1
0
forked from me/IronOS

Merge pull request #856 from Ralim/pinecil/reworki2c

Pinecil | Rework I2C into much cleaner state machine
This commit is contained in:
Ben V. Brown
2021-03-02 18:38:16 +11:00
committed by GitHub
10 changed files with 350 additions and 511 deletions

View File

@@ -88,7 +88,8 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
void unstick_I2C() { void unstick_I2C() {
/* configure SDA/SCL for GPIO */ /* configure SDA/SCL for GPIO */
GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin; GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
for (int i = 0; i < 8; i++) {
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
@@ -100,7 +101,8 @@ void unstick_I2C() {
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
GPIO_BOP(GPIOB) |= SDA_Pin; GPIO_BOP(GPIOB) &= SCL_Pin;
}
/* connect PB6 to I2C0_SCL */ /* connect PB6 to I2C0_SCL */
/* connect PB7 to I2C0_SDA */ /* connect PB7 to I2C0_SDA */
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);

View File

@@ -23,353 +23,281 @@ uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) {
return temp; return temp;
} }
bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_buffer, uint16_t number_of_byte) { enum i2c_step {
if (!lock()) // Write+read steps
return false; Write_start, // Sending start on bus
i2c_interrupt_disable(I2C0, I2C_INT_ERR); Write_device_address, // start sent, send device address
i2c_interrupt_disable(I2C0, I2C_INT_BUF); Write_device_memory_address, // device address sent, write the memory location
i2c_interrupt_disable(I2C0, I2C_INT_EV); Write_device_data_start, // Write all of the remaining data using DMA
dma_parameter_struct dma_init_struct; Write_device_data_finish, // Write all of the remaining data using DMA
uint8_t state = I2C_START; Read_start, // second read
uint8_t in_rx_cycle = 0; Read_device_address, // Send device address again for the read
uint16_t timeout = 0; Read_device_data_start, // read device data via DMA
uint8_t tries = 0; Read_device_data_finish, // read device data via DMA
uint8_t i2c_timeout_flag = 0; Send_stop, // send the stop at the end of the transaction
while (!(i2c_timeout_flag)) { Wait_stop, // Wait for stop to send and we are done
switch (state) { Done, // Finished
case I2C_START: Error_occured, // Error occured on the bus
tries++;
if (tries > 64) { };
struct i2c_state {
i2c_step currentStep;
bool isMemoryWrite;
bool wakePart;
uint8_t deviceAddress;
uint8_t memoryAddress;
uint8_t * buffer;
uint16_t numberOfBytes;
dma_parameter_struct dma_init_struct;
};
volatile i2c_state currentState;
void perform_i2c_step() {
// Performs next step of the i2c state machine
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
// Arb error - we lost the bus / nacked
currentState.currentStep = Error_occured;
} else if (i2c_flag_get(I2C0, I2C_FLAG_BERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_BERR);
// Bus Error
currentState.currentStep = Error_occured;
} else if (i2c_flag_get(I2C0, I2C_FLAG_LOSTARB)) {
i2c_flag_clear(I2C0, I2C_FLAG_LOSTARB);
// Bus Error
currentState.currentStep = Error_occured;
} else if (i2c_flag_get(I2C0, I2C_FLAG_PECERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_PECERR);
// Bus Error
currentState.currentStep = Error_occured;
}
switch (currentState.currentStep) {
case Error_occured:
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ break;
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { case Write_start:
timeout++;
}
unlock();
return false;
}
if (0 == in_rx_cycle) {
/* disable I2C0 */
i2c_disable(I2C0);
/* enable I2C0 */
i2c_enable(I2C0);
/* enable acknowledge */ /* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE); i2c_ack_config(I2C0, I2C_ACK_ENABLE);
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) { if (!i2c_flag_get(I2C0, I2C_FLAG_I2CBSY)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* send the start signal */ /* send the start signal */
i2c_start_on_bus(I2C0); i2c_start_on_bus(I2C0);
timeout = 0; currentState.currentStep = Write_device_address;
state = I2C_SEND_ADDRESS;
} else {
I2C_Unstick();
timeout = 0;
state = I2C_START;
}
} else {
i2c_start_on_bus(I2C0);
timeout = 0;
state = I2C_SEND_ADDRESS;
} }
break; break;
case I2C_SEND_ADDRESS:
case Write_device_address:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) { if (i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
if (RESET == in_rx_cycle) {
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
state = I2C_CLEAR_ADDRESS_FLAG;
} else {
i2c_master_addressing(I2C0, DevAddress, I2C_RECEIVER);
state = I2C_CLEAR_ADDRESS_FLAG;
}
timeout = 0;
} else {
timeout = 0;
state = I2C_START;
in_rx_cycle = 0;
}
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
// Address NACK'd
unlock();
return false;
}
}
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
timeout = 0; i2c_master_addressing(I2C0, currentState.deviceAddress, I2C_TRANSMITTER);
state = I2C_TRANSMIT_DATA; currentState.currentStep = Write_device_memory_address;
} else {
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
// Address NACK'd
unlock();
return false;
} }
break; break;
case I2C_TRANSMIT_DATA: case Write_device_memory_address:
if (0 == in_rx_cycle) { // Send the device memory location
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) { if (i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) { // addr sent
timeout++; i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
}
if (timeout < I2C_TIME_OUT) { if (i2c_flag_get(I2C0, I2C_FLAG_BERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_BERR);
// Bus Error
currentState.currentStep = Error_occured;
} else if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
// Arb error - we lost the bus / nacked
currentState.currentStep = Error_occured;
} else if (currentState.wakePart) {
// We are stopping here
currentState.currentStep = Send_stop;
} else if (i2c_flag_get(I2C0, I2C_FLAG_TBE)) {
// Write out the 8 byte address // Write out the 8 byte address
i2c_data_transmit(I2C0, read_address); i2c_data_transmit(I2C0, currentState.memoryAddress);
timeout = 0;
if (currentState.isMemoryWrite) {
currentState.currentStep = Write_device_data_start;
} else { } else {
timeout = 0; currentState.currentStep = Read_start;
state = I2C_START;
in_rx_cycle = 0;
} }
}
}
break;
case Write_device_data_start:
/* wait until BTC bit is set */ /* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT)) { if (i2c_flag_get(I2C0, I2C_FLAG_BTC)) {
timeout++; /* enable I2C0 DMA */
i2c_dma_enable(I2C0, I2C_DMA_ON);
/* enable DMA0 channel5 */
dma_channel_enable(DMA0, DMA_CH5);
currentState.currentStep = Write_device_data_finish;
} }
if (timeout < I2C_TIME_OUT) { break;
timeout = 0;
state = I2C_START; case Write_device_data_finish: // Wait for complete then goto stop
in_rx_cycle = 1; /* wait until BTC bit is set */
} else { if (dma_flag_get(DMA0, DMA_CH5, DMA_FLAG_FTF)) {
timeout = 0; /* wait until BTC bit is set */
state = I2C_START; if (i2c_flag_get(I2C0, I2C_FLAG_BTC)) {
in_rx_cycle = 0; currentState.currentStep = Send_stop;
}
}
break;
case Read_start:
/* wait until BTC bit is set */
if (i2c_flag_get(I2C0, I2C_FLAG_BTC)) {
i2c_start_on_bus(I2C0);
currentState.currentStep = Read_device_address;
}
break;
case Read_device_address:
if (i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
i2c_master_addressing(I2C0, currentState.deviceAddress, I2C_RECEIVER);
currentState.currentStep = Read_device_data_start;
}
break;
case Read_device_data_start:
if (i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) { // addr sent
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
// Arb error - we lost the bus / nacked
currentState.currentStep = Error_occured;
} }
} else {
/* one byte master reception procedure (polling) */ /* one byte master reception procedure (polling) */
if (number_of_byte < 2) { if (currentState.numberOfBytes == 0) {
currentState.currentStep = Send_stop;
} else if (currentState.numberOfBytes == 1) {
/* disable acknowledge */ /* disable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_DISABLE); i2c_ack_config(I2C0, I2C_ACK_DISABLE);
/* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register /* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register
* (I2C_STAT0 has already been read) */ * (I2C_STAT0 has already been read) */
i2c_flag_get(I2C0, I2C_FLAG_ADDSEND); i2c_flag_get(I2C0, I2C_FLAG_ADDSEND); // sat0
i2c_flag_get(I2C0, I2C_FLAG_I2CBSY); // sat1
/* send a stop condition to I2C bus*/ /* send a stop condition to I2C bus*/
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* wait for the byte to be received */ /* wait for the byte to be received */
while (!i2c_flag_get(I2C0, I2C_FLAG_RBNE)) while (!i2c_flag_get(I2C0, I2C_FLAG_RBNE))
; ;
/* read the byte received from the EEPROM */ /* read the byte received from the EEPROM */
*p_buffer = i2c_data_receive(I2C0); *currentState.buffer = i2c_data_receive(I2C0);
/* decrement the read bytes counter */ currentState.currentStep = Wait_stop;
number_of_byte--;
timeout = 0;
} else { /* more than one byte master reception procedure (DMA) */ } else { /* more than one byte master reception procedure (DMA) */
dma_deinit(DMA0, DMA_CH6);
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_init(DMA0, DMA_CH6, &dma_init_struct);
i2c_dma_last_transfer_config(I2C0, I2C_DMALST_ON);
/* enable I2C0 DMA */ /* enable I2C0 DMA */
i2c_dma_enable(I2C0, I2C_DMA_ON); i2c_dma_enable(I2C0, I2C_DMA_ON);
/* enable DMA0 channel5 */ /* enable DMA0 channel5 */
dma_channel_enable(DMA0, DMA_CH6); dma_channel_enable(DMA0, DMA_CH6);
/* wait until BTC bit is set */ currentState.currentStep = Read_device_data_finish;
while (!dma_flag_get(DMA0, DMA_CH6, DMA_FLAG_FTF)) {}
/* send a stop condition to I2C bus*/
i2c_stop_on_bus(I2C0);
} }
timeout = 0;
state = I2C_STOP;
} }
break; break;
case I2C_STOP: case Read_device_data_finish: // Wait for complete then goto stop
/* i2c master sends STOP signal successfully */ /* wait until BTC bit is set */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { if (dma_flag_get(DMA0, DMA_CH6, DMA_FLAG_FTF)) {
timeout++; currentState.currentStep = Send_stop;
} }
if (timeout < I2C_TIME_OUT) {
timeout = 0; break;
state = I2C_END; case Send_stop:
i2c_timeout_flag = I2C_OK; /* send a stop condition to I2C bus*/
} else { i2c_stop_on_bus(I2C0);
timeout = 0; currentState.currentStep = Wait_stop;
state = I2C_START; break;
in_rx_cycle = 0; case Wait_stop:
/* i2c master sends STOP signal successfully */
if ((I2C_CTL0(I2C0) & 0x0200) != 0x0200) {
currentState.currentStep = Done;
} }
break; break;
default: default:
state = I2C_START; // If we get here something is amiss
in_rx_cycle = 0; return;
i2c_timeout_flag = I2C_OK;
timeout = 0;
break;
} }
} }
bool perform_i2c_transaction(uint16_t DevAddress, uint16_t memory_address, uint8_t *p_buffer, uint16_t number_of_byte, bool isWrite, bool isWakeOnly) {
{
// TODO is this required
/* disable I2C0 */
i2c_disable(I2C0);
/* enable I2C0 */
i2c_enable(I2C0);
}
i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_BUF);
i2c_interrupt_disable(I2C0, I2C_INT_EV);
currentState.isMemoryWrite = isWrite;
currentState.wakePart = isWakeOnly;
currentState.deviceAddress = DevAddress;
currentState.memoryAddress = memory_address;
currentState.numberOfBytes = number_of_byte;
currentState.buffer = p_buffer;
if (!isWakeOnly) {
// Setup DMA
currentState.dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
currentState.dma_init_struct.memory_addr = (uint32_t)p_buffer;
currentState.dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
currentState.dma_init_struct.number = number_of_byte;
currentState.dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
currentState.dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
currentState.dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
currentState.dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
if (currentState.isMemoryWrite) {
dma_deinit(DMA0, DMA_CH5);
currentState.dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init(DMA0, DMA_CH5, (dma_parameter_struct *)&currentState.dma_init_struct);
} else {
dma_deinit(DMA0, DMA_CH6);
currentState.dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init(DMA0, DMA_CH6, (dma_parameter_struct *)&currentState.dma_init_struct);
}
if (!currentState.isMemoryWrite) {
i2c_dma_last_transfer_config(I2C0, I2C_DMALST_ON);
}
}
// Clear flags
I2C_STAT0(I2C0) = 0;
I2C_STAT1(I2C0) = 0;
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
currentState.currentStep = Write_start; // Always start in write mode
TickType_t timeout = xTaskGetTickCount() + TICKS_SECOND;
while ((currentState.currentStep != Done) && (currentState.currentStep != Error_occured)) {
if (xTaskGetTickCount() > timeout) {
i2c_stop_on_bus(I2C0);
return false;
}
perform_i2c_step();
}
return currentState.currentStep == Done;
}
bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock())
return false;
bool res = perform_i2c_transaction(DevAddress, read_address, p_buffer, number_of_byte, false, false);
if (!res) {
I2C_Unstick();
}
unlock(); unlock();
return true; return res;
} }
bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_buffer, uint16_t number_of_byte) { bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock()) if (!lock())
return false; return false;
bool res = perform_i2c_transaction(DevAddress, MemAddress, p_buffer, number_of_byte, true, false);
i2c_interrupt_disable(I2C0, I2C_INT_ERR); if (!res) {
i2c_interrupt_disable(I2C0, I2C_INT_EV);
i2c_interrupt_disable(I2C0, I2C_INT_BUF);
dma_parameter_struct dma_init_struct;
uint8_t state = I2C_START;
uint16_t timeout = 0;
bool done = false;
bool timedout = false;
while (!(done || timedout)) {
switch (state) {
case I2C_START:
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_start_on_bus(I2C0);
timeout = 0;
state = I2C_SEND_ADDRESS;
} else {
I2C_Unstick(); I2C_Unstick();
timeout = 0;
state = I2C_START;
}
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
timeout = 0;
state = I2C_CLEAR_ADDRESS_FLAG;
} else {
timedout = true;
done = true;
timeout = 0;
state = I2C_START;
}
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
// Address NACK'd
unlock();
return false;
}
}
timeout = 0;
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
state = I2C_TRANSMIT_DATA;
} else {
// Dont retry as this means a NAK
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
} }
unlock(); unlock();
return false; return res;
}
break;
case I2C_TRANSMIT_DATA:
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* send the EEPROM's internal address to write to : only one byte
* address */
i2c_data_transmit(I2C0, MemAddress);
timeout = 0;
} else {
timedout = true;
timeout = 0;
state = I2C_START;
}
/* wait until BTC bit is set */
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC))
;
dma_deinit(DMA0, DMA_CH5);
dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_init(DMA0, DMA_CH5, &dma_init_struct);
/* enable I2C0 DMA */
i2c_dma_enable(I2C0, I2C_DMA_ON);
/* enable DMA0 channel5 */
dma_channel_enable(DMA0, DMA_CH5);
/* wait until BTC bit is set */
while (!dma_flag_get(DMA0, DMA_CH5, DMA_FLAG_FTF)) {}
/* wait until BTC bit is set */
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC)) {}
state = I2C_STOP;
break;
case I2C_STOP:
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
timeout = 0;
state = I2C_END;
done = true;
} else {
timedout = true;
done = true;
timeout = 0;
state = I2C_START;
}
break;
default:
state = I2C_START;
timeout = 0;
break;
}
}
unlock();
return timedout == false;
} }
bool FRToSI2C::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) { return Mem_Write(DevAddress, pData[0], pData + 1, Size - 1); } bool FRToSI2C::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) { return Mem_Write(DevAddress, pData[0], pData + 1, Size - 1); }
@@ -406,104 +334,15 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
// wakepart is a special case where only the device address is sent // wakepart is a special case where only the device address is sent
if (!lock()) if (!lock())
return false; return false;
bool res = perform_i2c_transaction(DevAddress, 0, NULL, 0, false, true);
i2c_interrupt_disable(I2C0, I2C_INT_ERR); if (!res) {
i2c_interrupt_disable(I2C0, I2C_INT_EV);
i2c_interrupt_disable(I2C0, I2C_INT_BUF);
uint8_t state = I2C_START;
uint16_t timeout = 0;
bool done = false;
bool timedout = false;
while (!(done || timedout)) {
switch (state) {
case I2C_START:
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_start_on_bus(I2C0);
timeout = 0;
state = I2C_SEND_ADDRESS;
} else {
I2C_Unstick(); I2C_Unstick();
timeout = 0;
state = I2C_START;
}
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
timeout = 0;
state = I2C_CLEAR_ADDRESS_FLAG;
} else {
timedout = true;
done = true;
timeout = 0;
state = I2C_START;
}
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT)) {
timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
// Address NACK'd
unlock();
return false;
}
}
if (timeout < I2C_TIME_OUT) {
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
timeout = 0;
state = I2C_STOP;
} else {
// Dont retry as this means a NAK
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
} }
unlock(); unlock();
return false; return res;
} }
break;
case I2C_STOP: void I2C_EV_IRQ() {}
/* send a stop condition to I2C bus */ void I2C_ER_IRQ() {
i2c_stop_on_bus(I2C0); // Error callbacks
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
timeout = 0;
state = I2C_END;
done = true;
} else {
timedout = true;
done = true;
timeout = 0;
state = I2C_START;
}
break;
default:
state = I2C_START;
timeout = 0;
break;
}
}
unlock();
return timedout == false;
} }

View File

@@ -411,10 +411,9 @@ PolicyEngine::policy_engine_state PolicyEngine::pe_sink_ready() {
return PESinkSendSoftReset; return PESinkSendSoftReset;
} }
/* If we got an unknown message, send a soft reset ??? */
} else { } else {
/* if we get an unknown message code, silently ignore it*/
return PESinkSendSoftReset; return PESinkReady;
} }
} }
} }

View File

@@ -165,7 +165,8 @@ const menuitem UIMenu[] = {
* Cooldown blink * Cooldown blink
* Reverse Temp change buttons + - * Reverse Temp change buttons + -
*/ */
{(const char *)SettingsDescriptions[5], settings_setTempF, settings_displayTempF}, /* Temperature units, this has to be the first element in the array to work with the logic in settings_enterUIMenu() */ {(const char *)SettingsDescriptions[5], settings_setTempF,
settings_displayTempF}, /* Temperature units, this has to be the first element in the array to work with the logic in settings_enterUIMenu() */
{(const char *)SettingsDescriptions[7], settings_setDisplayRotation, settings_displayDisplayRotation}, /*Display Rotation*/ {(const char *)SettingsDescriptions[7], settings_setDisplayRotation, settings_displayDisplayRotation}, /*Display Rotation*/
{(const char *)SettingsDescriptions[10], settings_setCoolingBlinkEnabled, settings_displayCoolingBlinkEnabled}, /*Cooling blink warning*/ {(const char *)SettingsDescriptions[10], settings_setCoolingBlinkEnabled, settings_displayCoolingBlinkEnabled}, /*Cooling blink warning*/
{(const char *)SettingsDescriptions[15], settings_setScrollSpeed, settings_displayScrollSpeed}, /*Scroll Speed for descriptions*/ {(const char *)SettingsDescriptions[15], settings_setScrollSpeed, settings_displayScrollSpeed}, /*Scroll Speed for descriptions*/

View File

@@ -70,8 +70,7 @@ void gui_drawTipTemp(bool symbol) {
uint32_t Temp = 0; uint32_t Temp = 0;
if (systemSettings.temperatureInF) { if (systemSettings.temperatureInF) {
Temp = TipThermoModel::getTipInF(); Temp = TipThermoModel::getTipInF();
} else } else {
{
Temp = TipThermoModel::getTipInC(); Temp = TipThermoModel::getTipInC();
} }
@@ -274,8 +273,7 @@ static void gui_solderingTempAdjust() {
OLED::printNumber(systemSettings.SolderingTemp, 3); OLED::printNumber(systemSettings.SolderingTemp, 3);
if (systemSettings.temperatureInF) if (systemSettings.temperatureInF)
OLED::drawSymbol(0); OLED::drawSymbol(0);
else else {
{
OLED::drawSymbol(1); OLED::drawSymbol(1);
} }
OLED::print(SymbolSpace); OLED::print(SymbolSpace);
@@ -410,7 +408,7 @@ static bool shouldBeSleeping(bool inAutoStart) {
} }
} }
if (lastMovementTime > 0 || lastButtonTime > 0) { if (lastMovementTime > 0 || lastButtonTime > 0) {
if ((xTaskGetTickCount() - lastMovementTime) > getSleepTimeout() && (xTaskGetTickCount() - lastButtonTime) > getSleepTimeout()) { if (((xTaskGetTickCount() - lastMovementTime) > getSleepTimeout()) && ((xTaskGetTickCount() - lastButtonTime) > getSleepTimeout())) {
return true; return true;
} }
} }
@@ -419,7 +417,7 @@ static bool shouldBeSleeping(bool inAutoStart) {
#ifdef HALL_SENSOR #ifdef HALL_SENSOR
// If the hall effect sensor is enabled in the build, check if its over // If the hall effect sensor is enabled in the build, check if its over
// threshold, and if so then we force sleep // threshold, and if so then we force sleep
if (lookupHallEffectThreshold()) { if (getHallSensorFitted() && lookupHallEffectThreshold()) {
int16_t hallEffectStrength = getRawHallEffect(); int16_t hallEffectStrength = getRawHallEffect();
if (hallEffectStrength < 0) if (hallEffectStrength < 0)
hallEffectStrength = -hallEffectStrength; hallEffectStrength = -hallEffectStrength;