S60 Support (#1692)
* Mock S60 * cleanup * Start refactor of OLED init * Setup timers roughly * Set Vector table offset correctly Update system_stm32f1xx.c * Update OLED.cpp * Update stm32f1xx_hal_msp.c * Update configuration.h * I2C init before GPIO From Errata Update stm32f1xx_hal_msp.c Update Software_I2C.h Allow no hardware I2C * I2C BB run bus unlock at init * cleanups * Software I2C for now * Mildly more graceful Interpolate * Handle is powered by DC Update Power.cpp Update drawPowerSourceIcon.cpp Update configuration.h Update Setup.cpp * Cleanup HomeScreen * Segment remap oled at init * Cleanup * Update MOVThread.cpp * Fix PWM Init * Fix adc2 trigger * Update configs * Fixup warning * Saner default config * Update ThermoModel.cpp * Util for current@voltage * Hub238 warning * Add hub238 handling in power mode * Update USBPDDebug_FUSB.cpp * HUSB238 debug * Hook PSU Limit * Use wrapping section of GRAM for scroll Update OLED.hpp * Update NTC table * Fix HUB voltage picker * Cleanup * Larger tip filter * Calibrate in a bunch closer Update ThermoModel.cpp * Update configuration.h * Update HUB238.cpp * Update configuration.h * Movement Pin * Update BSP.cpp * tim2 irq * Rough timer conversion (adc broken) but movement working * Fix tim2 start * Faster base PWM * Ensure utils grabs config * Add wattage limiter tolerance for device * Speed up PWM and enable PWM current limiting * tune for 12v * Prevent start until PD done * Update configuration.h * Add HUB238 check for have re-negotiated * Adjust timer to avoid noise when its possible
This commit is contained in:
238
source/Core/BSP/Sequre_S60/BSP.cpp
Normal file
238
source/Core/BSP/Sequre_S60/BSP.cpp
Normal file
@@ -0,0 +1,238 @@
|
||||
// BSP mapping functions
|
||||
|
||||
#include "BSP.h"
|
||||
#include "HUB238.hpp"
|
||||
#include "I2C_Wrapper.hpp"
|
||||
#include "Pins.h"
|
||||
#include "Setup.h"
|
||||
#include "TipThermoModel.h"
|
||||
#include "configuration.h"
|
||||
#include "history.hpp"
|
||||
#include "main.hpp"
|
||||
#include <IRQ.h>
|
||||
|
||||
volatile uint16_t PWMSafetyTimer = 0;
|
||||
volatile uint8_t pendingPWM = 0;
|
||||
const uint16_t powerPWM = 255;
|
||||
static const uint8_t holdoffTicks = 15; // delay of 8 ish ms
|
||||
static const uint8_t tempMeasureTicks = 15;
|
||||
|
||||
uint16_t totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; // htim2.Init.Period, the full PWM cycle
|
||||
|
||||
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
||||
// Lookup table for the NTC
|
||||
// We dont know exact specs, but it loooks to be roughly a 10K B=4000 NTC
|
||||
// Stored as ADCReading,Temp in degC
|
||||
static const uint16_t NTCHandleLookup[] = {
|
||||
// ADC Reading , Temp in C
|
||||
23931, 0, //
|
||||
23210, 2, //
|
||||
22466, 4, //
|
||||
21703, 6, //
|
||||
20924, 8, //
|
||||
20135, 10, //
|
||||
19338, 12, //
|
||||
18538, 14, //
|
||||
17738, 16, //
|
||||
16943, 18, //
|
||||
16156, 20, //
|
||||
15381, 22, //
|
||||
14621, 24, //
|
||||
13878, 26, //
|
||||
13155, 28, //
|
||||
12455, 30, //
|
||||
11778, 32, //
|
||||
11126, 34, //
|
||||
10501, 36, //
|
||||
9902, 38, //
|
||||
9330, 40, //
|
||||
8786, 42, //
|
||||
8269, 44, //
|
||||
};
|
||||
|
||||
uint16_t getHandleTemperature(uint8_t sample) {
|
||||
int32_t result = getADCHandleTemp(sample);
|
||||
// S60 uses 10k NTC resistor
|
||||
// For now not doing interpolation
|
||||
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
|
||||
if (result > NTCHandleLookup[(i * 2) + 0]) {
|
||||
return NTCHandleLookup[(i * 2) + 1] * 10;
|
||||
}
|
||||
}
|
||||
return 45 * 10;
|
||||
}
|
||||
|
||||
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
||||
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
||||
// Therefore we can divide down from there
|
||||
// Multiplying ADC max by 4 for additional calibration options,
|
||||
// ideal term is 467
|
||||
uint32_t res = getADCVin(sample);
|
||||
res *= 4;
|
||||
res /= divisor;
|
||||
return res;
|
||||
}
|
||||
|
||||
static void switchToFastPWM(void) {
|
||||
// 20Hz
|
||||
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
|
||||
htim2.Instance->ARR = totalPWM;
|
||||
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
|
||||
htim2.Instance->CCR4 = powerPWM;
|
||||
htim2.Instance->PSC = 1500;
|
||||
}
|
||||
|
||||
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
|
||||
PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is
|
||||
// disabled if the PID task is not scheduled often enough.
|
||||
pendingPWM = pulse;
|
||||
}
|
||||
// These are called by the HAL after the corresponding events from the system
|
||||
// timers.
|
||||
|
||||
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
||||
// Period has elapsed
|
||||
if (htim->Instance == TIM2) {
|
||||
// we want to turn on the output again
|
||||
PWMSafetyTimer--;
|
||||
// We decrement this safety value so that lockups in the
|
||||
// scheduler will not cause the PWM to become locked in an
|
||||
// active driving state.
|
||||
// While we could assume this could never happen, its a small price for
|
||||
// increased safety
|
||||
if (PWMSafetyTimer == 0) {
|
||||
htim4.Instance->CCR3 = 0;
|
||||
} else {
|
||||
htim4.Instance->CCR3 = pendingPWM;
|
||||
}
|
||||
} else if (htim->Instance == TIM1) {
|
||||
// STM uses this for internal functions as a counter for timeouts
|
||||
HAL_IncTick();
|
||||
}
|
||||
}
|
||||
|
||||
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
||||
// This was a when the PWM for the output has timed out
|
||||
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
||||
// HAL_TIM_PWM_Stop(&htim4, TIM_CHANNEL_3);
|
||||
htim4.Instance->CCR3 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void unstick_I2C() {
|
||||
#ifdef SCL_Pin
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
int timeout = 100;
|
||||
int timeout_cnt = 0;
|
||||
|
||||
// 1. Clear PE bit.
|
||||
hi2c1.Instance->CR1 &= ~(0x0001);
|
||||
/**I2C1 GPIO Configuration
|
||||
PB6 ------> I2C1_SCL
|
||||
PB7 ------> I2C1_SDA
|
||||
*/
|
||||
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
|
||||
GPIO_InitStruct.Pin = SCL_Pin;
|
||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
|
||||
GPIO_InitStruct.Pin = SDA_Pin;
|
||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||
|
||||
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
||||
// Move clock to release I2C
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
asm("nop");
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
|
||||
timeout_cnt++;
|
||||
if (timeout_cnt > timeout)
|
||||
return;
|
||||
}
|
||||
|
||||
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
|
||||
GPIO_InitStruct.Pin = SCL_Pin;
|
||||
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
GPIO_InitStruct.Pin = SDA_Pin;
|
||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||
|
||||
// 13. Set SWRST bit in I2Cx_CR1 register.
|
||||
hi2c1.Instance->CR1 |= 0x8000;
|
||||
|
||||
asm("nop");
|
||||
|
||||
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
||||
hi2c1.Instance->CR1 &= ~0x8000;
|
||||
|
||||
asm("nop");
|
||||
|
||||
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
||||
hi2c1.Instance->CR1 |= 0x0001;
|
||||
|
||||
// Call initialization function.
|
||||
HAL_I2C_Init(&hi2c1);
|
||||
#endif
|
||||
}
|
||||
|
||||
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
||||
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
||||
|
||||
void BSPInit(void) { switchToFastPWM(); }
|
||||
|
||||
void reboot() { NVIC_SystemReset(); }
|
||||
|
||||
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
||||
|
||||
bool isTipDisconnected() {
|
||||
|
||||
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
|
||||
uint32_t tipTemp = TipThermoModel::getTipInC();
|
||||
return tipTemp > tipDisconnectedThres;
|
||||
}
|
||||
|
||||
void setStatusLED(const enum StatusLED state) {}
|
||||
uint8_t preStartChecks() {
|
||||
if (!hub238_has_run_selection()) {
|
||||
return 0;
|
||||
}
|
||||
// We check if we are in a "Limited" mode; where we have to run the PWM really fast
|
||||
// Where as if we are on 9V for example, the tip resistance is enough
|
||||
uint16_t voltage = hub238_source_voltage();
|
||||
uint16_t currentx100 = hub238_source_currentX100();
|
||||
uint16_t thresholdResistancex10 = ((voltage * 1000) / currentx100) + 5;
|
||||
|
||||
if (getTipResistanceX10() <= thresholdResistancex10) {
|
||||
// We are limited by resistance, not our current limiting, we can slow down PWM to avoid audible noise
|
||||
htim4.Instance->PSC = 50; // 10 -> 500 removes audible noise
|
||||
}
|
||||
|
||||
return 1; // We are done now
|
||||
}
|
||||
uint64_t getDeviceID() {
|
||||
//
|
||||
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
|
||||
}
|
||||
|
||||
uint8_t getTipResistanceX10() { return TIP_RESISTANCE; }
|
||||
|
||||
uint8_t preStartChecksDone() { return 1; }
|
||||
|
||||
uint8_t getTipThermalMass() { return TIP_THERMAL_INERTIA; }
|
||||
|
||||
void setBuzzer(bool on) {}
|
||||
Reference in New Issue
Block a user