > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } + } else { + return HAL_ERROR; } + switch (Channel) { case TIM_CHANNEL_1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - } break; + break; + } case TIM_CHANNEL_2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - } break; + break; + } case TIM_CHANNEL_3: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Output Capture/Compare 3 request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - } break; + break; + } case TIM_CHANNEL_4: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); - } break; + break; + } default: break; @@ -1261,8 +1628,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channe __HAL_TIM_MOE_ENABLE(htim); } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -1270,8 +1644,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channe /** * @brief Stops the TIM PWM signal generation in DMA mode. - * @param htim : TIM handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1287,22 +1661,30 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } default: break; @@ -1312,15 +1694,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; @@ -1330,35 +1712,35 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel * @} */ -/** @defgroup TIM_Exported_Functions_Group4 Time Input Capture functions - * @brief Time Input Capture functions - * +/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions + * @brief TIM Input Capture functions + * @verbatim ============================================================================== - ##### Time Input Capture functions ##### + ##### TIM Input Capture functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM Input Capture. (+) De-initialize the TIM Input Capture. - (+) Start the Time Input Capture. - (+) Stop the Time Input Capture. - (+) Start the Time Input Capture and enable interrupt. - (+) Stop the Time Input Capture and disable interrupt. - (+) Start the Time Input Capture and enable DMA transfer. - (+) Stop the Time Input Capture and disable DMA transfer. + (+) Start the TIM Input Capture. + (+) Stop the TIM Input Capture. + (+) Start the TIM Input Capture and enable interrupt. + (+) Stop the TIM Input Capture and disable interrupt. + (+) Start the TIM Input Capture and enable DMA transfer. + (+) Stop the TIM Input Capture and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM Input Capture Time base according to the specified - * parameters in the TIM_HandleTypeDef and create the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() - * @param htim : TIM Input Capture handle + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() + * @param htim TIM Input Capture handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) { @@ -1377,8 +1759,19 @@ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->IC_MspInitCallback == NULL) { + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->IC_MspInitCallback(htim); +#else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_IC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ @@ -1387,6 +1780,13 @@ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) { /* Init the base time for the input capture */ TIM_Base_SetConfig(htim->Instance, &htim->Init); + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; @@ -1395,7 +1795,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) { /** * @brief DeInitializes the TIM peripheral - * @param htim : TIM Input Capture handle + * @param htim TIM Input Capture handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) { @@ -1407,8 +1807,23 @@ HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) { /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->IC_MspDeInitCallback == NULL) { + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->IC_MspDeInitCallback(htim); +#else /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ HAL_TIM_IC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; @@ -1421,34 +1836,36 @@ HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM Input Capture MSP. - * @param htim : TIM handle + * @param htim TIM Input Capture handle * @retval None */ __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_IC_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Input Capture MSP. - * @param htim : TIM handle + * @param htim TIM handle * @retval None */ __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_IC_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Input Capture measurement. - * @param htim : TIM Input Capture handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1457,14 +1874,34 @@ __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + /* Check the TIM channel state */ + if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -1472,8 +1909,8 @@ HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { /** * @brief Stops the TIM Input Capture measurement. - * @param htim : TIM handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1491,14 +1928,18 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Input Capture measurement in interrupt mode. - * @param htim : TIM Input Capture handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1507,29 +1948,46 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + /* Check the TIM channel state */ + if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } case TIM_CHANNEL_4: { /* Enable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); - } break; + break; + } default: break; @@ -1537,8 +1995,15 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) /* Enable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -1546,8 +2011,8 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) /** * @brief Stops the TIM Input Capture measurement in interrupt mode. - * @param htim : TIM handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1563,22 +2028,26 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); - } break; + break; + } default: break; @@ -1590,94 +2059,122 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Input Capture measurement in DMA mode. - * @param htim : TIM Input Capture handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param pData : The destination Buffer address. - * @param Length : The length of data to be transferred from TIM peripheral to memory. + * @param pData The destination Buffer address. + * @param Length The length of data to be transferred from TIM peripheral to memory. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + /* Set the TIM channel state */ + if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if ((pData == 0U) && (Length > 0U)) { + } else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) { + if ((pData == NULL) && (Length > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } + } else { + return HAL_ERROR; } switch (Channel) { case TIM_CHANNEL_1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - } break; + break; + } case TIM_CHANNEL_2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - } break; + break; + } case TIM_CHANNEL_3: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - } break; + break; + } case TIM_CHANNEL_4: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); - } break; + break; + } default: break; @@ -1686,8 +2183,15 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel /* Enable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -1695,8 +2199,8 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel /** * @brief Stops the TIM Input Capture measurement in DMA mode. - * @param htim : TIM Input Capture handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1709,39 +2213,48 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } default: break; } - /* Disable the Input Capture channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; @@ -1750,39 +2263,42 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) * @} */ -/** @defgroup TIM_Exported_Functions_Group5 Time One Pulse functions - * @brief Time One Pulse functions - * +/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions + * @brief TIM One Pulse functions + * @verbatim ============================================================================== - ##### Time One Pulse functions ##### + ##### TIM One Pulse functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM One Pulse. (+) De-initialize the TIM One Pulse. - (+) Start the Time One Pulse. - (+) Stop the Time One Pulse. - (+) Start the Time One Pulse and enable interrupt. - (+) Stop the Time One Pulse and disable interrupt. - (+) Start the Time One Pulse and enable DMA transfer. - (+) Stop the Time One Pulse and disable DMA transfer. + (+) Start the TIM One Pulse. + (+) Stop the TIM One Pulse. + (+) Start the TIM One Pulse and enable interrupt. + (+) Stop the TIM One Pulse and disable interrupt. + (+) Start the TIM One Pulse and enable DMA transfer. + (+) Stop the TIM One Pulse and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM One Pulse Time Base according to the specified - * parameters in the TIM_HandleTypeDef and create the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() - * @param htim : TIM OnePulse handle - * @param OnePulseMode : Select the One pulse mode. + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() + * @note When the timer instance is initialized in One Pulse mode, timer + * channels 1 and channel 2 are reserved and cannot be used for other + * purpose. + * @param htim TIM One Pulse handle + * @param OnePulseMode Select the One pulse mode. * This parameter can be one of the following values: * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. - * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses wil be generated. + * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) { @@ -1795,15 +2311,26 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePul assert_param(IS_TIM_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); assert_param(IS_TIM_OPM_MODE(OnePulseMode)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); if (htim->State == HAL_TIM_STATE_RESET) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OnePulse_MspInitCallback == NULL) { + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OnePulse_MspInitCallback(htim); +#else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_OnePulse_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ @@ -1818,6 +2345,15 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePul /* Configure the OPM Mode */ htim->Instance->CR1 |= OnePulseMode; + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; @@ -1826,7 +2362,7 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePul /** * @brief DeInitializes the TIM One Pulse - * @param htim : TIM One Pulse handle + * @param htim TIM One Pulse handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) { @@ -1838,8 +2374,25 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) { /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OnePulse_MspDeInitCallback == NULL) { + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OnePulse_MspDeInitCallback(htim); +#else /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIM_OnePulse_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; @@ -1852,43 +2405,62 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM One Pulse MSP. - * @param htim : TIM handle + * @param htim TIM One Pulse handle * @retval None */ __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OnePulse_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM One Pulse MSP. - * @param htim : TIM handle + * @param htim TIM One Pulse handle * @retval None */ __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM One Pulse signal generation. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channels to be enabled + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + /* Prevent unused argument(s) compilation warning */ UNUSED(OutputChannel); + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the Capture compare and the Input Capture channels (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and @@ -1912,8 +2484,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t Outpu /** * @brief Stops the TIM One Pulse signal generation. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channels to be disable + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be disable * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1933,30 +2505,53 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t Output TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM One Pulse signal generation in interrupt mode. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channels to be enabled + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + /* Prevent unused argument(s) compilation warning */ UNUSED(OutputChannel); + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the Capture compare and the Input Capture channels (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and @@ -1986,8 +2581,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t Ou /** * @brief Stops the TIM One Pulse signal generation in interrupt mode. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channels to be enabled + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2012,13 +2607,19 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Out TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -2027,41 +2628,47 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Out * @} */ -/** @defgroup TIM_Exported_Functions_Group6 Time Encoder functions - * @brief Time Encoder functions - * +/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions + * @brief TIM Encoder functions + * @verbatim ============================================================================== - ##### Time Encoder functions ##### + ##### TIM Encoder functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM Encoder. (+) De-initialize the TIM Encoder. - (+) Start the Time Encoder. - (+) Stop the Time Encoder. - (+) Start the Time Encoder and enable interrupt. - (+) Stop the Time Encoder and disable interrupt. - (+) Start the Time Encoder and enable DMA transfer. - (+) Stop the Time Encoder and disable DMA transfer. + (+) Start the TIM Encoder. + (+) Stop the TIM Encoder. + (+) Start the TIM Encoder and enable interrupt. + (+) Stop the TIM Encoder and disable interrupt. + (+) Start the TIM Encoder and enable DMA transfer. + (+) Stop the TIM Encoder and disable DMA transfer. @endverbatim * @{ */ /** - * @brief Initializes the TIM Encoder Interface and create the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() - * @param htim : TIM Encoder Interface handle - * @param sConfig : TIM Encoder Interface configuration structure + * @brief Initializes the TIM Encoder Interface and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() + * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together + * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource + * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa + * @note When the timer instance is initialized in Encoder mode, timer + * channels 1 and channel 2 are reserved and cannot be used for other + * purpose. + * @param htim TIM Encoder Interface handle + * @param sConfig TIM Encoder Interface configuration structure * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) { - uint32_t tmpsmcr = 0U; - uint32_t tmpccmr1 = 0U; - uint32_t tmpccer = 0U; + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; /* Check the TIM handle allocation */ if (htim == NULL) { @@ -2069,15 +2676,15 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init } /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); - assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); - assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); @@ -2087,15 +2694,26 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Encoder_MspInitCallback == NULL) { + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Encoder_MspInitCallback(htim); +#else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_Encoder_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; - /* Reset the SMS bits */ - htim->Instance->SMCR &= ~TIM_SMCR_SMS; + /* Reset the SMS and ECE bits */ + htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); /* Configure the Time base in the Encoder Mode */ TIM_Base_SetConfig(htim->Instance, &htim->Init); @@ -2116,7 +2734,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); - /* Set the the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ + /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); @@ -2124,7 +2742,6 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init /* Set the TI1 and the TI2 Polarities */ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); - tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); /* Write to TIMx SMCR */ @@ -2136,6 +2753,15 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init /* Write to TIMx CCER */ htim->Instance->CCER = tmpccer; + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; @@ -2144,7 +2770,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init /** * @brief DeInitializes the TIM Encoder interface - * @param htim : TIM Encoder handle + * @param htim TIM Encoder Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) { @@ -2156,8 +2782,25 @@ HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) { /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Encoder_MspDeInitCallback == NULL) { + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Encoder_MspDeInitCallback(htim); +#else /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIM_Encoder_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; @@ -2170,34 +2813,36 @@ HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM Encoder Interface MSP. - * @param htim : TIM handle + * @param htim TIM Encoder Interface handle * @retval None */ __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Encoder_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Encoder Interface MSP. - * @param htim : TIM handle + * @param htim TIM Encoder Interface handle * @retval None */ __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Encoder_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Encoder Interface. - * @param htim : TIM Encoder Interface handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2205,8 +2850,40 @@ __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } else if (Channel == TIM_CHANNEL_2) { + if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } else { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } /* Enable the encoder interface channels */ switch (Channel) { @@ -2214,10 +2891,12 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channe TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); break; } + case TIM_CHANNEL_2: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); break; } + default: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); @@ -2233,8 +2912,8 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channe /** * @brief Stops the TIM Encoder Interface. - * @param htim : TIM Encoder Interface handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2243,19 +2922,21 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channe */ HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 and 2 - (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ switch (Channel) { case TIM_CHANNEL_1: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); break; } + case TIM_CHANNEL_2: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); break; } + default: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); @@ -2266,14 +2947,25 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Encoder Interface in interrupt mode. - * @param htim : TIM Encoder Interface handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2281,8 +2973,40 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } else if (Channel == TIM_CHANNEL_2) { + if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } else { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } /* Enable the encoder interface channels */ /* Enable the capture compare Interrupts 1 and/or 2 */ @@ -2292,11 +3016,13 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Cha __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); break; } + case TIM_CHANNEL_2: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); break; } + default: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); @@ -2315,8 +3041,8 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Cha /** * @brief Stops the TIM Encoder Interface in interrupt mode. - * @param htim : TIM Encoder Interface handle - * @param Channel : TIM Channels to be disabled + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2325,7 +3051,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Cha */ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 and 2 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ @@ -2351,8 +3077,16 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chan /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } /* Return function status */ return HAL_OK; @@ -2360,42 +3094,86 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chan /** * @brief Starts the TIM Encoder Interface in DMA mode. - * @param htim : TIM Encoder Interface handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected - * @param pData1 : The destination Buffer address for IC1. - * @param pData2 : The destination Buffer address for IC2. - * @param Length : The length of data to be transferred from TIM peripheral to memory. + * @param pData1 The destination Buffer address for IC1. + * @param pData2 The destination Buffer address for IC2. + * @param Length The length of data to be transferred from TIM peripheral to memory. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length) { - /* Check the parameters */ - assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); - if ((htim->State == HAL_TIM_STATE_BUSY)) { - return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if ((((pData1 == 0U) || (pData2 == 0U))) && (Length > 0U)) { - return HAL_ERROR; + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) { + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) { + return HAL_BUSY; + } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) { + if ((pData1 == NULL) && (Length > 0U)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } } else { - htim->State = HAL_TIM_STATE_BUSY; + return HAL_ERROR; + } + } else if (Channel == TIM_CHANNEL_2) { + if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) { + return HAL_BUSY; + } else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) { + if ((pData2 == NULL) && (Length > 0U)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } else { + return HAL_ERROR; + } + } else { + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) { + return HAL_BUSY; + } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) { + if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) { + return HAL_ERROR; + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } else { + return HAL_ERROR; } } switch (Channel) { case TIM_CHANNEL_1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Input Capture DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); @@ -2404,17 +3182,21 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - } break; + break; + } case TIM_CHANNEL_2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Input Capture DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); @@ -2423,27 +3205,35 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - } break; + break; + } case TIM_CHANNEL_ALL: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length); + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); @@ -2455,19 +3245,21 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); /* Enable the TIM Input Capture DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - } break; + break; + } default: break; } + /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Encoder Interface in DMA mode. - * @param htim : TIM Encoder Interface handle - * @param Channel : TIM Channels to be enabled + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2476,7 +3268,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch */ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ - assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 and 2 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ @@ -2485,11 +3277,13 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha /* Disable the capture compare DMA Request 1 */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); } else if (Channel == TIM_CHANNEL_2) { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); /* Disable the capture compare DMA Request 2 */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); } else { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); @@ -2497,13 +3291,23 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha /* Disable the capture compare DMA Request 1 and 2 */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } else { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } /* Return function status */ return HAL_OK; @@ -2513,8 +3317,8 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha * @} */ /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management - * @brief IRQ handler management - * + * @brief TIM IRQ handler management + * @verbatim ============================================================================== ##### IRQ handler management ##### @@ -2527,7 +3331,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha */ /** * @brief This function handles TIM interrupts requests. - * @param htim : TIM handle + * @param htim TIM handle * @retval None */ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { @@ -2540,12 +3344,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { /* Input capture event */ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } @@ -2558,12 +3371,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; /* Input capture event */ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } @@ -2575,12 +3397,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; /* Input capture event */ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } @@ -2592,12 +3423,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; /* Input capture event */ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } @@ -2606,28 +3446,44 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) { if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } /* TIM Break input event */ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) { if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->BreakCallback(htim); +#else HAL_TIMEx_BreakCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } /* TIM Trigger detection event */ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) { if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } /* TIM commutation event */ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) { if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) { __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); - HAL_TIMEx_CommutationCallback(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationCallback(htim); +#else + HAL_TIMEx_CommutCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } } @@ -2636,9 +3492,9 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { * @} */ -/** @defgroup TIM_Exported_Functions_Group8 Peripheral Control functions - * @brief Peripheral Control functions - * +/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions + * @brief TIM Peripheral Control functions + * @verbatim ============================================================================== ##### Peripheral Control functions ##### @@ -2658,9 +3514,9 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM Output Compare Channels according to the specified * parameters in the TIM_OC_InitTypeDef. - * @param htim : TIM Output Compare handle - * @param sConfig : TIM Output Compare configuration structure - * @param Channel : TIM Channels to be enabled + * @param htim TIM Output Compare handle + * @param sConfig TIM Output Compare configuration structure + * @param Channel TIM Channels to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2674,40 +3530,49 @@ HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitT assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); - /* Check input state */ + /* Process Locked */ __HAL_LOCK(htim); - htim->State = HAL_TIM_STATE_BUSY; - switch (Channel) { case TIM_CHANNEL_1: { + /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 1 in Output Compare */ TIM_OC1_SetConfig(htim->Instance, sConfig); - } break; + break; + } case TIM_CHANNEL_2: { + /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 2 in Output Compare */ TIM_OC2_SetConfig(htim->Instance, sConfig); - } break; + break; + } case TIM_CHANNEL_3: { + /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 3 in Output Compare */ TIM_OC3_SetConfig(htim->Instance, sConfig); - } break; + break; + } case TIM_CHANNEL_4: { + /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 4 in Output Compare */ TIM_OC4_SetConfig(htim->Instance, sConfig); - } break; + break; + } default: break; } - htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); @@ -2717,9 +3582,9 @@ HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitT /** * @brief Initializes the TIM Input Capture Channels according to the specified * parameters in the TIM_IC_InitTypeDef. - * @param htim : TIM IC handle - * @param sConfig : TIM Input Capture configuration structure - * @param Channel : TIM Channels to be enabled + * @param htim TIM IC handle + * @param sConfig TIM Input Capture configuration structure + * @param Channel TIM Channel to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2735,10 +3600,9 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); + /* Process Locked */ __HAL_LOCK(htim); - htim->State = HAL_TIM_STATE_BUSY; - if (Channel == TIM_CHANNEL_1) { /* TI1 Configuration */ TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter); @@ -2783,8 +3647,6 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); } - htim->State = HAL_TIM_STATE_READY; - __HAL_UNLOCK(htim); return HAL_OK; @@ -2793,9 +3655,9 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT /** * @brief Initializes the TIM PWM channels according to the specified * parameters in the TIM_OC_InitTypeDef. - * @param htim : TIM handle - * @param sConfig : TIM PWM configuration structure - * @param Channel : TIM Channels to be enabled + * @param htim TIM PWM handle + * @param sConfig TIM PWM configuration structure + * @param Channel TIM Channels to be configured * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -2804,19 +3666,20 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef *sConfig, uint32_t Channel) { - __HAL_LOCK(htim); - /* Check the parameters */ assert_param(IS_TIM_CHANNELS(Channel)); assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); - htim->State = HAL_TIM_STATE_BUSY; + /* Process Locked */ + __HAL_LOCK(htim); switch (Channel) { case TIM_CHANNEL_1: { + /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + /* Configure the Channel 1 in PWM mode */ TIM_OC1_SetConfig(htim->Instance, sConfig); @@ -2826,10 +3689,13 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init /* Configure the Output Fast mode */ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; htim->Instance->CCMR1 |= sConfig->OCFastMode; - } break; + break; + } case TIM_CHANNEL_2: { + /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + /* Configure the Channel 2 in PWM mode */ TIM_OC2_SetConfig(htim->Instance, sConfig); @@ -2838,11 +3704,14 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init /* Configure the Output Fast mode */ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; - htim->Instance->CCMR1 |= sConfig->OCFastMode << 8; - } break; + htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; + break; + } case TIM_CHANNEL_3: { + /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + /* Configure the Channel 3 in PWM mode */ TIM_OC3_SetConfig(htim->Instance, sConfig); @@ -2852,10 +3721,13 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init /* Configure the Output Fast mode */ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; htim->Instance->CCMR2 |= sConfig->OCFastMode; - } break; + break; + } case TIM_CHANNEL_4: { + /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + /* Configure the Channel 4 in PWM mode */ TIM_OC4_SetConfig(htim->Instance, sConfig); @@ -2864,15 +3736,14 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init /* Configure the Output Fast mode */ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; - htim->Instance->CCMR2 |= sConfig->OCFastMode << 8; - } break; + htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; + break; + } default: break; } - htim->State = HAL_TIM_STATE_READY; - __HAL_UNLOCK(htim); return HAL_OK; @@ -2881,16 +3752,20 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init /** * @brief Initializes the TIM One Pulse Channels according to the specified * parameters in the TIM_OnePulse_InitTypeDef. - * @param htim : TIM One Pulse handle - * @param sConfig : TIM One Pulse configuration structure - * @param OutputChannel : TIM Channels to be enabled + * @param htim TIM One Pulse handle + * @param sConfig TIM One Pulse configuration structure + * @param OutputChannel TIM output channel to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @param InputChannel : TIM Channels to be enabled + * @param InputChannel TIM input Channel to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @note To output a waveform with a minimum delay user can enable the fast + * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx + * output is forced in response to the edge detection on TIx input, + * without taking in account the comparison. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, uint32_t OutputChannel, uint32_t InputChannel) { @@ -2901,11 +3776,12 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); if (OutputChannel != InputChannel) { + /* Process Locked */ __HAL_LOCK(htim); htim->State = HAL_TIM_STATE_BUSY; - /* Extract the Ouput compare configuration from sConfig structure */ + /* Extract the Output compare configuration from sConfig structure */ temp1.OCMode = sConfig->OCMode; temp1.Pulse = sConfig->Pulse; temp1.OCPolarity = sConfig->OCPolarity; @@ -2918,15 +3794,18 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); TIM_OC1_SetConfig(htim->Instance, &temp1); - } break; + break; + } case TIM_CHANNEL_2: { assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); TIM_OC2_SetConfig(htim->Instance, &temp1); - } break; + break; + } default: break; } + switch (InputChannel) { case TIM_CHANNEL_1: { assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); @@ -2943,7 +3822,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On /* Select the Slave Mode */ htim->Instance->SMCR &= ~TIM_SMCR_SMS; htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; - } break; + break; + } case TIM_CHANNEL_2: { assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); @@ -2959,7 +3839,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On /* Select the Slave Mode */ htim->Instance->SMCR &= ~TIM_SMCR_SMS; htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; - } break; + break; + } default: break; @@ -2977,8 +3858,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On /** * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral - * @param htim : TIM handle - * @param BurstBaseAddress : TIM Base address from where the DMA will start the Data write + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write * This parameter can be one of the following values: * @arg TIM_DMABASE_CR1 * @arg TIM_DMABASE_CR2 @@ -2998,8 +3879,7 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On * @arg TIM_DMABASE_CCR3 * @arg TIM_DMABASE_CCR4 * @arg TIM_DMABASE_BDTR - * @arg TIM_DMABASE_DCR - * @param BurstRequestSrc : TIM DMA Request sources + * @param BurstRequestSrc TIM DMA Request sources * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: TIM update Interrupt source * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source @@ -3008,117 +3888,197 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source * @arg TIM_DMA_COM: TIM Commutation DMA source * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source - * @param BurstBuffer : The Buffer address. - * @param BurstLength : DMA Burst length. This parameter can be one value + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) { + return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U); +} + +/** + * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) { /* Check the parameters */ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if ((BurstBuffer == 0U) && (BurstLength > 0U)) { + } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; } + } else { + /* nothing to do */ } switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC3: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC4: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_COM: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_TRIGGER: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } default: break; } - /* configure the DMA Burst Mode */ - htim->Instance->DCR = BurstBaseAddress | BurstLength; + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); /* Enable the TIM DMA Request */ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); - htim->State = HAL_TIM_STATE_READY; - /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM DMA Burst mode - * @param htim : TIM handle - * @param BurstRequestSrc : TIM DMA Request sources to disable + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) { @@ -3128,26 +4088,33 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B /* Abort the DMA transfer (at least disable the DMA channel) */ switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } case TIM_DMA_CC1: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } case TIM_DMA_CC2: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } case TIM_DMA_CC3: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } case TIM_DMA_CC4: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } case TIM_DMA_COM: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } case TIM_DMA_TRIGGER: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } default: break; } @@ -3155,14 +4122,17 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B /* Disable the TIM Update DMA request */ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + /* Return function status */ return HAL_OK; } /** * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory - * @param htim : TIM handle - * @param BurstBaseAddress : TIM Base address from where the DMA will starts the Data read + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read * This parameter can be one of the following values: * @arg TIM_DMABASE_CR1 * @arg TIM_DMABASE_CR2 @@ -3182,8 +4152,7 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B * @arg TIM_DMABASE_CCR3 * @arg TIM_DMABASE_CCR4 * @arg TIM_DMABASE_BDTR - * @arg TIM_DMABASE_DCR - * @param BurstRequestSrc : TIM DMA Request sources + * @param BurstRequestSrc TIM DMA Request sources * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: TIM update Interrupt source * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source @@ -3192,118 +4161,198 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source * @arg TIM_DMA_COM: TIM Commutation DMA source * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source - * @param BurstBuffer : The Buffer address. - * @param BurstLength : DMA Burst length. This parameter can be one value + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) { + return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U); +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) { /* Check the parameters */ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if ((BurstBuffer == 0U) && (BurstLength > 0U)) { + } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; } + } else { + /* nothing to do */ } switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC3: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_CC4: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_COM: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } case TIM_DMA_TRIGGER: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U); - } break; + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } + break; + } default: break; } - /* configure the DMA Burst Mode */ - htim->Instance->DCR = BurstBaseAddress | BurstLength; + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); /* Enable the TIM DMA Request */ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); - htim->State = HAL_TIM_STATE_READY; - /* Return function status */ return HAL_OK; } /** * @brief Stop the DMA burst reading - * @param htim : TIM handle - * @param BurstRequestSrc : TIM DMA Request sources to disable. + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) { @@ -3313,26 +4362,33 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t Bu /* Abort the DMA transfer (at least disable the DMA channel) */ switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } case TIM_DMA_CC1: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } case TIM_DMA_CC2: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } case TIM_DMA_CC3: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } case TIM_DMA_CC4: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } case TIM_DMA_COM: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } case TIM_DMA_TRIGGER: { - HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } default: break; } @@ -3340,14 +4396,17 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t Bu /* Disable the TIM Update DMA request */ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + /* Return function status */ return HAL_OK; } /** * @brief Generate a software event - * @param htim : TIM handle - * @param EventSource : specifies the event source. + * @param htim TIM handle + * @param EventSource specifies the event source. * This parameter can be one of the following values: * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source @@ -3357,8 +4416,10 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t Bu * @arg TIM_EVENTSOURCE_COM: Timer COM event source * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source - * @note TIM6 and TIM7 can only generate an update event. - * @note TIM_EVENTSOURCE_COM and TIM_EVENTSOURCE_BREAK are used only with TIM1, TIM15, TIM16 and TIM17. + * @note Basic timers can only generate an update event. + * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. + * @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances + * supporting a break input. * @retval HAL status */ @@ -3387,10 +4448,10 @@ HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventS /** * @brief Configures the OCRef clear feature - * @param htim : TIM handle - * @param sClearInputConfig : pointer to a TIM_ClearInputConfigTypeDef structure that + * @param htim TIM handle + * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that * contains the OCREF clear feature and parameters for the TIM peripheral. - * @param Channel : specifies the TIM Channel + * @param Channel specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 * @arg TIM_CHANNEL_2: TIM Channel 2 @@ -3399,14 +4460,9 @@ HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventS * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef *sClearInputConfig, uint32_t Channel) { - uint32_t tmpsmcr = 0U; - /* Check the parameters */ assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); - assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); - assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); - assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); /* Process Locked */ __HAL_LOCK(htim); @@ -3415,62 +4471,73 @@ HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInp switch (sClearInputConfig->ClearInputSource) { case TIM_CLEARINPUTSOURCE_NONE: { - - /* Clear the ETR Bits */ - tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); - - /* Set TIMx_SMCR */ - htim->Instance->SMCR = tmpsmcr; - } break; + /* Clear the OCREF clear selection bit and the the ETR Bits */ + CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); + break; + } case TIM_CLEARINPUTSOURCE_ETR: { - TIM_ETR_SetConfig(htim->Instance, sClearInputConfig->ClearInputPrescaler, sClearInputConfig->ClearInputPolarity, sClearInputConfig->ClearInputFilter); + /* Check the parameters */ + assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); + assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); + assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); + + /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ + if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + TIM_ETR_SetConfig(htim->Instance, sClearInputConfig->ClearInputPrescaler, sClearInputConfig->ClearInputPolarity, sClearInputConfig->ClearInputFilter); + break; + } - } break; default: break; } switch (Channel) { case TIM_CHANNEL_1: { - if (sClearInputConfig->ClearInputState != RESET) { - /* Enable the Ocref clear feature for Channel 1 */ - htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE; + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { + /* Enable the OCREF clear feature for Channel 1 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); } else { - /* Disable the Ocref clear feature for Channel 1 */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE; + /* Disable the OCREF clear feature for Channel 1 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); } - } break; + break; + } case TIM_CHANNEL_2: { - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - if (sClearInputConfig->ClearInputState != RESET) { - /* Enable the Ocref clear feature for Channel 2 */ - htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE; + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { + /* Enable the OCREF clear feature for Channel 2 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); } else { - /* Disable the Ocref clear feature for Channel 2 */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE; + /* Disable the OCREF clear feature for Channel 2 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); } - } break; + break; + } case TIM_CHANNEL_3: { - assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); - if (sClearInputConfig->ClearInputState != RESET) { - /* Enable the Ocref clear feature for Channel 3 */ - htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE; + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { + /* Enable the OCREF clear feature for Channel 3 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); } else { - /* Disable the Ocref clear feature for Channel 3 */ - htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE; + /* Disable the OCREF clear feature for Channel 3 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); } - } break; + break; + } case TIM_CHANNEL_4: { - assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); - if (sClearInputConfig->ClearInputState != RESET) { - /* Enable the Ocref clear feature for Channel 4 */ - htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE; + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { + /* Enable the OCREF clear feature for Channel 4 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); } else { - /* Disable the Ocref clear feature for Channel 4 */ - htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE; + /* Disable the OCREF clear feature for Channel 4 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); } - } break; + break; + } default: break; } @@ -3484,13 +4551,13 @@ HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInp /** * @brief Configures the clock source to be used - * @param htim : TIM handle - * @param sClockSourceConfig : pointer to a TIM_ClockConfigTypeDef structure that + * @param htim TIM handle + * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that * contains the clock source information for the TIM peripheral. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) { - uint32_t tmpsmcr = 0U; + uint32_t tmpsmcr; /* Process Locked */ __HAL_LOCK(htim); @@ -3509,133 +4576,94 @@ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockCo switch (sClockSourceConfig->ClockSource) { case TIM_CLOCKSOURCE_INTERNAL: { assert_param(IS_TIM_INSTANCE(htim->Instance)); - /* Disable slave mode to clock the prescaler directly with the internal clock */ - htim->Instance->SMCR &= ~TIM_SMCR_SMS; - } break; + break; + } - // case TIM_CLOCKSOURCE_ETRMODE1: - // { - // /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ - // assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); - // - // /* Check ETR input conditioning related parameters */ - // assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); - // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - // - // /* Configure the ETR Clock source */ - // TIM_ETR_SetConfig(htim->Instance, - // sClockSourceConfig->ClockPrescaler, - // sClockSourceConfig->ClockPolarity, - // sClockSourceConfig->ClockFilter); - // /* Get the TIMx SMCR register value */ - // tmpsmcr = htim->Instance->SMCR; - // /* Reset the SMS and TS Bits */ - // tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); - // /* Select the External clock mode1 and the ETRF trigger */ - // tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); - // /* Write to TIMx SMCR */ - // htim->Instance->SMCR = tmpsmcr; - // } - // break; - // - // case TIM_CLOCKSOURCE_ETRMODE2: - // { - // /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ - // assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); - // - // /* Check ETR input conditioning related parameters */ - // assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); - // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - // - // /* Configure the ETR Clock source */ - // TIM_ETR_SetConfig(htim->Instance, - // sClockSourceConfig->ClockPrescaler, - // sClockSourceConfig->ClockPolarity, - // sClockSourceConfig->ClockFilter); - // /* Enable the External clock mode2 */ - // htim->Instance->SMCR |= TIM_SMCR_ECE; - // } - // break; - // - // case TIM_CLOCKSOURCE_TI1: - // { - // /* Check whether or not the timer instance supports external clock mode 1 */ - // assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); - // - // /* Check TI1 input conditioning related parameters */ - // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - // - // TIM_TI1_ConfigInputStage(htim->Instance, - // sClockSourceConfig->ClockPolarity, - // sClockSourceConfig->ClockFilter); - // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); - // } - // break; - // case TIM_CLOCKSOURCE_TI2: - // { - // /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ - // assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); - // - // /* Check TI2 input conditioning related parameters */ - // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - // - // TIM_TI2_ConfigInputStage(htim->Instance, - // sClockSourceConfig->ClockPolarity, - // sClockSourceConfig->ClockFilter); - // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); - // } - // break; - // case TIM_CLOCKSOURCE_TI1ED: - // { - // /* Check whether or not the timer instance supports external clock mode 1 */ - // assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); - // - // /* Check TI1 input conditioning related parameters */ - // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - // - // TIM_TI1_ConfigInputStage(htim->Instance, - // sClockSourceConfig->ClockPolarity, - // sClockSourceConfig->ClockFilter); - // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); - // } - // break; - // case TIM_CLOCKSOURCE_ITR0: - // { - // /* Check whether or not the timer instance supports external clock mode 1 */ - // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); - // - // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR0); - // } - // break; - // case TIM_CLOCKSOURCE_ITR1: - // { - // /* Check whether or not the timer instance supports external clock mode 1 */ - // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); - // - // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR1); - // } - // break; - // case TIM_CLOCKSOURCE_ITR2: - // { - // /* Check whether or not the timer instance supports external clock mode 1 */ - // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); - // - // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR2); - // } - // break; - // case TIM_CLOCKSOURCE_ITR3: - // { - // /* Check whether or not the timer instance supports external clock mode 1 */ - // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); - // - // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR3); - // } - // break; + case TIM_CLOCKSOURCE_ETRMODE1: { + /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); + + /* Select the External clock mode1 and the ETRF trigger */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + break; + } + + case TIM_CLOCKSOURCE_ETRMODE2: { + /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); + /* Enable the External clock mode2 */ + htim->Instance->SMCR |= TIM_SMCR_ECE; + break; + } + + case TIM_CLOCKSOURCE_TI1: { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); + break; + } + + case TIM_CLOCKSOURCE_TI2: { + /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI2 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI2_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); + break; + } + + case TIM_CLOCKSOURCE_TI1ED: { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); + break; + } + + case TIM_CLOCKSOURCE_ITR0: + case TIM_CLOCKSOURCE_ITR1: + case TIM_CLOCKSOURCE_ITR2: + case TIM_CLOCKSOURCE_ITR3: { + /* Check whether or not the timer instance supports internal trigger input */ + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + + TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); + break; + } default: break; @@ -3650,8 +4678,8 @@ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockCo /** * @brief Selects the signal connected to the TI1 input: direct from CH1_input * or a XOR combination between CH1_input, CH2_input & CH3_input - * @param htim : TIM handle. - * @param TI1_Selection : Indicate whether or not channel 1 is connected to the + * @param htim TIM handle. + * @param TI1_Selection Indicate whether or not channel 1 is connected to the * output of a XOR gate. * This parameter can be one of the following values: * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input @@ -3660,7 +4688,7 @@ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockCo * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) { - uint32_t tmpcr2 = 0U; + uint32_t tmpcr2; /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); @@ -3672,7 +4700,7 @@ HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_S /* Reset the TI1 selection */ tmpcr2 &= ~TIM_CR2_TI1S; - /* Set the the TI1 selection */ + /* Set the TI1 selection */ tmpcr2 |= TI1_Selection; /* Write to TIMxCR2 */ @@ -3683,14 +4711,14 @@ HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_S /** * @brief Configures the TIM in Slave mode - * @param htim : TIM handle. - * @param sSlaveConfig : pointer to a TIM_SlaveConfigTypeDef structure that + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that * contains the selected trigger (internal trigger input, filtered - * timer input or external trigger input) and the ) and the Slave - * mode (Disable, Reset, Gated, Trigger, External clock mode 1). + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). * @retval HAL status */ -HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) { +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) { /* Check the parameters */ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); @@ -3700,7 +4728,11 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TI htim->State = HAL_TIM_STATE_BUSY; - TIM_SlaveTimer_SetConfig(htim, sSlaveConfig); + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } /* Disable Trigger Interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); @@ -3717,14 +4749,14 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TI /** * @brief Configures the TIM in Slave mode in interrupt mode - * @param htim: TIM handle. - * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that * contains the selected trigger (internal trigger input, filtered - * timer input or external trigger input) and the ) and the Slave - * mode (Disable, Reset, Gated, Trigger, External clock mode 1). + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). * @retval HAL status */ -HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) { +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) { /* Check the parameters */ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); @@ -3734,7 +4766,11 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, htim->State = HAL_TIM_STATE_BUSY; - TIM_SlaveTimer_SetConfig(htim, sSlaveConfig); + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } /* Enable Trigger Interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); @@ -3751,20 +4787,18 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, /** * @brief Read the captured value from Capture Compare unit - * @param htim : TIM handle. - * @param Channel : TIM Channels to be enabled + * @param htim TIM handle. + * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1 : TIM Channel 1 selected - * @arg TIM_CHANNEL_2 : TIM Channel 2 selected - * @arg TIM_CHANNEL_3 : TIM Channel 3 selected - * @arg TIM_CHANNEL_4 : TIM Channel 4 selected + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval Captured value */ uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) { uint32_t tmpreg = 0U; - __HAL_LOCK(htim); - switch (Channel) { case TIM_CHANNEL_1: { /* Check the parameters */ @@ -3809,7 +4843,6 @@ uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) { break; } - __HAL_UNLOCK(htim); return tmpreg; } @@ -3818,113 +4851,642 @@ uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) { */ /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions - * @brief TIM Callbacks functions - * + * @brief TIM Callbacks functions + * @verbatim ============================================================================== ##### TIM Callbacks functions ##### ============================================================================== [..] This section provides TIM callback functions: - (+) Timer Period elapsed callback - (+) Timer Output Compare callback - (+) Timer Input capture callback - (+) Timer Trigger callback - (+) Timer Error callback + (+) TIM Period elapsed callback + (+) TIM Output Compare callback + (+) TIM Input capture callback + (+) TIM Trigger callback + (+) TIM Error callback @endverbatim * @{ */ /** - * @brief Period elapsed callback in non blocking mode - * @param htim : TIM handle + * @brief Period elapsed callback in non-blocking mode + * @param htim TIM handle * @retval None */ __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, - the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedCallback could be implemented in the user file */ } + /** - * @brief Output Compare callback in non blocking mode - * @param htim : TIM OC handle + * @brief Period elapsed half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) { + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Output Compare callback in non-blocking mode + * @param htim TIM OC handle * @retval None */ __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, - the __HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file */ } + /** - * @brief Input Capture callback in non blocking mode - * @param htim : TIM IC handle + * @brief Input Capture callback in non-blocking mode + * @param htim TIM IC handle * @retval None */ __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, - the __HAL_TIM_IC_CaptureCallback could be implemented in the user file + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureCallback could be implemented in the user file */ } /** - * @brief PWM Pulse finished callback in non blocking mode - * @param htim : TIM handle + * @brief Input Capture half complete callback in non-blocking mode + * @param htim TIM IC handle + * @retval None + */ +__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) { + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished callback in non-blocking mode + * @param htim TIM handle * @retval None */ __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, - the __HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file */ } /** - * @brief Hall Trigger detection callback in non blocking mode - * @param htim : TIM handle + * @brief PWM Pulse finished half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) { + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection callback in non-blocking mode + * @param htim TIM handle * @retval None */ __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_TriggerCallback could be implemented in the user file */ } /** - * @brief Timer error callback in non blocking mode - * @param htim : TIM handle + * @brief Hall Trigger detection half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) { + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Timer error callback in non-blocking mode + * @param htim TIM handle * @retval None */ __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_ErrorCallback could be implemented in the user file */ } +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User TIM callback to be used instead of the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @param pCallback pointer to the callback function + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, pTIM_CallbackTypeDef pCallback) { + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) { + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(htim); + + if (htim->State == HAL_TIM_STATE_READY) { + switch (CallbackID) { + case HAL_TIM_BASE_MSPINIT_CB_ID: + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID: + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID: + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID: + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID: + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID: + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID: + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID: + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID: + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID: + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID: + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID: + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID: + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID: + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID: + htim->PeriodElapsedCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID: + htim->PeriodElapsedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_CB_ID: + htim->TriggerCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID: + htim->TriggerHalfCpltCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_CB_ID: + htim->IC_CaptureCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID: + htim->IC_CaptureHalfCpltCallback = pCallback; + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID: + htim->OC_DelayElapsedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID: + htim->PWM_PulseFinishedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID: + htim->PWM_PulseFinishedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_ERROR_CB_ID: + htim->ErrorCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_CB_ID: + htim->CommutationCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID: + htim->CommutationHalfCpltCallback = pCallback; + break; + + case HAL_TIM_BREAK_CB_ID: + htim->BreakCallback = pCallback; + break; + + default: + /* Return error status */ + status = HAL_ERROR; + break; + } + } else if (htim->State == HAL_TIM_STATE_RESET) { + switch (CallbackID) { + case HAL_TIM_BASE_MSPINIT_CB_ID: + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID: + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID: + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID: + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID: + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID: + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID: + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID: + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID: + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID: + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID: + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID: + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID: + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID: + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + default: + /* Return error status */ + status = HAL_ERROR; + break; + } + } else { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Unregister a TIM callback + * TIM callback is redirected to the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) { + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(htim); + + if (htim->State == HAL_TIM_STATE_READY) { + switch (CallbackID) { + case HAL_TIM_BASE_MSPINIT_CB_ID: + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID: + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ + break; + + case HAL_TIM_IC_MSPINIT_CB_ID: + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID: + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ + break; + + case HAL_TIM_OC_MSPINIT_CB_ID: + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID: + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID: + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID: + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID: + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID: + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID: + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID: + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID: + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID: + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID: + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak Period Elapsed Callback */ + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID: + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak Period Elapsed half complete Callback */ + break; + + case HAL_TIM_TRIGGER_CB_ID: + htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak Trigger Callback */ + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID: + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak Trigger half complete Callback */ + break; + + case HAL_TIM_IC_CAPTURE_CB_ID: + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC Capture Callback */ + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID: + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC Capture half complete Callback */ + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID: + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC Delay Elapsed Callback */ + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID: + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM Pulse Finished Callback */ + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID: + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM Pulse Finished half complete Callback */ + break; + + case HAL_TIM_ERROR_CB_ID: + htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak Error Callback */ + break; + + case HAL_TIM_COMMUTATION_CB_ID: + htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak Commutation Callback */ + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID: + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak Commutation half complete Callback */ + break; + + case HAL_TIM_BREAK_CB_ID: + htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak Break Callback */ + break; + + default: + /* Return error status */ + status = HAL_ERROR; + break; + } + } else if (htim->State == HAL_TIM_STATE_RESET) { + switch (CallbackID) { + case HAL_TIM_BASE_MSPINIT_CB_ID: + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID: + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ + break; + + case HAL_TIM_IC_MSPINIT_CB_ID: + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID: + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ + break; + + case HAL_TIM_OC_MSPINIT_CB_ID: + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID: + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID: + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID: + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID: + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID: + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID: + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID: + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID: + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID: + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ + break; + + default: + /* Return error status */ + status = HAL_ERROR; + break; + } + } else { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return status; +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + /** * @} */ -/** @defgroup TIM_Exported_Functions_Group10 Peripheral State functions - * @brief Peripheral State functions - * +/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions + * @brief TIM Peripheral State functions + * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] - This subsection permit to get in run-time the status of the peripheral + This subsection permits to get in run-time the status of the peripheral and the data flow. @endverbatim @@ -3932,47 +5494,90 @@ __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) { */ /** - * @brief Return the TIM Base state - * @param htim : TIM Base handle + * @brief Return the TIM Base handle state. + * @param htim TIM Base handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) { return htim->State; } /** - * @brief Return the TIM OC state - * @param htim : TIM Ouput Compare handle + * @brief Return the TIM OC handle state. + * @param htim TIM Output Compare handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) { return htim->State; } /** - * @brief Return the TIM PWM state - * @param htim : TIM handle + * @brief Return the TIM PWM handle state. + * @param htim TIM handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) { return htim->State; } /** - * @brief Return the TIM Input Capture state - * @param htim : TIM IC handle + * @brief Return the TIM Input Capture handle state. + * @param htim TIM IC handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) { return htim->State; } /** - * @brief Return the TIM One Pulse Mode state - * @param htim : TIM OPM handle + * @brief Return the TIM One Pulse Mode handle state. + * @param htim TIM OPM handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) { return htim->State; } /** - * @brief Return the TIM Encoder Mode state - * @param htim : TIM Encoder handle + * @brief Return the TIM Encoder Mode handle state. + * @param htim TIM Encoder Interface handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) { return htim->State; } +/** + * @brief Return the TIM Encoder Mode handle state. + * @param htim TIM handle + * @retval Active channel + */ +HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) { return htim->Channel; } + +/** + * @brief Return actual state of the TIM channel. + * @param htim TIM handle + * @param Channel TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @arg TIM_CHANNEL_5: TIM Channel 5 + * @arg TIM_CHANNEL_6: TIM Channel 6 + * @retval TIM Channel state + */ +HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) { + HAL_TIM_ChannelStateTypeDef channel_state; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + + return channel_state; +} + +/** + * @brief Return actual state of a DMA burst operation. + * @param htim TIM handle + * @retval DMA burst state + */ +HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) { + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + + return htim->DMABurstState; +} + /** * @} */ @@ -3981,32 +5586,95 @@ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) { return * @} */ -/** @addtogroup TIM_Private_Functions +/** @defgroup TIM_Private_Functions TIM Private Functions * @{ */ /** * @brief TIM DMA error callback - * @param hdma : pointer to DMA handle. + * @param hdma pointer to DMA handle. * @retval None */ void TIM_DMAError(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - htim->State = HAL_TIM_STATE_READY; + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } else { + htim->State = HAL_TIM_STATE_READY; + } +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->ErrorCallback(htim); +#else HAL_TIM_ErrorCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } /** * @brief TIM DMA Delay Pulse complete callback. - * @param hdma : pointer to DMA handle. + * @param hdma pointer to DMA handle. * @retval None */ -void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) { +static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - htim->State = HAL_TIM_STATE_READY; + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + } else { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Delay Pulse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; @@ -4016,21 +5684,75 @@ void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } else { + /* nothing to do */ } - HAL_TIM_PWM_PulseFinishedCallback(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedHalfCpltCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } + /** * @brief TIM DMA Capture complete callback. - * @param hdma : pointer to DMA handle. + * @param hdma pointer to DMA handle. * @retval None */ void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - htim->State = HAL_TIM_STATE_READY; + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + } else { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Capture half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; @@ -4040,48 +5762,96 @@ void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } else { + /* nothing to do */ } - HAL_TIM_IC_CaptureCallback(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureHalfCpltCallback(htim); +#else + HAL_TIM_IC_CaptureHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } /** * @brief TIM DMA Period Elapse complete callback. - * @param hdma : pointer to DMA handle. + * @param hdma pointer to DMA handle. * @retval None */ static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - htim->State = HAL_TIM_STATE_READY; + if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) { + htim->State = HAL_TIM_STATE_READY; + } +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Period Elapse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedHalfCpltCallback(htim); +#else + HAL_TIM_PeriodElapsedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /** * @brief TIM DMA Trigger callback. - * @param hdma : pointer to DMA handle. + * @param hdma pointer to DMA handle. * @retval None */ static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - htim->State = HAL_TIM_STATE_READY; + if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) { + htim->State = HAL_TIM_STATE_READY; + } +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Trigger half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerHalfCpltCallback(htim); +#else + HAL_TIM_TriggerHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /** * @brief Time Base configuration - * @param TIMx : TIM periheral - * @param Structure : TIM Base configuration structure + * @param TIMx TIM peripheral + * @param Structure TIM Base configuration structure * @retval None */ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) { - uint32_t tmpcr1 = 0U; - tmpcr1 = TIMx->CR1; + uint32_t tmpcr1; + tmpcr1 = TIMx->CR1; /* Set TIM Time Base Unit parameters ---------------------------------------*/ if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) { @@ -4097,8 +5867,7 @@ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) { } /* Set the auto-reload preload */ - tmpcr1 &= ~TIM_CR1_ARPE; - tmpcr1 |= (uint32_t)Structure->AutoReloadPreload; + MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); TIMx->CR1 = tmpcr1; @@ -4106,7 +5875,7 @@ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) { TIMx->ARR = (uint32_t)Structure->Period; /* Set the Prescaler value */ - TIMx->PSC = (uint32_t)Structure->Prescaler; + TIMx->PSC = Structure->Prescaler; if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) { /* Set the Repetition Counter value */ @@ -4114,20 +5883,20 @@ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) { } /* Generate an update event to reload the Prescaler - and the repetition counter(only for TIM1 and TIM8) value immediatly */ + and the repetition counter (only for advanced timer) value immediately */ TIMx->EGR = TIM_EGR_UG; } /** - * @brief Time Ouput Compare 1 configuration + * @brief Timer Output Compare 1 configuration * @param TIMx to select the TIM peripheral - * @param OC_Config : The ouput configuration structure + * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) { - uint32_t tmpccmrx = 0U; - uint32_t tmpccer = 0U; - uint32_t tmpcr2 = 0U; + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; /* Disable the Channel 1: Reset the CC1E Bit */ TIMx->CCER &= ~TIM_CCER_CC1E; @@ -4176,6 +5945,7 @@ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) /* Set the Output N Idle state */ tmpcr2 |= OC_Config->OCNIdleState; } + /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; @@ -4190,15 +5960,15 @@ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) } /** - * @brief Time Ouput Compare 2 configuration - * @param TIMx to select the TIM peripheral - * @param OC_Config : The ouput configuration structure + * @brief Timer Output Compare 2 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure * @retval None */ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) { - uint32_t tmpccmrx = 0U; - uint32_t tmpccer = 0U; - uint32_t tmpcr2 = 0U; + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= ~TIM_CCER_CC2E; @@ -4243,9 +6013,9 @@ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) { tmpcr2 &= ~TIM_CR2_OIS2; tmpcr2 &= ~TIM_CR2_OIS2N; /* Set the Output Idle state */ - tmpcr2 |= (OC_Config->OCIdleState << 2); + tmpcr2 |= (OC_Config->OCIdleState << 2U); /* Set the Output N Idle state */ - tmpcr2 |= (OC_Config->OCNIdleState << 2); + tmpcr2 |= (OC_Config->OCNIdleState << 2U); } /* Write to TIMx CR2 */ @@ -4262,15 +6032,15 @@ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) { } /** - * @brief Time Ouput Compare 3 configuration - * @param TIMx to select the TIM peripheral - * @param OC_Config : The ouput configuration structure + * @brief Timer Output Compare 3 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) { - uint32_t tmpccmrx = 0U; - uint32_t tmpccer = 0U; - uint32_t tmpcr2 = 0U; + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; /* Disable the Channel 3: Reset the CC2E Bit */ TIMx->CCER &= ~TIM_CCER_CC3E; @@ -4333,15 +6103,15 @@ static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) } /** - * @brief Time Ouput Compare 4 configuration - * @param TIMx to select the TIM peripheral - * @param OC_Config : The ouput configuration structure + * @brief Timer Output Compare 4 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) { - uint32_t tmpccmrx = 0U; - uint32_t tmpccer = 0U; - uint32_t tmpcr2 = 0U; + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; /* Disable the Channel 4: Reset the CC4E Bit */ TIMx->CCER &= ~TIM_CCER_CC4E; @@ -4367,12 +6137,14 @@ static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) tmpccer |= (OC_Config->OCPolarity << 12U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { + /* Check parameters */ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); /* Reset the Output Compare IDLE State */ tmpcr2 &= ~TIM_CR2_OIS4; + /* Set the Output Idle state */ - tmpcr2 |= (OC_Config->OCIdleState << 6); + tmpcr2 |= (OC_Config->OCIdleState << 6U); } /* Write to TIMx CR2 */ @@ -4389,16 +6161,15 @@ static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) } /** - * @brief Time Slave configuration - * @param htim: pointer to a TIM_HandleTypeDef structure that contains - * the configuration information for TIM module. - * @param sSlaveConfig: The slave configuration structure + * @brief Slave Timer configuration function + * @param htim TIM handle + * @param sSlaveConfig Slave timer configuration * @retval None */ -static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) { - uint32_t tmpsmcr = 0U; - uint32_t tmpccmr1 = 0U; - uint32_t tmpccer = 0U; +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) { + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; /* Get the TIMx SMCR register value */ tmpsmcr = htim->Instance->SMCR; @@ -4426,13 +6197,18 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); /* Configure the ETR Trigger source */ TIM_ETR_SetConfig(htim->Instance, sSlaveConfig->TriggerPrescaler, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter); - } break; + break; + } case TIM_TS_TI1F_ED: { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) { + return HAL_ERROR; + } + /* Disable the Channel 1: Reset the CC1E Bit */ tmpccer = htim->Instance->CCER; htim->Instance->CCER &= ~TIM_CCER_CC1E; @@ -4445,8 +6221,8 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp /* Write to TIMx CCMR1 and CCER registers */ htim->Instance->CCMR1 = tmpccmr1; htim->Instance->CCER = tmpccer; - - } break; + break; + } case TIM_TS_TI1FP1: { /* Check the parameters */ @@ -4456,7 +6232,8 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp /* Configure TI1 Filter and Polarity */ TIM_TI1_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter); - } break; + break; + } case TIM_TS_TI2FP2: { /* Check the parameters */ @@ -4466,47 +6243,38 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp /* Configure TI2 Filter and Polarity */ TIM_TI2_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter); - } break; - - case TIM_TS_ITR0: { - /* Check the parameter */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - } break; - - case TIM_TS_ITR1: { - /* Check the parameter */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - } break; - - case TIM_TS_ITR2: { - /* Check the parameter */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - } break; + break; + } + case TIM_TS_ITR0: + case TIM_TS_ITR1: + case TIM_TS_ITR2: case TIM_TS_ITR3: { /* Check the parameter */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - } break; + break; + } default: break; } + return HAL_OK; } /** * @brief Configure the TI1 as Input. - * @param TIMx to select the TIM peripheral. - * @param TIM_ICPolarity : The Input Polarity. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICSelection : specifies the input to be used. + * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. - * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. - * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. - * @param TIM_ICFilter : Specifies the Input Capture Filter. + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 @@ -4514,8 +6282,8 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp * protected against un-initialized filter and polarity values. */ void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { - uint32_t tmpccmr1 = 0U; - uint32_t tmpccer = 0U; + uint32_t tmpccmr1; + uint32_t tmpccer; /* Disable the Channel 1: Reset the CC1E Bit */ TIMx->CCER &= ~TIM_CCER_CC1E; @@ -4545,19 +6313,19 @@ void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ /** * @brief Configure the Polarity and Filter for TI1. - * @param TIMx to select the TIM peripheral. - * @param TIM_ICPolarity : The Input Polarity. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICFilter : Specifies the Input Capture Filter. + * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) { - uint32_t tmpccmr1 = 0U; - uint32_t tmpccer = 0U; + uint32_t tmpccmr1; + uint32_t tmpccer; /* Disable the Channel 1: Reset the CC1E Bit */ tmpccer = TIMx->CCER; @@ -4579,18 +6347,18 @@ static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, /** * @brief Configure the TI2 as Input. - * @param TIMx to select the TIM peripheral - * @param TIM_ICPolarity : The Input Polarity. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICSelection : specifies the input to be used. + * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. - * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. - * @param TIM_ICFilter : Specifies the Input Capture Filter. + * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 @@ -4598,8 +6366,8 @@ static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, * protected against un-initialized filter and polarity values. */ static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { - uint32_t tmpccmr1 = 0U; - uint32_t tmpccer = 0U; + uint32_t tmpccmr1; + uint32_t tmpccer; /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= ~TIM_CCER_CC2E; @@ -4625,19 +6393,19 @@ static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32 /** * @brief Configure the Polarity and Filter for TI2. - * @param TIMx to select the TIM peripheral. - * @param TIM_ICPolarity : The Input Polarity. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICFilter : Specifies the Input Capture Filter. + * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) { - uint32_t tmpccmr1 = 0U; - uint32_t tmpccer = 0U; + uint32_t tmpccmr1; + uint32_t tmpccer; /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= ~TIM_CCER_CC2E; @@ -4659,17 +6427,17 @@ static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, /** * @brief Configure the TI3 as Input. - * @param TIMx to select the TIM peripheral - * @param TIM_ICPolarity : The Input Polarity. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING - * @param TIM_ICSelection : specifies the input to be used. + * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. - * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. - * @param TIM_ICFilter : Specifies the Input Capture Filter. + * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 @@ -4677,8 +6445,8 @@ static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, * protected against un-initialized filter and polarity values. */ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { - uint32_t tmpccmr2 = 0U; - uint32_t tmpccer = 0U; + uint32_t tmpccmr2; + uint32_t tmpccer; /* Disable the Channel 3: Reset the CC3E Bit */ TIMx->CCER &= ~TIM_CCER_CC3E; @@ -4695,7 +6463,7 @@ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32 /* Select the Polarity and set the CC3E Bit */ tmpccer &= ~(TIM_CCER_CC3P); - tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P)); + tmpccer |= ((TIM_ICPolarity << 8U) & TIM_CCER_CC3P); /* Write to TIMx CCMR2 and CCER registers */ TIMx->CCMR2 = tmpccmr2; @@ -4705,16 +6473,16 @@ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32 /** * @brief Configure the TI4 as Input. * @param TIMx to select the TIM peripheral - * @param TIM_ICPolarity : The Input Polarity. + * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING - * @param TIM_ICSelection : specifies the input to be used. + * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. - * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. - * @param TIM_ICFilter : Specifies the Input Capture Filter. + * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 * (on channel1 path) is used as the input signal. Therefore CCMR2 must be @@ -4722,8 +6490,8 @@ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32 * @retval None */ static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { - uint32_t tmpccmr2 = 0U; - uint32_t tmpccer = 0U; + uint32_t tmpccmr2; + uint32_t tmpccer; /* Disable the Channel 4: Reset the CC4E Bit */ TIMx->CCER &= ~TIM_CCER_CC4E; @@ -4739,7 +6507,7 @@ static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32 tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); /* Select the Polarity and set the CC4E Bit */ - tmpccer &= ~TIM_CCER_CC4P; + tmpccer &= ~(TIM_CCER_CC4P); tmpccer |= ((TIM_ICPolarity << 12U) & TIM_CCER_CC4P); /* Write to TIMx CCMR2 and CCER registers */ @@ -4747,25 +6515,52 @@ static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32 TIMx->CCER = tmpccer; } +/** + * @brief Selects the Input Trigger source + * @param TIMx to select the TIM peripheral + * @param InputTriggerSource The Input Trigger source. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal Trigger 0 + * @arg TIM_TS_ITR1: Internal Trigger 1 + * @arg TIM_TS_ITR2: Internal Trigger 2 + * @arg TIM_TS_ITR3: Internal Trigger 3 + * @arg TIM_TS_TI1F_ED: TI1 Edge Detector + * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 + * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 + * @arg TIM_TS_ETRF: External Trigger input + * @retval None + */ +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) { + uint32_t tmpsmcr; + + /* Get the TIMx SMCR register value */ + tmpsmcr = TIMx->SMCR; + /* Reset the TS Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source and the slave mode*/ + tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} /** * @brief Configures the TIMx External Trigger (ETR). - * @param TIMx to select the TIM peripheral - * @param TIM_ExtTRGPrescaler : The external Trigger Prescaler. + * @param TIMx to select the TIM peripheral + * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. * This parameter can be one of the following values: * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. - * @param TIM_ExtTRGPolarity : The external Trigger Polarity. + * @param TIM_ExtTRGPolarity The external Trigger Polarity. * This parameter can be one of the following values: * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. - * @param ExtTRGFilter : External Trigger Filter. + * @param ExtTRGFilter External Trigger Filter. * This parameter must be a value between 0x00 and 0x0F * @retval None */ -static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) { - uint32_t tmpsmcr = 0U; +void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) { + uint32_t tmpsmcr; tmpsmcr = TIMx->SMCR; @@ -4781,33 +6576,58 @@ static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, u /** * @brief Enables or disables the TIM Capture Compare Channel x. - * @param TIMx to select the TIM peripheral - * @param Channel : specifies the TIM Channel + * @param TIMx to select the TIM peripheral + * @param Channel specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 * @arg TIM_CHANNEL_2: TIM Channel 2 * @arg TIM_CHANNEL_3: TIM Channel 3 * @arg TIM_CHANNEL_4: TIM Channel 4 - * @param ChannelState : specifies the TIM Channel CCxE bit new state. - * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_Disable. + * @param ChannelState specifies the TIM Channel CCxE bit new state. + * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. * @retval None */ void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) { - uint32_t tmp = 0U; + uint32_t tmp; /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(TIMx)); assert_param(IS_TIM_CHANNELS(Channel)); - tmp = TIM_CCER_CC1E << Channel; + tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ /* Reset the CCxE Bit */ TIMx->CCER &= ~tmp; /* Set or reset the CCxE Bit */ - TIMx->CCER |= (uint32_t)(ChannelState << Channel); + TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ } +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Reset interrupt callbacks to the legacy weak callbacks. + * @param htim pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +void TIM_ResetCallback(TIM_HandleTypeDef *htim) { + /* Reset the TIM callback to the legacy weak callbacks */ + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak PeriodElapsedCallback */ + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak PeriodElapsedHalfCpltCallback */ + htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak TriggerCallback */ + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak TriggerHalfCpltCallback */ + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC_CaptureCallback */ + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC_CaptureHalfCpltCallback */ + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC_DelayElapsedCallback */ + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM_PulseFinishedCallback */ + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM_PulseFinishedHalfCpltCallback */ + htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak ErrorCallback */ + htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak CommutationCallback */ + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak CommutationHalfCpltCallback */ + htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak BreakCallback */ +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + /** * @} */ diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c index e1530203..9d6123bf 100644 --- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c +++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c @@ -7,7 +7,7 @@ * functionalities of the Timer Extended peripheral: * + Time Hall Sensor Interface Initialization * + Time Hall Sensor Interface Start - * + Time Complementary signal bread and dead time configuration + * + Time Complementary signal break and dead time configuration * + Time Master and Slave synchronization configuration * + Timer remapping capabilities configuration @verbatim @@ -30,10 +30,7 @@ ============================================================================== [..] (#) Initialize the TIM low level resources by implementing the following functions - depending from feature used : - (++) Complementary Output Compare : HAL_TIM_OC_MspInit() - (++) Complementary PWM generation : HAL_TIM_PWM_MspInit() - (++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit() + depending on the selected feature: (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit() (#) Initialize the TIM low level resources : @@ -50,11 +47,11 @@ (#) Configure the TIM in the desired functioning mode using one of the initialization function of this driver: - (++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the - Timer Hall Sensor Interface and the commutation event with the corresponding - Interrupt and DMA request if needed (Note that One Timer is used to interface - with the Hall sensor Interface and another Timer should be used to use - the commutation event). + (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the + Timer Hall Sensor Interface and the commutation event with the corresponding + Interrupt and DMA request if needed (Note that One Timer is used to interface + with the Hall sensor Interface and another Timer should be used to use + the commutation event). (#) Activate the TIM peripheral using one of the start functions: (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OCN_Start_IT() @@ -62,37 +59,20 @@ (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT(). - @endverbatim ****************************************************************************** * @attention * - *

© COPYRIGHT(c) 2016 STMicroelectronics

+ *

© Copyright (c) 2016 STMicroelectronics. + * All rights reserved.

* - * Redistribution and use in source and binary forms, with or without modification, - * are permitted provided that the following conditions are met: - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright notice, - * this list of conditions and the following disclaimer in the documentation - * and/or other materials provided with the distribution. - * 3. Neither the name of STMicroelectronics nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, - * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** -*/ + */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" @@ -110,31 +90,21 @@ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ - -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) -/** @defgroup TIMEx_Private_Functions TIMEx Private Functions - * @{ - */ +static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma); static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState); -/** - * @} - */ -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup TIMEx_Exported_Functions TIMEx Exported Functions +/* Exported functions --------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions * @{ */ -/** @defgroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions - * @brief Timer Hall Sensor functions - * +/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions + * @brief Timer Hall Sensor functions + * @verbatim ============================================================================== ##### Timer Hall Sensor functions ##### @@ -154,9 +124,12 @@ static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Cha * @{ */ /** - * @brief Initializes the TIM Hall Sensor Interface and create the associated handle. - * @param htim : TIM Encoder Interface handle - * @param sConfig : TIM Hall Sensor configuration structure + * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle. + * @note When the timer instance is initialized in Hall Sensor Interface mode, + * timer channels 1 and channel 2 are reserved and cannot be used for + * other purpose. + * @param htim TIM Hall Sensor Interface handle + * @param sConfig TIM Hall Sensor configuration structure * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig) { @@ -167,7 +140,8 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen return HAL_ERROR; } - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); @@ -179,8 +153,19 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy week callbacks */ + TIM_ResetCallback(htim); + + if (htim->HallSensor_MspInitCallback == NULL) { + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->HallSensor_MspInitCallback(htim); +#else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIMEx_HallSensor_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ @@ -224,6 +209,15 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen htim->Instance->CR2 &= ~TIM_CR2_MMS; htim->Instance->CR2 |= TIM_TRGO_OC2REF; + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; @@ -232,7 +226,7 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen /** * @brief DeInitializes the TIM Hall Sensor interface - * @param htim : TIM Hall Sensor handle + * @param htim TIM Hall Sensor Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) { @@ -244,8 +238,25 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) { /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->HallSensor_MspDeInitCallback == NULL) { + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; + } + /* DeInit the low level hardware */ + htim->HallSensor_MspDeInitCallback(htim); +#else /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIMEx_HallSensor_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; @@ -258,45 +269,72 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) { /** * @brief Initializes the TIM Hall Sensor MSP. - * @param htim : TIM handle + * @param htim TIM Hall Sensor Interface handle * @retval None */ __weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Hall Sensor MSP. - * @param htim : TIM handle + * @param htim TIM Hall Sensor Interface handle * @retval None */ __weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Hall Sensor Interface. - * @param htim : TIM Hall Sensor handle + * @param htim TIM Hall Sensor Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) { + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + /* Check the parameters */ - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); /* Enable the Input Capture channel 1 - (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -304,42 +342,73 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) { /** * @brief Stops the TIM Hall sensor Interface. - * @param htim : TIM Hall Sensor handle + * @param htim TIM Hall Sensor Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) { /* Check the parameters */ - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - /* Disable the Input Capture channel 1 - (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + /* Disable the Input Capture channels 1, 2 and 3 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Hall Sensor Interface in interrupt mode. - * @param htim : TIM Hall Sensor handle + * @param htim TIM Hall Sensor Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) { + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + /* Check the parameters */ - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); /* Enable the capture compare Interrupts 1 event */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); /* Enable the Input Capture channel 1 - (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -347,15 +416,15 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) { /** * @brief Stops the TIM Hall Sensor Interface in interrupt mode. - * @param htim : TIM handle + * @param htim TIM Hall Sensor Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) { /* Check the parameters */ - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channel 1 - (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the capture compare Interrupts event */ @@ -364,47 +433,72 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) { /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Hall Sensor Interface in DMA mode. - * @param htim : TIM Hall Sensor handle - * @param pData : The destination Buffer address. - * @param Length : The length of data to be transferred from TIM peripheral to memory. + * @param htim TIM Hall Sensor Interface handle + * @param pData The destination Buffer address. + * @param Length The length of data to be transferred from TIM peripheral to memory. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) { - /* Check the parameters */ - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel state */ + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if (((uint32_t)pData == 0U) && (Length > 0U)) { + } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) { + if ((pData == NULL) && (Length > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); } + } else { + return HAL_ERROR; } + /* Enable the Input Capture channel 1 - (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - /* Set the DMA Input Capture 1 Callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA Input Capture 1 Callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel for Capture 1*/ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the capture compare 1 Interrupt */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -412,23 +506,29 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32 /** * @brief Stops the TIM Hall Sensor Interface in DMA mode. - * @param htim : TIM handle + * @param htim TIM Hall Sensor Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) { /* Check the parameters */ - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channel 1 - (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the capture compare Interrupts 1 event */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -437,11 +537,9 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) { * @} */ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) - -/** @defgroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions - * @brief Timer Complementary Output Compare functions - * +/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions + * @brief Timer Complementary Output Compare functions + * @verbatim ============================================================================== ##### Timer Complementary Output Compare functions ##### @@ -462,8 +560,8 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) { /** * @brief Starts the TIM Output Compare signal generation on the complementary * output. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -471,17 +569,34 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) { * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - /* Enable the Main Ouput */ + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -490,8 +605,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) /** * @brief Stops the TIM Output Compare signal generation on the complementary * output. - * @param htim : TIM handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -505,12 +620,15 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) /* Disable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -518,8 +636,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) /** * @brief Starts the TIM Output Compare signal generation in interrupt mode * on the complementary output. - * @param htim : TIM OC handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM OC handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -527,24 +645,37 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Output Compare interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Enable the TIM Output Compare interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Enable the TIM Output Compare interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } default: break; @@ -556,11 +687,18 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chann /* Enable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - /* Enable the Main Ouput */ + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -569,8 +707,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chann /** * @brief Stops the TIM Output Compare signal generation in interrupt mode * on the complementary output. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -578,8 +716,7 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chann * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { - uint32_t tmpccer = 0U; - + uint32_t tmpccer; /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); @@ -587,17 +724,20 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channe case TIM_CHANNEL_1: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Output Compare interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } default: break; @@ -608,16 +748,19 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channe /* Disable the TIM Break interrupt (only if no more channel is active) */ tmpccer = htim->Instance->CCER; - if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) { + if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) { __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); } - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -625,71 +768,89 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channe /** * @brief Starts the TIM Output Compare signal generation in DMA mode * on the complementary output. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @param pData : The source Buffer address. - * @param Length : The length of data to be transferred from memory to TIM peripheral + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + /* Set the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if (((uint32_t)pData == 0U) && (Length > 0U)) { + } else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) { + if ((pData == NULL) && (Length > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } + } else { + return HAL_ERROR; } + switch (Channel) { case TIM_CHANNEL_1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Output Compare DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - } break; + break; + } case TIM_CHANNEL_2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Output Compare DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - } break; + break; + } case TIM_CHANNEL_3: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError; + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Output Compare DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - } break; + break; + } default: break; @@ -698,11 +859,18 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Chan /* Enable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - /* Enable the Main Ouput */ + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -711,8 +879,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Chan /** * @brief Stops the TIM Output Compare signal generation in DMA mode * on the complementary output. - * @param htim : TIM Output Compare handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -727,17 +895,23 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann case TIM_CHANNEL_1: { /* Disable the TIM Output Compare DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Output Compare DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Output Compare DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } default: break; @@ -746,14 +920,14 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann /* Disable the Capture compare channel N */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; @@ -763,9 +937,9 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann * @} */ -/** @defgroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions - * @brief Timer Complementary PWM functions - * +/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions + * @brief Timer Complementary PWM functions + * @verbatim ============================================================================== ##### Timer Complementary PWM functions ##### @@ -795,8 +969,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann /** * @brief Starts the PWM signal generation on the complementary output. - * @param htim : TIM handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -804,17 +978,34 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - /* Enable the Main Ouput */ + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -822,8 +1013,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel /** * @brief Stops the PWM signal generation on the complementary output. - * @param htim : TIM handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -837,12 +1028,15 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) /* Disable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -850,8 +1044,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) /** * @brief Starts the PWM signal generation in interrupt mode on the * complementary output. - * @param htim : TIM handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -859,24 +1053,37 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } default: break; @@ -888,11 +1095,18 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chan /* Enable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - /* Enable the Main Ouput */ + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -901,8 +1115,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chan /** * @brief Stops the PWM signal generation in interrupt mode on the * complementary output. - * @param htim : TIM handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -910,7 +1124,7 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chan * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { - uint32_t tmpccer = 0U; + uint32_t tmpccer; /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); @@ -919,17 +1133,20 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chann case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - } break; + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - } break; + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - } break; + break; + } default: break; @@ -940,16 +1157,19 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chann /* Disable the TIM Break interrupt (only if no more channel is active) */ tmpccer = htim->Instance->CCER; - if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) { + if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) { __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); } - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -957,71 +1177,89 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chann /** * @brief Starts the TIM PWM signal generation in DMA mode on the * complementary output - * @param htim : TIM handle - * @param Channel : TIM Channel to be enabled + * @param htim TIM handle + * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @param pData : The source Buffer address. - * @param Length : The length of data to be transferred from memory to TIM peripheral + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { + uint32_t tmpsmcr; + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - if ((htim->State == HAL_TIM_STATE_BUSY)) { + /* Set the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) { return HAL_BUSY; - } else if ((htim->State == HAL_TIM_STATE_READY)) { - if (((uint32_t)pData == 0U) && (Length > 0U)) { + } else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) { + if ((pData == NULL) && (Length > 0U)) { return HAL_ERROR; } else { - htim->State = HAL_TIM_STATE_BUSY; + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } + } else { + return HAL_ERROR; } + switch (Channel) { case TIM_CHANNEL_1: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError; + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - } break; + break; + } case TIM_CHANNEL_2: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - } break; + break; + } case TIM_CHANNEL_3: { - /* Set the DMA Period elapsed callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError; + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN; /* Enable the DMA channel */ - HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length); - + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) { + /* Return error status */ + return HAL_ERROR; + } /* Enable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - } break; + break; + } default: break; @@ -1030,11 +1268,18 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Cha /* Enable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - /* Enable the Main Ouput */ + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { + __HAL_TIM_ENABLE(htim); + } + } else { + __HAL_TIM_ENABLE(htim); + } /* Return function status */ return HAL_OK; @@ -1043,8 +1288,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Cha /** * @brief Stops the TIM PWM signal generation in DMA mode on the complementary * output - * @param htim : TIM handle - * @param Channel : TIM Channel to be disabled + * @param htim TIM handle + * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected @@ -1059,17 +1304,23 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - } break; + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } default: break; @@ -1078,14 +1329,14 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan /* Disable the complementary PWM output */ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; @@ -1095,9 +1346,9 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan * @} */ -/** @defgroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions - * @brief Timer Complementary One Pulse functions - * +/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions + * @brief Timer Complementary One Pulse functions + * @verbatim ============================================================================== ##### Timer Complementary One Pulse functions ##### @@ -1114,23 +1365,37 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan */ /** - * @brief Starts the TIM One Pulse signal generation on the complemetary + * @brief Starts the TIM One Pulse signal generation on the complementary * output. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channel to be enabled + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + HAL_TIM_ChannelStateTypeDef input_channel_state = TIM_CHANNEL_STATE_GET(htim, input_channel); + HAL_TIM_ChannelStateTypeDef output_channel_state = TIM_CHANNEL_N_STATE_GET(htim, OutputChannel); + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); - /* Enable the complementary One Pulse output */ - TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + /* Check the TIM channels state */ + if ((output_channel_state != HAL_TIM_CHANNEL_STATE_READY) || (input_channel_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } - /* Enable the Main Ouput */ + /* Set the TIM channels state */ + TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); + + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Return function status */ @@ -1140,27 +1405,33 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t Ou /** * @brief Stops the TIM One Pulse signal generation on the complementary * output. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channel to be disabled + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); - /* Disable the complementary One Pulse output */ + /* Disable the complementary One Pulse output channel and the Input Capture channel */ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channels state */ + TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -1168,27 +1439,41 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t Out /** * @brief Starts the TIM One Pulse signal generation in interrupt mode on the * complementary channel. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channel to be enabled + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + HAL_TIM_ChannelStateTypeDef input_channel_state = TIM_CHANNEL_STATE_GET(htim, input_channel); + HAL_TIM_ChannelStateTypeDef output_channel_state = TIM_CHANNEL_N_STATE_GET(htim, OutputChannel); + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + /* Check the TIM channels state */ + if ((output_channel_state != HAL_TIM_CHANNEL_STATE_READY) || (input_channel_state != HAL_TIM_CHANNEL_STATE_READY)) { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_BUSY); + /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - /* Enable the complementary One Pulse output */ + /* Enable the complementary One Pulse output channel and the Input Capture channel */ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); - /* Enable the Main Ouput */ + /* Enable the Main Output */ __HAL_TIM_MOE_ENABLE(htim); /* Return function status */ @@ -1198,14 +1483,16 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t /** * @brief Stops the TIM One Pulse signal generation in interrupt mode on the * complementary channel. - * @param htim : TIM One Pulse handle - * @param OutputChannel : TIM Channel to be disabled + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + /* Check the parameters */ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); @@ -1215,15 +1502,20 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - /* Disable the complementary One Pulse output */ + /* Disable the complementary One Pulse output channel and the Input Capture channel */ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); - /* Disable the Main Ouput */ + /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); + /* Set the TIM channels state */ + TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_READY); + /* Return function status */ return HAL_OK; } @@ -1232,52 +1524,49 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t * @} */ -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ - -/** @defgroup TIMEx_Exported_Functions_Group5 Peripheral Control functions - * @brief Peripheral Control functions - * +/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions + * @brief Peripheral Control functions + * @verbatim ============================================================================== ##### Peripheral Control functions ##### ============================================================================== [..] This section provides functions allowing to: - (+) Configure the commutation event in case of use of the Hall sensor interface. + (+) Configure the commutation event in case of use of the Hall sensor interface. + (+) Configure Output channels for OC and PWM mode. + (+) Configure Complementary channels, break features and dead time. (+) Configure Master synchronization. + (+) Configure timer remapping capabilities. @endverbatim * @{ */ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) - /** * @brief Configure the TIM commutation event sequence. - * @note: this function is mandatory to use the commutation event in order to + * @note This function is mandatory to use the commutation event in order to * update the configuration at each commutation detection on the TRGI input of the Timer, * the typical use of this feature is with the use of another Timer(interface Timer) * configured in Hall sensor interface, this interface Timer will generate the * commutation at its TRGO output (connected to Timer used in this function) each time * the TI1 of the Interface Timer detect a commutation at its input TI1. - * @param htim : TIM handle - * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal trigger 0 selected * @arg TIM_TS_ITR1: Internal trigger 1 selected * @arg TIM_TS_ITR2: Internal trigger 2 selected * @arg TIM_TS_ITR3: Internal trigger 3 selected * @arg TIM_TS_NONE: No trigger is needed - * @param CommutationSource : the Commutation Event source + * @param CommutationSource the Commutation Event source * This parameter can be one of the following values: * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit * @retval HAL status */ -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { /* Check the parameters */ assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); @@ -1296,6 +1585,12 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint htim->Instance->CR2 &= ~TIM_CR2_CCUS; htim->Instance->CR2 |= CommutationSource; + /* Disable Commutation Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); + + /* Disable Commutation DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); + __HAL_UNLOCK(htim); return HAL_OK; @@ -1303,27 +1598,27 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint /** * @brief Configure the TIM commutation event sequence with interrupt. - * @note: this function is mandatory to use the commutation event in order to + * @note This function is mandatory to use the commutation event in order to * update the configuration at each commutation detection on the TRGI input of the Timer, * the typical use of this feature is with the use of another Timer(interface Timer) * configured in Hall sensor interface, this interface Timer will generate the * commutation at its TRGO output (connected to Timer used in this function) each time * the TI1 of the Interface Timer detect a commutation at its input TI1. - * @param htim : TIM handle - * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal trigger 0 selected * @arg TIM_TS_ITR1: Internal trigger 1 selected * @arg TIM_TS_ITR2: Internal trigger 2 selected * @arg TIM_TS_ITR3: Internal trigger 3 selected * @arg TIM_TS_NONE: No trigger is needed - * @param CommutationSource : the Commutation Event source + * @param CommutationSource the Commutation Event source * This parameter can be one of the following values: * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit * @retval HAL status */ -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { /* Check the parameters */ assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); @@ -1342,7 +1637,10 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, u htim->Instance->CR2 &= ~TIM_CR2_CCUS; htim->Instance->CR2 |= CommutationSource; - /* Enable the Commutation Interrupt Request */ + /* Disable Commutation DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); + + /* Enable the Commutation Interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); __HAL_UNLOCK(htim); @@ -1352,28 +1650,28 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, u /** * @brief Configure the TIM commutation event sequence with DMA. - * @note: this function is mandatory to use the commutation event in order to + * @note This function is mandatory to use the commutation event in order to * update the configuration at each commutation detection on the TRGI input of the Timer, * the typical use of this feature is with the use of another Timer(interface Timer) * configured in Hall sensor interface, this interface Timer will generate the * commutation at its TRGO output (connected to Timer used in this function) each time * the TI1 of the Interface Timer detect a commutation at its input TI1. - * @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set - * @param htim : TIM handle - * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal trigger 0 selected * @arg TIM_TS_ITR1: Internal trigger 1 selected * @arg TIM_TS_ITR2: Internal trigger 2 selected * @arg TIM_TS_ITR3: Internal trigger 3 selected * @arg TIM_TS_NONE: No trigger is needed - * @param CommutationSource : the Commutation Event source + * @param CommutationSource the Commutation Event source * This parameter can be one of the following values: * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit * @retval HAL status */ -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) { /* Check the parameters */ assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); @@ -1394,10 +1692,14 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, /* Enable the Commutation DMA Request */ /* Set the DMA Commutation Callback */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; + /* Disable Commutation Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); + /* Enable the Commutation DMA Request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); @@ -1407,14 +1709,73 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, } /** - * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State - * and the AOE(automatic output enable). - * @param htim : TIM handle - * @param sBreakDeadTimeConfig : pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that + * @brief Configures the TIM in master mode. + * @param htim TIM handle. + * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that + * contains the selected trigger output (TRGO) and the Master/Slave + * mode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig) { + uint32_t tmpcr2; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); + assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); + + /* Check input state */ + __HAL_LOCK(htim); + + /* Change the handler state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the MMS Bits */ + tmpcr2 &= ~TIM_CR2_MMS; + /* Select the TRGO source */ + tmpcr2 |= sMasterConfig->MasterOutputTrigger; + + /* Update TIMx CR2 */ + htim->Instance->CR2 = tmpcr2; + + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { + /* Reset the MSM Bit */ + tmpsmcr &= ~TIM_SMCR_MSM; + /* Set master mode */ + tmpsmcr |= sMasterConfig->MasterSlaveMode; + + /* Update TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + } + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State + * and the AOE(automatic output enable). + * @param htim TIM handle + * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that * contains the BDTR Register configuration information for the TIM peripheral. + * @note Interrupts can be generated when an active level is detected on the + * break input, the break 2 input or the system break input. Break + * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro. * @retval HAL status */ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) { + /* Keep this variable initialized to 0 as it is used to configure BDTR register */ uint32_t tmpbdtr = 0U; /* Check the parameters */ @@ -1427,7 +1788,7 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_Bre assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); - /* Process Locked */ + /* Check input state */ __HAL_LOCK(htim); /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, @@ -1441,7 +1802,6 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_Bre MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState); MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity); MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput); - MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, sBreakDeadTimeConfig->AutomaticOutput); /* Set TIMx_BDTR */ htim->Instance->BDTR = tmpbdtr; @@ -1451,41 +1811,17 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_Bre return HAL_OK; } -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ - /** - * @brief Configures the TIM in master mode. - * @param htim : TIM handle. - * @param sMasterConfig : pointer to a TIM_MasterConfigTypeDef structure that - * contains the selected trigger output (TRGO) and the Master/Slave - * mode. + * @brief Configures the TIMx Remapping input capabilities. + * @param htim TIM handle. + * @param Remap specifies the TIM remapping source. + * * @retval HAL status */ -HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig) { - /* Check the parameters */ - assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); - assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); - assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); - - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Reset the MMS Bits */ - htim->Instance->CR2 &= ~TIM_CR2_MMS; - /* Select the TRGO source */ - htim->Instance->CR2 |= sMasterConfig->MasterOutputTrigger; - - /* Reset the MSM Bit */ - htim->Instance->SMCR &= ~TIM_SMCR_MSM; - /* Set or Reset the MSM Bit */ - htim->Instance->SMCR |= sMasterConfig->MasterSlaveMode; - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); +HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) { + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + UNUSED(Remap); return HAL_OK; } @@ -1494,15 +1830,15 @@ HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, * @} */ -/** @defgroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions - * @brief Extension Callbacks functions - * +/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions + * @brief Extended Callbacks functions + * @verbatim ============================================================================== - ##### Extension Callbacks functions ##### + ##### Extended Callbacks functions ##### ============================================================================== [..] - This section provides Extension TIM callback functions: + This section provides Extended TIM callback functions: (+) Timer Commutation callback (+) Timer Break callback @@ -1511,59 +1847,58 @@ HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, */ /** - * @brief Hall commutation changed callback in non blocking mode - * @param htim : TIM handle + * @brief Hall commutation changed callback in non-blocking mode + * @param htim TIM handle * @retval None */ -__weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim) { +__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_TIMEx_CommutationCallback could be implemented in the user file + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_CommutCallback could be implemented in the user file + */ +} +/** + * @brief Hall commutation changed half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) { + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file */ } /** - * @brief Hall Break detection callback in non blocking mode - * @param htim : TIM handle + * @brief Hall Break detection callback in non-blocking mode + * @param htim TIM handle * @retval None */ __weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); - /* NOTE : This function Should not be modified, when the callback is needed, + + /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIMEx_BreakCallback could be implemented in the user file */ } - -/** - * @brief TIM DMA Commutation callback. - * @param hdma : pointer to DMA handle. - * @retval None - */ -void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) { - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - - HAL_TIMEx_CommutationCallback(htim); -} - /** * @} */ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) - -/** @defgroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions - * @brief Extension Peripheral State functions - * +/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions + * @brief Extended Peripheral State functions + * @verbatim ============================================================================== - ##### Extension Peripheral State functions ##### + ##### Extended Peripheral State functions ##### ============================================================================== [..] - This subsection permit to get in run-time the status of the peripheral + This subsection permits to get in run-time the status of the peripheral and the data flow. @endverbatim @@ -1571,61 +1906,183 @@ void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) { */ /** - * @brief Return the TIM Hall Sensor interface state - * @param htim : TIM Hall Sensor handle + * @brief Return the TIM Hall Sensor interface handle state. + * @param htim TIM Hall Sensor handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) { return htim->State; } +/** + * @brief Return actual state of the TIM complementary channel. + * @param htim TIM handle + * @param ChannelN TIM Complementary channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @retval TIM Complementary channel state + */ +HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN) { + HAL_TIM_ChannelStateTypeDef channel_state; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN)); + + channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN); + + return channel_state; +} /** * @} */ -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ /** * @} */ -#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) - -/** @addtogroup TIMEx_Private_Functions +/* Private functions ---------------------------------------------------------*/ +/** @defgroup TIMEx_Private_Functions TIMEx Private Functions * @{ */ +/** + * @brief TIM DMA Commutation callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationCallback(htim); +#else + HAL_TIMEx_CommutCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Commutation half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationHalfCpltCallback(htim); +#else + HAL_TIMEx_CommutHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Delay Pulse complete callback (complementary channel). + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + + if (hdma->Init.Mode == DMA_NORMAL) { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + } else { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA error callback (complementary channel) + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma) { + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } else { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->ErrorCallback(htim); +#else + HAL_TIM_ErrorCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + /** * @brief Enables or disables the TIM Capture Compare Channel xN. - * @param TIMx to select the TIM peripheral - * @param Channel : specifies the TIM Channel + * @param TIMx to select the TIM peripheral + * @param Channel specifies the TIM Channel * This parameter can be one of the following values: - * @arg TIM_Channel_1: TIM Channel 1 - * @arg TIM_Channel_2: TIM Channel 2 - * @arg TIM_Channel_3: TIM Channel 3 - * @param ChannelNState : specifies the TIM Channel CCxNE bit new state. + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @param ChannelNState specifies the TIM Channel CCxNE bit new state. * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. * @retval None */ static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) { - uint32_t tmp = 0U; + uint32_t tmp; - tmp = TIM_CCER_CC1NE << Channel; + tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ /* Reset the CCxNE Bit */ TIMx->CCER &= ~tmp; /* Set or reset the CCxNE Bit */ - TIMx->CCER |= (uint32_t)(ChannelNState << Channel); + TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ } - /** * @} */ -#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */ - /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */ - /* defined(STM32F105xC) || defined(STM32F107xC) */ - #endif /* HAL_TIM_MODULE_ENABLED */ /** * @}