Formatting
This commit is contained in:
@@ -23,148 +23,141 @@
|
||||
#include <pd.h>
|
||||
void fusb_send_message(const union pd_msg *msg) {
|
||||
|
||||
/* Token sequences for the FUSB302B */
|
||||
static uint8_t sop_seq[5] = { FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP1,
|
||||
FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP2, FUSB_FIFO_TX_PACKSYM };
|
||||
static const uint8_t eop_seq[4] = { FUSB_FIFO_TX_JAM_CRC, FUSB_FIFO_TX_EOP,
|
||||
FUSB_FIFO_TX_TXOFF, FUSB_FIFO_TX_TXON };
|
||||
/* Token sequences for the FUSB302B */
|
||||
static uint8_t sop_seq[5] = {FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP2, FUSB_FIFO_TX_PACKSYM};
|
||||
static const uint8_t eop_seq[4] = {FUSB_FIFO_TX_JAM_CRC, FUSB_FIFO_TX_EOP, FUSB_FIFO_TX_TXOFF, FUSB_FIFO_TX_TXON};
|
||||
|
||||
/* Take the I2C2 mutex now so there can't be a race condition on sop_seq */
|
||||
/* Get the length of the message: a two-octet header plus NUMOBJ four-octet
|
||||
* data objects */
|
||||
uint8_t msg_len = 2 + 4 * PD_NUMOBJ_GET(msg);
|
||||
/* Take the I2C2 mutex now so there can't be a race condition on sop_seq */
|
||||
/* Get the length of the message: a two-octet header plus NUMOBJ four-octet
|
||||
* data objects */
|
||||
uint8_t msg_len = 2 + 4 * PD_NUMOBJ_GET(msg);
|
||||
|
||||
/* Set the number of bytes to be transmitted in the packet */
|
||||
sop_seq[4] = FUSB_FIFO_TX_PACKSYM | msg_len;
|
||||
/* Set the number of bytes to be transmitted in the packet */
|
||||
sop_seq[4] = FUSB_FIFO_TX_PACKSYM | msg_len;
|
||||
|
||||
/* Write all three parts of the message to the TX FIFO */
|
||||
fusb_write_buf(FUSB_FIFOS, 5, sop_seq);
|
||||
fusb_write_buf(FUSB_FIFOS, msg_len, msg->bytes);
|
||||
fusb_write_buf(FUSB_FIFOS, 4, eop_seq);
|
||||
/* Write all three parts of the message to the TX FIFO */
|
||||
fusb_write_buf(FUSB_FIFOS, 5, sop_seq);
|
||||
fusb_write_buf(FUSB_FIFOS, msg_len, msg->bytes);
|
||||
fusb_write_buf(FUSB_FIFOS, 4, eop_seq);
|
||||
}
|
||||
|
||||
bool fusb_rx_pending() {
|
||||
return (fusb_read_byte( FUSB_STATUS1) & FUSB_STATUS1_RX_EMPTY)
|
||||
!= FUSB_STATUS1_RX_EMPTY;
|
||||
}
|
||||
bool fusb_rx_pending() { return (fusb_read_byte(FUSB_STATUS1) & FUSB_STATUS1_RX_EMPTY) != FUSB_STATUS1_RX_EMPTY; }
|
||||
|
||||
uint8_t fusb_read_message(union pd_msg *msg) {
|
||||
|
||||
static uint8_t garbage[4];
|
||||
uint8_t numobj;
|
||||
static uint8_t garbage[4];
|
||||
uint8_t numobj;
|
||||
|
||||
// Read the header. If its not a SOP we dont actually want it at all
|
||||
// But on some revisions of the fusb if you dont both pick them up and read them out of the fifo, it gets stuck
|
||||
if ((fusb_read_byte( FUSB_FIFOS) & FUSB_FIFO_RX_TOKEN_BITS)
|
||||
!= FUSB_FIFO_RX_SOP) {
|
||||
return 1;
|
||||
}
|
||||
// Read the header. If its not a SOP we dont actually want it at all
|
||||
// But on some revisions of the fusb if you dont both pick them up and read them out of the fifo, it gets stuck
|
||||
if ((fusb_read_byte(FUSB_FIFOS) & FUSB_FIFO_RX_TOKEN_BITS) != FUSB_FIFO_RX_SOP) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// fusb_read_byte(FUSB_FIFOS);
|
||||
/* Read the message header into msg */
|
||||
fusb_read_buf(FUSB_FIFOS, 2, msg->bytes);
|
||||
/* Get the number of data objects */
|
||||
numobj = PD_NUMOBJ_GET(msg);
|
||||
/* If there is at least one data object, read the data objects */
|
||||
if (numobj > 0) {
|
||||
fusb_read_buf(FUSB_FIFOS, numobj * 4, msg->bytes + 2);
|
||||
}
|
||||
/* Throw the CRC32 in the garbage, since the PHY already checked it. */
|
||||
fusb_read_buf(FUSB_FIFOS, 4, garbage);
|
||||
// fusb_read_byte(FUSB_FIFOS);
|
||||
/* Read the message header into msg */
|
||||
fusb_read_buf(FUSB_FIFOS, 2, msg->bytes);
|
||||
/* Get the number of data objects */
|
||||
numobj = PD_NUMOBJ_GET(msg);
|
||||
/* If there is at least one data object, read the data objects */
|
||||
if (numobj > 0) {
|
||||
fusb_read_buf(FUSB_FIFOS, numobj * 4, msg->bytes + 2);
|
||||
}
|
||||
/* Throw the CRC32 in the garbage, since the PHY already checked it. */
|
||||
fusb_read_buf(FUSB_FIFOS, 4, garbage);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void fusb_send_hardrst() {
|
||||
|
||||
/* Send a hard reset */
|
||||
fusb_write_byte(FUSB_CONTROL3, 0x07 | FUSB_CONTROL3_SEND_HARD_RESET);
|
||||
/* Send a hard reset */
|
||||
fusb_write_byte(FUSB_CONTROL3, 0x07 | FUSB_CONTROL3_SEND_HARD_RESET);
|
||||
}
|
||||
|
||||
bool fusb_setup() {
|
||||
/* Fully reset the FUSB302B */
|
||||
fusb_write_byte(FUSB_RESET, FUSB_RESET_SW_RES);
|
||||
vTaskDelay(TICKS_10MS);
|
||||
uint8_t tries = 0;
|
||||
while (!fusb_read_id()) {
|
||||
vTaskDelay(TICKS_10MS);
|
||||
tries++;
|
||||
if (tries > 5) {
|
||||
return false; // Welp :(
|
||||
}
|
||||
}
|
||||
/* Fully reset the FUSB302B */
|
||||
fusb_write_byte(FUSB_RESET, FUSB_RESET_SW_RES);
|
||||
vTaskDelay(TICKS_10MS);
|
||||
uint8_t tries = 0;
|
||||
while (!fusb_read_id()) {
|
||||
vTaskDelay(TICKS_10MS);
|
||||
tries++;
|
||||
if (tries > 5) {
|
||||
return false; // Welp :(
|
||||
}
|
||||
}
|
||||
|
||||
/* Turn on all power */
|
||||
fusb_write_byte(FUSB_POWER, 0x0F);
|
||||
/* Turn on all power */
|
||||
fusb_write_byte(FUSB_POWER, 0x0F);
|
||||
|
||||
/* Set interrupt masks */
|
||||
// Setting to 0 so interrupts are allowed
|
||||
fusb_write_byte(FUSB_MASK1, 0x00);
|
||||
fusb_write_byte(FUSB_MASKA, 0x00);
|
||||
fusb_write_byte(FUSB_MASKB, 0x00);
|
||||
fusb_write_byte(FUSB_CONTROL0, 0b11 << 2);
|
||||
/* Set interrupt masks */
|
||||
// Setting to 0 so interrupts are allowed
|
||||
fusb_write_byte(FUSB_MASK1, 0x00);
|
||||
fusb_write_byte(FUSB_MASKA, 0x00);
|
||||
fusb_write_byte(FUSB_MASKB, 0x00);
|
||||
fusb_write_byte(FUSB_CONTROL0, 0b11 << 2);
|
||||
|
||||
/* Enable automatic retransmission */
|
||||
fusb_write_byte(FUSB_CONTROL3, 0x07);
|
||||
// set defaults
|
||||
fusb_write_byte(FUSB_CONTROL2, 0x00);
|
||||
/* Flush the RX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL1, FUSB_CONTROL1_RX_FLUSH);
|
||||
/* Enable automatic retransmission */
|
||||
fusb_write_byte(FUSB_CONTROL3, 0x07);
|
||||
// set defaults
|
||||
fusb_write_byte(FUSB_CONTROL2, 0x00);
|
||||
/* Flush the RX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL1, FUSB_CONTROL1_RX_FLUSH);
|
||||
|
||||
/* Measure CC1 */
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x07);
|
||||
vTaskDelay(TICKS_10MS);
|
||||
uint8_t cc1 = fusb_read_byte(FUSB_STATUS0) & FUSB_STATUS0_BC_LVL;
|
||||
/* Measure CC1 */
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x07);
|
||||
vTaskDelay(TICKS_10MS);
|
||||
uint8_t cc1 = fusb_read_byte(FUSB_STATUS0) & FUSB_STATUS0_BC_LVL;
|
||||
|
||||
/* Measure CC2 */
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x0B);
|
||||
vTaskDelay(TICKS_10MS);
|
||||
uint8_t cc2 = fusb_read_byte(FUSB_STATUS0) & FUSB_STATUS0_BC_LVL;
|
||||
/* Measure CC2 */
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x0B);
|
||||
vTaskDelay(TICKS_10MS);
|
||||
uint8_t cc2 = fusb_read_byte(FUSB_STATUS0) & FUSB_STATUS0_BC_LVL;
|
||||
|
||||
/* Select the correct CC line for BMC signaling; also enable AUTO_CRC */
|
||||
if (cc1 > cc2) {
|
||||
fusb_write_byte(FUSB_SWITCHES1, 0x25); // TX_CC1|AUTO_CRC|SPECREV0
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x07); // PWDN1|PWDN2|MEAS_CC1
|
||||
} else {
|
||||
fusb_write_byte(FUSB_SWITCHES1, 0x26); // TX_CC2|AUTO_CRC|SPECREV0
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x0B); // PWDN1|PWDN2|MEAS_CC2
|
||||
}
|
||||
/* Select the correct CC line for BMC signaling; also enable AUTO_CRC */
|
||||
if (cc1 > cc2) {
|
||||
fusb_write_byte(FUSB_SWITCHES1, 0x25); // TX_CC1|AUTO_CRC|SPECREV0
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x07); // PWDN1|PWDN2|MEAS_CC1
|
||||
} else {
|
||||
fusb_write_byte(FUSB_SWITCHES1, 0x26); // TX_CC2|AUTO_CRC|SPECREV0
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x0B); // PWDN1|PWDN2|MEAS_CC2
|
||||
}
|
||||
|
||||
fusb_reset();
|
||||
setupFUSBIRQ();
|
||||
return true;
|
||||
fusb_reset();
|
||||
setupFUSBIRQ();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool fusb_get_status(union fusb_status *status) {
|
||||
|
||||
/* Read the interrupt and status flags into status */
|
||||
return fusb_read_buf(FUSB_STATUS0A, 7, status->bytes);
|
||||
/* Read the interrupt and status flags into status */
|
||||
return fusb_read_buf(FUSB_STATUS0A, 7, status->bytes);
|
||||
}
|
||||
|
||||
enum fusb_typec_current fusb_get_typec_current() {
|
||||
|
||||
/* Read the BC_LVL into a variable */
|
||||
enum fusb_typec_current bc_lvl = (enum fusb_typec_current) (fusb_read_byte(
|
||||
FUSB_STATUS0) & FUSB_STATUS0_BC_LVL);
|
||||
/* Read the BC_LVL into a variable */
|
||||
enum fusb_typec_current bc_lvl = (enum fusb_typec_current)(fusb_read_byte(FUSB_STATUS0) & FUSB_STATUS0_BC_LVL);
|
||||
|
||||
return bc_lvl;
|
||||
return bc_lvl;
|
||||
}
|
||||
|
||||
void fusb_reset() {
|
||||
|
||||
/* Flush the TX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL0, 0x44);
|
||||
/* Flush the RX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL1, FUSB_CONTROL1_RX_FLUSH);
|
||||
/* Reset the PD logic */
|
||||
fusb_write_byte( FUSB_RESET, FUSB_RESET_PD_RESET);
|
||||
/* Flush the TX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL0, 0x44);
|
||||
/* Flush the RX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL1, FUSB_CONTROL1_RX_FLUSH);
|
||||
/* Reset the PD logic */
|
||||
fusb_write_byte(FUSB_RESET, FUSB_RESET_PD_RESET);
|
||||
}
|
||||
|
||||
bool fusb_read_id() {
|
||||
// Return true if read of the revision ID is sane
|
||||
uint8_t version = 0;
|
||||
fusb_read_buf(FUSB_DEVICE_ID, 1, &version);
|
||||
if (version == 0 || version == 0xFF)
|
||||
return false;
|
||||
return true;
|
||||
// Return true if read of the revision ID is sane
|
||||
uint8_t version = 0;
|
||||
fusb_read_buf(FUSB_DEVICE_ID, 1, &version);
|
||||
if (version == 0 || version == 0xFF)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -27,87 +27,78 @@
|
||||
#include <string.h>
|
||||
|
||||
volatile osThreadId InterruptHandler::TaskHandle = NULL;
|
||||
uint32_t InterruptHandler::TaskBuffer[InterruptHandler::TaskStackSize];
|
||||
uint32_t InterruptHandler::TaskBuffer[InterruptHandler::TaskStackSize];
|
||||
osStaticThreadDef_t InterruptHandler::TaskControlBlock;
|
||||
union pd_msg InterruptHandler::tempMessage;
|
||||
union pd_msg InterruptHandler::tempMessage;
|
||||
|
||||
void InterruptHandler::init() {
|
||||
TaskHandle = NULL;
|
||||
osThreadStaticDef(intTask, Thread, PDB_PRIO_PRL_INT_N, 0, TaskStackSize,
|
||||
TaskBuffer, &TaskControlBlock);
|
||||
TaskHandle = osThreadCreate(osThread(intTask), NULL);
|
||||
TaskHandle = NULL;
|
||||
osThreadStaticDef(intTask, Thread, PDB_PRIO_PRL_INT_N, 0, TaskStackSize, TaskBuffer, &TaskControlBlock);
|
||||
TaskHandle = osThreadCreate(osThread(intTask), NULL);
|
||||
}
|
||||
volatile uint32_t msgCounter = 0;
|
||||
volatile uint32_t msgCounter = 0;
|
||||
volatile uint32_t msgCounter1 = 0;
|
||||
void InterruptHandler::readPendingMessage() {
|
||||
memset(&tempMessage, 0, sizeof(tempMessage));
|
||||
while (fusb_rx_pending()) {
|
||||
msgCounter++;
|
||||
/* Read the message */
|
||||
if (fusb_read_message(&tempMessage) == 0) {
|
||||
/* If it's a Soft_Reset, go to the soft reset state */
|
||||
if (PD_MSGTYPE_GET(&tempMessage) == PD_MSGTYPE_SOFT_RESET
|
||||
&& PD_NUMOBJ_GET(&tempMessage) == 0) {
|
||||
/* TX transitions to its reset state */
|
||||
PolicyEngine::notify(
|
||||
PolicyEngine::Notifications::PDB_EVT_PE_RESET);
|
||||
} else {
|
||||
/* Tell PolicyEngine to discard the message being transmitted */
|
||||
PolicyEngine::notify(
|
||||
PolicyEngine::Notifications::PDB_EVT_TX_DISCARD);
|
||||
void InterruptHandler::readPendingMessage() {
|
||||
memset(&tempMessage, 0, sizeof(tempMessage));
|
||||
while (fusb_rx_pending()) {
|
||||
msgCounter++;
|
||||
/* Read the message */
|
||||
if (fusb_read_message(&tempMessage) == 0) {
|
||||
/* If it's a Soft_Reset, go to the soft reset state */
|
||||
if (PD_MSGTYPE_GET(&tempMessage) == PD_MSGTYPE_SOFT_RESET && PD_NUMOBJ_GET(&tempMessage) == 0) {
|
||||
/* TX transitions to its reset state */
|
||||
PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_RESET);
|
||||
} else {
|
||||
/* Tell PolicyEngine to discard the message being transmitted */
|
||||
PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_TX_DISCARD);
|
||||
|
||||
/* Pass the message to the policy engine. */
|
||||
PolicyEngine::handleMessage(&tempMessage);
|
||||
}
|
||||
} else {
|
||||
msgCounter1++;
|
||||
}
|
||||
}
|
||||
/* Pass the message to the policy engine. */
|
||||
PolicyEngine::handleMessage(&tempMessage);
|
||||
}
|
||||
} else {
|
||||
msgCounter1++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void InterruptHandler::Thread(const void *arg) {
|
||||
(void) arg;
|
||||
union fusb_status status;
|
||||
for (;;) {
|
||||
// If the irq is low continue, otherwise wait for irq or timeout
|
||||
if (!getFUS302IRQLow()) {
|
||||
xTaskNotifyWait(0x00, 0x0F, NULL, TICKS_SECOND * 30);
|
||||
}
|
||||
/* Read the FUSB302B status and interrupt registers */
|
||||
if (fusb_get_status(&status)) {
|
||||
(void)arg;
|
||||
union fusb_status status;
|
||||
for (;;) {
|
||||
// If the irq is low continue, otherwise wait for irq or timeout
|
||||
if (!getFUS302IRQLow()) {
|
||||
xTaskNotifyWait(0x00, 0x0F, NULL, TICKS_SECOND * 30);
|
||||
}
|
||||
/* Read the FUSB302B status and interrupt registers */
|
||||
if (fusb_get_status(&status)) {
|
||||
|
||||
/* If the I_GCRCSENT flag is set, tell the Protocol RX thread */
|
||||
// This means a message was received with a good CRC
|
||||
if (status.interruptb & FUSB_INTERRUPTB_I_GCRCSENT) {
|
||||
readPendingMessage();
|
||||
}
|
||||
/* If the I_GCRCSENT flag is set, tell the Protocol RX thread */
|
||||
// This means a message was received with a good CRC
|
||||
if (status.interruptb & FUSB_INTERRUPTB_I_GCRCSENT) {
|
||||
readPendingMessage();
|
||||
}
|
||||
|
||||
/* If the I_TXSENT or I_RETRYFAIL flag is set, tell the Protocol TX
|
||||
* thread */
|
||||
if (status.interrupta & FUSB_INTERRUPTA_I_TXSENT) {
|
||||
PolicyEngine::notify(
|
||||
PolicyEngine::Notifications::PDB_EVT_TX_I_TXSENT);
|
||||
}
|
||||
if (status.interrupta & FUSB_INTERRUPTA_I_RETRYFAIL) {
|
||||
PolicyEngine::notify(
|
||||
PolicyEngine::Notifications::PDB_EVT_TX_I_RETRYFAIL);
|
||||
}
|
||||
/* If the I_TXSENT or I_RETRYFAIL flag is set, tell the Protocol TX
|
||||
* thread */
|
||||
if (status.interrupta & FUSB_INTERRUPTA_I_TXSENT) {
|
||||
PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_TX_I_TXSENT);
|
||||
}
|
||||
if (status.interrupta & FUSB_INTERRUPTA_I_RETRYFAIL) {
|
||||
PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_TX_I_RETRYFAIL);
|
||||
}
|
||||
|
||||
/* If the I_OCP_TEMP and OVRTEMP flags are set, tell the Policy
|
||||
* Engine thread */
|
||||
if ((status.interrupta & FUSB_INTERRUPTA_I_OCP_TEMP)
|
||||
&& (status.status1 & FUSB_STATUS1_OVRTEMP)) {
|
||||
PolicyEngine::notify(
|
||||
PolicyEngine::Notifications::PDB_EVT_PE_I_OVRTEMP);
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If the I_OCP_TEMP and OVRTEMP flags are set, tell the Policy
|
||||
* Engine thread */
|
||||
if ((status.interrupta & FUSB_INTERRUPTA_I_OCP_TEMP) && (status.status1 & FUSB_STATUS1_OVRTEMP)) {
|
||||
PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_I_OVRTEMP);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void InterruptHandler::irqCallback() {
|
||||
if (TaskHandle != NULL) {
|
||||
BaseType_t taskWoke = pdFALSE;
|
||||
xTaskNotifyFromISR(TaskHandle, 0x01, eNotifyAction::eSetBits,
|
||||
&taskWoke);
|
||||
portYIELD_FROM_ISR(taskWoke);
|
||||
}
|
||||
if (TaskHandle != NULL) {
|
||||
BaseType_t taskWoke = pdFALSE;
|
||||
xTaskNotifyFromISR(TaskHandle, 0x01, eNotifyAction::eSetBits, &taskWoke);
|
||||
portYIELD_FROM_ISR(taskWoke);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -631,9 +631,9 @@ EventBits_t PolicyEngine::pushMessage(union pd_msg *msg) {
|
||||
/* PD 3.0 collision avoidance */
|
||||
if (PolicyEngine::isPD3_0()) {
|
||||
/* If we're starting an AMS, wait for permission to transmit */
|
||||
// while (fusb_get_typec_current() != fusb_sink_tx_ok) {
|
||||
// vTaskDelay(TICKS_10MS);
|
||||
// }
|
||||
// while (fusb_get_typec_current() != fusb_sink_tx_ok) {
|
||||
// vTaskDelay(TICKS_10MS);
|
||||
// }
|
||||
}
|
||||
/* Send the message to the PHY */
|
||||
fusb_send_message(msg);
|
||||
|
||||
Reference in New Issue
Block a user