1
0
forked from me/IronOS

Move prob into the new state machine

This commit is contained in:
Ben V. Brown
2021-02-24 19:21:35 +11:00
parent 296c2f9351
commit 8d39ff1cbc
2 changed files with 176 additions and 220 deletions

View File

@@ -9,112 +9,123 @@
#include "main.hpp"
#include <IRQ.h>
const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 25; // delay of 7 ms
const uint8_t tempMeasureTicks = 25;
const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 25; // delay of 7 ms
const uint8_t tempMeasureTicks = 25;
uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
// 2 second filter (ADC is PID_TIM_HZ Hz)
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() { fwdgt_counter_reload(); }
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
void resetWatchdog() {
fwdgt_counter_reload();
}
uint16_t getTipInstantTemperature() {
volatile uint16_t sum = 0; // 12 bit readings * 8*2 -> 16 bits
volatile uint16_t sum = 0; // 12 bit readings * 8*2 -> 16 bits
for (int i = 0; i < 4; i++) {
sum += adc_inserted_data_read(ADC0, i);
sum += adc_inserted_data_read(ADC1, i);
}
return sum; // 8x over sample
for (int i = 0; i < 4; i++) {
sum += adc_inserted_data_read(ADC0, i);
sum += adc_inserted_data_read(ADC1, i);
}
return sum; // 8x over sample
}
uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) {
uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample);
return lastSample;
} else {
return rawTempFilter.average();
}
if (refresh) {
uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample);
return lastSample;
} else {
return rawTempFilter.average();
}
}
uint16_t getHandleTemperature() {
#ifdef TEMP_TMP36
// We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
int32_t result = getADC(0);
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C
result *= 100;
result /= 993;
return result;
// We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
int32_t result = getADC(0);
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C
result *= 100;
result /= 993;
return result;
#else
#error
#endif
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0;
if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1);
preFillneeded--;
}
if (sample) {
samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH;
}
uint32_t sum = 0;
static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0;
if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1);
preFillneeded--;
}
if (sample) {
samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH;
}
uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i];
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i];
sum /= BATTFILTERDEPTH;
if (divisor == 0) {
divisor = 1;
}
return sum * 4 / divisor;
sum /= BATTFILTERDEPTH;
if (divisor == 0) {
divisor = 1;
}
return sum * 4 / divisor;
}
void unstick_I2C() {
/* configure SDA/SCL for GPIO */
GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
GPIO_BOP(GPIOB) |= SCL_Pin;
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
GPIO_BOP(GPIOB) |= SDA_Pin;
/* connect PB6 to I2C0_SCL */
/* connect PB7 to I2C0_SDA */
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
/* configure SDA/SCL for GPIO */
GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
for (int i = 0; i < 8; i++) {
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
GPIO_BOP(GPIOB) |= SCL_Pin;
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
GPIO_BOP(GPIOB) &= SCL_Pin;
}
/* connect PB6 to I2C0_SCL */
/* connect PB7 to I2C0_SDA */
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
}
uint8_t getButtonA() { return (gpio_input_bit_get(KEY_A_GPIO_Port, KEY_A_Pin) == SET) ? 1 : 0; }
uint8_t getButtonB() { return (gpio_input_bit_get(KEY_B_GPIO_Port, KEY_B_Pin) == SET) ? 1 : 0; }
uint8_t getButtonA() {
return (gpio_input_bit_get(KEY_A_GPIO_Port, KEY_A_Pin) == SET) ? 1 : 0;
}
uint8_t getButtonB() {
return (gpio_input_bit_get(KEY_B_GPIO_Port, KEY_B_Pin) == SET) ? 1 : 0;
}
void reboot() {
// Spin for watchdog
for (;;) {}
// Spin for watchdog
for (;;) {
}
}
void delay_ms(uint16_t count) { delay_1ms(count); }
uint32_t __get_IPSR(void) {
return 0; // To shut-up CMSIS
void delay_ms(uint16_t count) {
delay_1ms(count);
}
uint32_t __get_IPSR(void) {
return 0; // To shut-up CMSIS
}

View File

@@ -46,12 +46,13 @@ enum i2c_step {
struct i2c_state {
i2c_step currentStep;
bool isMemoryWrite;
bool wakePart;
dma_parameter_struct dma_init_struct;
};
volatile i2c_state currentState;
bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8_t *p_buffer, uint16_t number_of_byte, bool isWrite) {
bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8_t *p_buffer, uint16_t number_of_byte, bool isWrite, bool isWakeOnly) {
{
//TODO is this required
/* disable I2C0 */
@@ -62,29 +63,38 @@ bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8
i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_BUF);
i2c_interrupt_disable(I2C0, I2C_INT_EV);
currentState.isMemoryWrite = isWrite;
//Setup DMA
currentState.dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
currentState.dma_init_struct.memory_addr = (uint32_t) p_buffer;
currentState.dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
currentState.dma_init_struct.number = number_of_byte;
currentState.dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0);
currentState.dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
currentState.dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
currentState.dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
if (currentState.isMemoryWrite) {
dma_deinit(DMA0, DMA_CH5);
currentState.dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init(DMA0, DMA_CH5, (dma_parameter_struct*) &currentState.dma_init_struct);
} else {
dma_deinit(DMA0, DMA_CH6);
currentState.dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init(DMA0, DMA_CH6, (dma_parameter_struct*) &currentState.dma_init_struct);
}
if (!currentState.isMemoryWrite) {
i2c_dma_last_transfer_config(I2C0, I2C_DMALST_ON);
currentState.isMemoryWrite = isWrite;
currentState.wakePart = isWakeOnly;
if (!isWakeOnly) {
//Setup DMA
currentState.dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
currentState.dma_init_struct.memory_addr = (uint32_t) p_buffer;
currentState.dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
currentState.dma_init_struct.number = number_of_byte;
currentState.dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0);
currentState.dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
currentState.dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
currentState.dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
if (currentState.isMemoryWrite) {
dma_deinit(DMA0, DMA_CH5);
currentState.dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init(DMA0, DMA_CH5, (dma_parameter_struct*) &currentState.dma_init_struct);
} else {
dma_deinit(DMA0, DMA_CH6);
currentState.dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init(DMA0, DMA_CH6, (dma_parameter_struct*) &currentState.dma_init_struct);
}
if (!currentState.isMemoryWrite) {
i2c_dma_last_transfer_config(I2C0, I2C_DMALST_ON);
}
}
//Clear flags
I2C_STAT0(I2C0) = 0;
I2C_STAT1(I2C0) = 0;
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
currentState.currentStep = Write_start; //Always start in write mode
TickType_t timeout = xTaskGetTickCount() + TICKS_SECOND;
while ((currentState.currentStep != Done) && (currentState.currentStep != Error_occured)) {
@@ -92,6 +102,23 @@ bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8
i2c_stop_on_bus(I2C0);
return false;
}
// if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
// i2c_flag_clear(I2C0, I2C_FLAG_AERR);
// //Arb error - we lost the bus / nacked
// currentState.currentStep = Error_occured;
// } else if (i2c_flag_get(I2C0, I2C_FLAG_BERR)) {
// i2c_flag_clear(I2C0, I2C_FLAG_BERR);
// // Bus Error
// currentState.currentStep = Error_occured;
// } else if (i2c_flag_get(I2C0, I2C_FLAG_LOSTARB)) {
// i2c_flag_clear(I2C0, I2C_FLAG_LOSTARB);
// // Bus Error
// currentState.currentStep = Error_occured;
// } else if (i2c_flag_get(I2C0, I2C_FLAG_PECERR)) {
// i2c_flag_clear(I2C0, I2C_FLAG_PECERR);
// // Bus Error
// currentState.currentStep = Error_occured;
// }
switch (currentState.currentStep) {
case Error_occured:
@@ -109,37 +136,36 @@ bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8
currentState.currentStep = Write_device_address;
}
break;
case Read_start:
/* wait until BTC bit is set */
if (i2c_flag_get(I2C0, I2C_FLAG_BTC)) {
i2c_start_on_bus(I2C0);
currentState.currentStep = Read_device_address;
}
break;
case Write_device_address:
/* i2c master sends START signal successfully */
if (i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
currentState.currentStep = Write_device_memory_address;
}
break;
case Read_device_address:
if (i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) {
i2c_master_addressing(I2C0, DevAddress, I2C_RECEIVER);
currentState.currentStep = Read_device_data_start;
}
break;
case Write_device_memory_address:
//Send the device memory location
if (i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) { //addr sent
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
if (i2c_flag_get(I2C0, I2C_FLAG_BERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_BERR);
// Bus Error
currentState.currentStep = Error_occured;
} else if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
//Arb error - we lost the bus / nacked
currentState.currentStep = Error_occured;
}
if (i2c_flag_get(I2C0, I2C_FLAG_TBE)) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
} else if (currentState.wakePart) {
//We are stopping here
currentState.currentStep = Send_stop;
} else if (i2c_flag_get(I2C0, I2C_FLAG_TBE)) {
// Write out the 8 byte address
i2c_data_transmit(I2C0, memory_address);
if (currentState.isMemoryWrite) {
currentState.currentStep = Write_device_data_start;
} else {
@@ -147,6 +173,7 @@ bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8
}
}
}
break;
case Write_device_data_start:
@@ -168,18 +195,30 @@ bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8
currentState.currentStep = Send_stop;
}
}
break;
case Read_start:
/* wait until BTC bit is set */
if (i2c_flag_get(I2C0, I2C_FLAG_BTC)) {
i2c_start_on_bus(I2C0);
currentState.currentStep = Read_device_address;
}
break;
case Read_device_address:
if (i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
i2c_master_addressing(I2C0, DevAddress, I2C_RECEIVER);
currentState.currentStep = Read_device_data_start;
}
break;
case Read_device_data_start:
if (i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) { //addr sent
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
//Arb error - we lost the bus / nacked
currentState.currentStep = Error_occured;
}
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
/* one byte master reception procedure (polling) */
if (number_of_byte == 0) {
currentState.currentStep = Send_stop;
} else if (number_of_byte == 1) {
/* disable acknowledge */
@@ -234,7 +273,7 @@ bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8
bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock())
return false;
bool res = perform_i2c_transaction(DevAddress, read_address, p_buffer, number_of_byte, false);
bool res = perform_i2c_transaction(DevAddress, read_address, p_buffer, number_of_byte, false, false);
if (!res) {
I2C_Unstick();
}
@@ -245,7 +284,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock())
return false;
bool res = perform_i2c_transaction(DevAddress, MemAddress, p_buffer, number_of_byte, true);
bool res = perform_i2c_transaction(DevAddress, MemAddress, p_buffer, number_of_byte, true, false);
if (!res) {
I2C_Unstick();
}
@@ -290,109 +329,15 @@ bool FRToSI2C::writeRegistersBulk(const uint8_t address, const I2C_REG *register
}
bool FRToSI2C::wakePart(uint16_t DevAddress) {
// wakepart is a special case where only the device address is sent
// wakepart is a special case where only the device address is sent
if (!lock())
return false;
i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_EV);
i2c_interrupt_disable(I2C0, I2C_INT_BUF);
uint8_t state = I2C_START;
uint16_t timeout = 0;
bool done = false;
bool timedout = false;
while (!(done || timedout)) {
switch (state) {
case I2C_START:
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_start_on_bus(I2C0);
timeout = 0;
state = I2C_SEND_ADDRESS;
} else {
I2C_Unstick();
timeout = 0;
state = I2C_START;
}
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
timeout = 0;
state = I2C_CLEAR_ADDRESS_FLAG;
} else {
timedout = true;
done = true;
timeout = 0;
state = I2C_START;
}
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) {
timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++;
}
// Address NACK'd
unlock();
return false;
}
}
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
timeout = 0;
state = I2C_STOP;
} else {
// Dont retry as this means a NAK
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++;
}
unlock();
return false;
}
break;
case I2C_STOP:
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
timeout = 0;
state = I2C_END;
done = true;
} else {
timedout = true;
done = true;
timeout = 0;
state = I2C_START;
}
break;
default:
state = I2C_START;
timeout = 0;
break;
}
bool res = perform_i2c_transaction(DevAddress, 0, NULL, 0, false, true);
if (!res) {
I2C_Unstick();
}
unlock();
return timedout == false;
return res;
}
void I2C_EV_IRQ() {