1
0
forked from me/IronOS
This commit is contained in:
Ben V. Brown
2020-11-01 12:27:46 +11:00
parent 7c5c689d44
commit 1b579febcd
3 changed files with 802 additions and 788 deletions

View File

@@ -11,19 +11,19 @@
#include <IRQ.h>
const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 13; // delay of 7 ms
const uint8_t tempMeasureTicks = 17;
const uint8_t holdoffTicks = 25; // delay of 7 ms
const uint8_t tempMeasureTicks = 25;
uint16_t totalPWM; //htim2.Init.Period, the full PWM cycle
uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
//2 second filter (ADC is PID_TIM_HZ Hz)
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
// 2 second filter (ADC is PID_TIM_HZ Hz)
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() {
//TODO
// TODO
}
uint16_t getTipInstantTemperature() {
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
volatile uint16_t sum = 0; // 12 bit readings * 8*2 -> 16 bits
for (int i = 0; i < 4; i++) {
sum += adc_inserted_data_read(ADC0, i);
@@ -91,22 +91,24 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
void unstick_I2C() {
/* configure SDA/SCL for GPIO */
GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
asm ("nop");
asm ("nop");
asm ("nop");
asm ("nop");
asm ("nop");
gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ,
SDA_Pin | SCL_Pin);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
GPIO_BOP(GPIOB) |= SCL_Pin;
asm ("nop");
asm ("nop");
asm ("nop");
asm ("nop");
asm ("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
GPIO_BOP(GPIOB) |= SDA_Pin;
/* connect PB6 to I2C0_SCL */
/* connect PB7 to I2C0_SDA */
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ,
SDA_Pin | SCL_Pin);
}
uint8_t getButtonA() {
@@ -122,8 +124,4 @@ void reboot() {
}
}
void delay_ms(uint16_t count) {
delay_1ms(count);
}
void delay_ms(uint16_t count) { delay_1ms(count); }

View File

@@ -12,7 +12,7 @@ SemaphoreHandle_t FRToSI2C::I2CSemaphore = nullptr;
StaticSemaphore_t FRToSI2C::xSemaphoreBuffer;
#define I2C_TIME_OUT (uint16_t)(5000)
void FRToSI2C::CpltCallback() {
//TODO
// TODO
}
bool FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) {
@@ -25,7 +25,8 @@ uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) {
return temp;
}
bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_buffer, uint16_t number_of_byte) {
bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock())
return false;
i2c_interrupt_disable(I2C0, I2C_INT_ERR);
@@ -45,7 +46,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
if (tries > 64) {
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
unlock();
@@ -60,7 +61,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
/* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE);
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) {
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -81,7 +83,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -101,16 +104,17 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
//Address NACK'd
// Address NACK'd
unlock();
return false;
}
@@ -122,10 +126,10 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
} else {
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
//Address NACK'd
// Address NACK'd
unlock();
return false;
}
@@ -133,11 +137,12 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
case I2C_TRANSMIT_DATA:
if (0 == in_rx_cycle) {
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
//Write out the 8 byte address
// Write out the 8 byte address
i2c_data_transmit(I2C0, read_address);
timeout = 0;
} else {
@@ -146,7 +151,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
in_rx_cycle = 0;
}
/* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -163,7 +169,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
if (number_of_byte < 2) {
/* disable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_DISABLE);
/* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register (I2C_STAT0 has already been read) */
/* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register
* (I2C_STAT0 has already been read) */
i2c_flag_get(I2C0, I2C_FLAG_ADDSEND);
/* send a stop condition to I2C bus*/
i2c_stop_on_bus(I2C0);
@@ -178,11 +185,11 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
} else { /* more than one byte master reception procedure (DMA) */
dma_deinit(DMA0, DMA_CH6);
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_addr = (uint32_t) p_buffer;
dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0);
dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
@@ -206,7 +213,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
break;
case I2C_STOP:
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -231,7 +238,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
return true;
}
bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_buffer, uint16_t number_of_byte) {
bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock())
return false;
@@ -248,7 +256,7 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
switch (state) {
case I2C_START:
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) {
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -263,7 +271,8 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -279,16 +288,17 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
//Address NACK'd
// Address NACK'd
unlock();
return false;
}
@@ -298,10 +308,10 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
state = I2C_TRANSMIT_DATA;
} else {
//Dont retry as this means a NAK
// Dont retry as this means a NAK
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
unlock();
@@ -310,11 +320,12 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
break;
case I2C_TRANSMIT_DATA:
/* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
/* send the EEPROM's internal address to write to : only one byte address */
/* send the EEPROM's internal address to write to : only one byte
* address */
i2c_data_transmit(I2C0, MemAddress);
timeout = 0;
} else {
@@ -327,11 +338,11 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
;
dma_deinit(DMA0, DMA_CH5);
dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init_struct.memory_addr = (uint32_t) p_buffer;
dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0);
dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
@@ -353,7 +364,7 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -386,9 +397,7 @@ bool FRToSI2C::probe(uint16_t DevAddress) {
return Mem_Read(DevAddress, 0x00, temp, sizeof(temp));
}
void FRToSI2C::I2C_Unstick() {
unstick_I2C();
}
void FRToSI2C::I2C_Unstick() { unstick_I2C(); }
bool FRToSI2C::lock() {
if (I2CSemaphore == nullptr) {
@@ -397,13 +406,14 @@ bool FRToSI2C::lock() {
return xSemaphoreTake(I2CSemaphore, 1000) == pdTRUE;
}
void FRToSI2C::unlock() {
xSemaphoreGive(I2CSemaphore);
}
void FRToSI2C::unlock() { xSemaphoreGive(I2CSemaphore); }
bool FRToSI2C::writeRegistersBulk(const uint8_t address, const I2C_REG *registers, const uint8_t registersLength) {
bool FRToSI2C::writeRegistersBulk(const uint8_t address,
const I2C_REG *registers,
const uint8_t registersLength) {
for (int index = 0; index < registersLength; index++) {
if (!I2C_RegisterWrite(address, registers[index].reg, registers[index].val)) {
if (!I2C_RegisterWrite(address, registers[index].reg,
registers[index].val)) {
return false;
}
if (registers[index].pause_ms) {
@@ -414,14 +424,13 @@ bool FRToSI2C::writeRegistersBulk(const uint8_t address, const I2C_REG *register
}
bool FRToSI2C::wakePart(uint16_t DevAddress) {
//wakepart is a special case where only the device address is sent
// wakepart is a special case where only the device address is sent
if (!lock())
return false;
i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_EV);
i2c_interrupt_disable(I2C0, I2C_INT_BUF);
dma_parameter_struct dma_init_struct;
uint8_t state = I2C_START;
uint16_t timeout = 0;
@@ -431,7 +440,7 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
switch (state) {
case I2C_START:
/* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) {
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -446,7 +455,8 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
break;
case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {
@@ -462,16 +472,17 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
break;
case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) {
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
//Address NACK'd
// Address NACK'd
unlock();
return false;
}
@@ -481,10 +492,10 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
timeout = 0;
state = I2C_STOP;
} else {
//Dont retry as this means a NAK
// Dont retry as this means a NAK
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
unlock();
@@ -496,7 +507,7 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
/* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++;
}
if (timeout < I2C_TIME_OUT) {

View File

@@ -8,11 +8,13 @@
#include "BSP.h"
#include "Pins.h"
#include "gd32vf103.h"
#include <string.h>
#include "systick.h"
#include <string.h>
#define ADC_NORM_CHANNELS 2
#define ADC_NORM_SAMPLES 32
uint16_t ADCReadings[ADC_NORM_SAMPLES * ADC_NORM_CHANNELS]; // room for 32 lots of the pair of readings
uint16_t
ADCReadings[ADC_NORM_SAMPLES *
ADC_NORM_CHANNELS]; // room for 32 lots of the pair of readings
// Functions
void setup_gpio();
@@ -23,18 +25,17 @@ void setup_timers();
void setup_iwdg();
void hardware_init() {
//GPIO
// GPIO
setup_gpio();
//DMA
// DMA
setup_dma();
//I2C
// I2C
setup_i2c();
//ADC's
// ADC's
setup_adc();
//Timers
// Timers
setup_timers();
//Watchdog
// Watchdog
setup_iwdg();
/* enable TIMER1 - PWM control timing*/
@@ -56,33 +57,32 @@ void setup_gpio() {
rcu_periph_clock_enable(RCU_GPIOA);
/* enable GPIOB clock */
rcu_periph_clock_enable(RCU_GPIOB);
//Alternate function clock enable
// Alternate function clock enable
rcu_periph_clock_enable(RCU_AF);
//Buttons as input
// Buttons as input
gpio_init(KEY_A_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_A_Pin);
gpio_init(KEY_B_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_B_Pin);
//OLED reset as output
// OLED reset as output
gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ,
OLED_RESET_Pin);
//I2C as AF Open Drain
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
//PWM output as AF Push Pull
gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ,
PWM_Out_Pin);
//Analog Inputs ... as analog inputs
// I2C as AF Open Drain
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ,
SDA_Pin | SCL_Pin);
// PWM output as AF Push Pull
gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, PWM_Out_Pin);
// Analog Inputs ... as analog inputs
gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ,
TMP36_INPUT_Pin);
gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ,
TIP_TEMP_Pin);
gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, TIP_TEMP_Pin);
gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, VIN_Pin);
//Remap PB4 away from JTAG NJRST
// Remap PB4 away from JTAG NJRST
gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE);
//TODO - rest of pins as floating
// TODO - rest of pins as floating
}
void setup_dma() {
//Setup DMA for ADC0
// Setup DMA for ADC0
{
/* enable DMA0 clock */
rcu_periph_clock_enable(RCU_DMA0);
@@ -94,9 +94,9 @@ void setup_dma() {
dma_deinit(DMA0, DMA_CH0);
/* initialize DMA data mode */
dma_data_parameter.periph_addr = (uint32_t) (&ADC_RDATA(ADC0));
dma_data_parameter.periph_addr = (uint32_t)(&ADC_RDATA(ADC0));
dma_data_parameter.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_data_parameter.memory_addr = (uint32_t) (ADCReadings);
dma_data_parameter.memory_addr = (uint32_t)(ADCReadings);
dma_data_parameter.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_data_parameter.periph_width = DMA_PERIPHERAL_WIDTH_16BIT;
dma_data_parameter.memory_width = DMA_MEMORY_WIDTH_16BIT;
@@ -114,7 +114,7 @@ void setup_dma() {
void setup_i2c() {
/* enable I2C0 clock */
rcu_periph_clock_enable(RCU_I2C0);
//Setup I20 at 400kHz
// Setup I20 at 400kHz
i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_16_9);
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x00);
i2c_enable(I2C0);
@@ -125,9 +125,9 @@ void setup_i2c() {
}
void setup_adc() {
//Setup ADC in normal + injected mode
//Want it to sample handle temp and input voltage normally via dma
//Then injected trigger to sample tip temp
// Setup ADC in normal + injected mode
// Want it to sample handle temp and input voltage normally via dma
// Then injected trigger to sample tip temp
memset(ADCReadings, 0, sizeof(ADCReadings));
rcu_periph_clock_enable(RCU_ADC0);
rcu_periph_clock_enable(RCU_ADC1);
@@ -135,36 +135,46 @@ void setup_adc() {
adc_deinit(ADC1);
/* config ADC clock */
rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16);
//Run in normal parallel + inserted parallel
// Run in normal parallel + inserted parallel
adc_mode_config(ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL);
adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_SCAN_MODE, ENABLE);
//Align right
// Align right
adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT);
adc_data_alignment_config(ADC1, ADC_DATAALIGN_RIGHT);
//Setup reading 2 channels on regular mode (Handle Temp + dc in)
// Setup reading 2 channels on regular mode (Handle Temp + dc in)
adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
//Setup the two channels
adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL, ADC_SAMPLETIME_71POINT5); //temp sensor
adc_regular_channel_config(ADC1, 0, TMP36_ADC1_CHANNEL, ADC_SAMPLETIME_71POINT5); //temp sensor
adc_regular_channel_config(ADC0, 1, VIN_ADC0_CHANNEL, ADC_SAMPLETIME_71POINT5); //DC Input voltage
adc_regular_channel_config(ADC1, 1, VIN_ADC1_CHANNEL, ADC_SAMPLETIME_71POINT5); //DC Input voltage
//Setup that we want all 4 inserted readings to be the tip temp
// Setup the two channels
adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL,
ADC_SAMPLETIME_71POINT5); // temp sensor
adc_regular_channel_config(ADC1, 0, TMP36_ADC1_CHANNEL,
ADC_SAMPLETIME_71POINT5); // temp sensor
adc_regular_channel_config(ADC0, 1, VIN_ADC0_CHANNEL,
ADC_SAMPLETIME_71POINT5); // DC Input voltage
adc_regular_channel_config(ADC1, 1, VIN_ADC1_CHANNEL,
ADC_SAMPLETIME_71POINT5); // DC Input voltage
// Setup that we want all 4 inserted readings to be the tip temp
adc_channel_length_config(ADC0, ADC_INSERTED_CHANNEL, 4);
adc_channel_length_config(ADC1, ADC_INSERTED_CHANNEL, 4);
for (int rank = 0; rank < 4; rank++) {
adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL, ADC_SAMPLETIME_1POINT5);
adc_inserted_channel_config(ADC1, rank, TIP_TEMP_ADC1_CHANNEL, ADC_SAMPLETIME_1POINT5);
adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL,
ADC_SAMPLETIME_1POINT5);
adc_inserted_channel_config(ADC1, rank, TIP_TEMP_ADC1_CHANNEL,
ADC_SAMPLETIME_1POINT5);
}
//Setup timer 1 channel 0 to trigger injected measurements
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0);
// Setup timer 1 channel 0 to trigger injected measurements
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL,
ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL,
ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE);
adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE);
adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL,
ADC0_1_EXTTRIG_REGULAR_NONE);
adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL,
ADC0_1_EXTTRIG_REGULAR_NONE);
// Enable triggers for the ADC
adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE);
adc_external_trigger_config(ADC1, ADC_INSERTED_CHANNEL, ENABLE);
@@ -179,14 +189,11 @@ void setup_adc() {
adc_oversample_mode_disable(ADC0);
adc_oversample_mode_disable(ADC1);
adc_enable(ADC0);
delay_1ms(1);
adc_calibration_enable(ADC0);
adc_enable(ADC1);
delay_1ms(1);
adc_calibration_enable(ADC1);
delay_1ms(1);
adc_dma_mode_enable(ADC0);
//Enable interrupt on end of injected readings
// Enable interrupt on end of injected readings
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOC);
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOIC);
adc_interrupt_enable(ADC0, ADC_INT_EOIC);
@@ -196,14 +203,14 @@ void setup_adc() {
adc_tempsensor_vrefint_disable();
}
void setup_timers() {
//Setup timer 1 to run the actual PWM level
// Setup timer 1 to run the actual PWM level
/* enable timer1 clock */
rcu_periph_clock_enable(RCU_TIMER1);
rcu_periph_clock_enable(RCU_TIMER2);
timer_oc_parameter_struct timer_ocintpara;
timer_parameter_struct timer_initpara;
{
//deinit to reset the timer
// deinit to reset the timer
timer_deinit(TIMER1);
/* initialize TIMER init parameter struct */
timer_struct_para_init(&timer_initpara);
@@ -222,9 +229,9 @@ void setup_timers() {
timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0, powerPWM + holdoffTicks);
timer_channel_output_mode_config(TIMER1, TIMER_CH_0,
TIMER_OC_MODE_PWM1);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0,
powerPWM + holdoffTicks);
timer_channel_output_mode_config(TIMER1, TIMER_CH_0, TIMER_OC_MODE_PWM1);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE);
/* CH1 used for irq */
@@ -234,18 +241,16 @@ void setup_timers() {
timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0);
timer_channel_output_mode_config(TIMER1, TIMER_CH_1,
TIMER_OC_MODE_PWM0);
timer_channel_output_mode_config(TIMER1, TIMER_CH_1, TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_1,
TIMER_OC_SHADOW_DISABLE);
//IRQ
// IRQ
timer_interrupt_enable(TIMER1, TIMER_INT_UP);
timer_interrupt_enable(TIMER1, TIMER_INT_CH1);
}
eclic_irq_enable(TIMER1_IRQn, 2, 5);
//Setup timer 2 to control the output signal
// Setup timer 2 to control the output signal
{
timer_deinit(TIMER2);
/* initialize TIMER init parameter struct */
@@ -269,8 +274,7 @@ void setup_timers() {
timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 50);
timer_channel_output_mode_config(TIMER2, TIMER_CH_0,
TIMER_OC_MODE_PWM0);
timer_channel_output_mode_config(TIMER2, TIMER_CH_0, TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER2, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE);
timer_auto_reload_shadow_enable(TIMER2);
@@ -278,12 +282,13 @@ void setup_timers() {
}
}
void setup_iwdg() {
//TODO
// TODO
}
void setupFUSBIRQ() {
//Setup IRQ for USB-PD
gpio_init(FUSB302_IRQ_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_2MHZ, FUSB302_IRQ_Pin);
// Setup IRQ for USB-PD
gpio_init(FUSB302_IRQ_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_2MHZ,
FUSB302_IRQ_Pin);
eclic_irq_enable(EXTI5_9_IRQn, 1, 1);
/* connect key EXTI line to key GPIO pin */
gpio_exti_source_select(GPIO_PORT_SOURCE_GPIOB, GPIO_PIN_SOURCE_5);