1
0
forked from me/IronOS
This commit is contained in:
Ben V. Brown
2020-11-01 12:27:46 +11:00
parent 7c5c689d44
commit 1b579febcd
3 changed files with 802 additions and 788 deletions

View File

@@ -11,119 +11,117 @@
#include <IRQ.h> #include <IRQ.h>
const uint16_t powerPWM = 255; const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 13; // delay of 7 ms const uint8_t holdoffTicks = 25; // delay of 7 ms
const uint8_t tempMeasureTicks = 17; const uint8_t tempMeasureTicks = 25;
uint16_t totalPWM; //htim2.Init.Period, the full PWM cycle uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
//2 second filter (ADC is PID_TIM_HZ Hz) // 2 second filter (ADC is PID_TIM_HZ Hz)
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 }; history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() { void resetWatchdog() {
//TODO // TODO
} }
uint16_t getTipInstantTemperature() { uint16_t getTipInstantTemperature() {
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits volatile uint16_t sum = 0; // 12 bit readings * 8*2 -> 16 bits
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
sum += adc_inserted_data_read(ADC0, i); sum += adc_inserted_data_read(ADC0, i);
sum += adc_inserted_data_read(ADC1, i); sum += adc_inserted_data_read(ADC1, i);
} }
return sum; // 8x over sample return sum; // 8x over sample
} }
uint16_t getTipRawTemp(uint8_t refresh) { uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) { if (refresh) {
uint16_t lastSample = getTipInstantTemperature(); uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample); rawTempFilter.update(lastSample);
return lastSample; return lastSample;
} else { } else {
return rawTempFilter.average(); return rawTempFilter.average();
} }
} }
uint16_t getHandleTemperature() { uint16_t getHandleTemperature() {
#ifdef TEMP_TMP36 #ifdef TEMP_TMP36
// We return the current handle temperature in X10 C // We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for // TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) = // example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125 // 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
// mV per count So we need to subtract an offset of 0.5V to center on 0C // mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts) // (4964.8 counts)
// //
int32_t result = getADC(0); int32_t result = getADC(0);
result -= 4965; // remove 0.5V offset result -= 4965; // remove 0.5V offset
// 10mV per C // 10mV per C
// 99.29 counts per Deg C above 0C // 99.29 counts per Deg C above 0C
result *= 100; result *= 100;
result /= 993; result /= 993;
return result; return result;
#else #else
#error #error
#endif #endif
} }
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
static uint8_t preFillneeded = 10; static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH]; static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0; static uint8_t index = 0;
if (preFillneeded) { if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1); samples[i] = getADC(1);
preFillneeded--; preFillneeded--;
} }
if (sample) { if (sample) {
samples[index] = getADC(1); samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH; index = (index + 1) % BATTFILTERDEPTH;
} }
uint32_t sum = 0; uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i]; sum += samples[i];
sum /= BATTFILTERDEPTH; sum /= BATTFILTERDEPTH;
if (divisor == 0) { if (divisor == 0) {
divisor = 1; divisor = 1;
} }
return sum * 4 / divisor; return sum * 4 / divisor;
} }
void unstick_I2C() { void unstick_I2C() {
/* configure SDA/SCL for GPIO */ /* configure SDA/SCL for GPIO */
GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin; GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ,
asm ("nop"); SDA_Pin | SCL_Pin);
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
GPIO_BOP(GPIOB) |= SCL_Pin; asm("nop");
asm ("nop"); GPIO_BOP(GPIOB) |= SCL_Pin;
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
GPIO_BOP(GPIOB) |= SDA_Pin; asm("nop");
/* connect PB6 to I2C0_SCL */ GPIO_BOP(GPIOB) |= SDA_Pin;
/* connect PB7 to I2C0_SDA */ /* connect PB6 to I2C0_SCL */
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); /* connect PB7 to I2C0_SDA */
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ,
SDA_Pin | SCL_Pin);
} }
uint8_t getButtonA() { uint8_t getButtonA() {
return (gpio_input_bit_get(KEY_A_GPIO_Port, KEY_A_Pin) == SET) ? 1 : 0; return (gpio_input_bit_get(KEY_A_GPIO_Port, KEY_A_Pin) == SET) ? 1 : 0;
} }
uint8_t getButtonB() { uint8_t getButtonB() {
return (gpio_input_bit_get(KEY_B_GPIO_Port, KEY_B_Pin) == SET) ? 1 : 0; return (gpio_input_bit_get(KEY_B_GPIO_Port, KEY_B_Pin) == SET) ? 1 : 0;
} }
void reboot() { void reboot() {
// TODO // TODO
for (;;) { for (;;) {
} }
} }
void delay_ms(uint16_t count) { void delay_ms(uint16_t count) { delay_1ms(count); }
delay_1ms(count);
}

View File

@@ -12,510 +12,521 @@ SemaphoreHandle_t FRToSI2C::I2CSemaphore = nullptr;
StaticSemaphore_t FRToSI2C::xSemaphoreBuffer; StaticSemaphore_t FRToSI2C::xSemaphoreBuffer;
#define I2C_TIME_OUT (uint16_t)(5000) #define I2C_TIME_OUT (uint16_t)(5000)
void FRToSI2C::CpltCallback() { void FRToSI2C::CpltCallback() {
//TODO // TODO
} }
bool FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) { bool FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) {
return Mem_Write(address, reg, &data, 1); return Mem_Write(address, reg, &data, 1);
} }
uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) { uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) {
uint8_t temp = 0; uint8_t temp = 0;
Mem_Read(add, reg, &temp, 1); Mem_Read(add, reg, &temp, 1);
return temp; return temp;
} }
bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_buffer, uint16_t number_of_byte) { bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
if (!lock()) uint8_t *p_buffer, uint16_t number_of_byte) {
return false; if (!lock())
i2c_interrupt_disable(I2C0, I2C_INT_ERR); return false;
i2c_interrupt_disable(I2C0, I2C_INT_BUF); i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_EV); i2c_interrupt_disable(I2C0, I2C_INT_BUF);
dma_parameter_struct dma_init_struct; i2c_interrupt_disable(I2C0, I2C_INT_EV);
dma_parameter_struct dma_init_struct;
uint8_t state = I2C_START; uint8_t state = I2C_START;
uint8_t in_rx_cycle = 0; uint8_t in_rx_cycle = 0;
uint16_t timeout = 0; uint16_t timeout = 0;
uint8_t tries = 0; uint8_t tries = 0;
uint8_t i2c_timeout_flag = 0; uint8_t i2c_timeout_flag = 0;
while (!(i2c_timeout_flag)) { while (!(i2c_timeout_flag)) {
switch (state) { switch (state) {
case I2C_START: case I2C_START:
tries++; tries++;
if (tries > 64) { if (tries > 64) {
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
unlock(); unlock();
return false; return false;
} }
if (0 == in_rx_cycle) { if (0 == in_rx_cycle) {
/* disable I2C0 */ /* disable I2C0 */
i2c_disable(I2C0); i2c_disable(I2C0);
/* enable I2C0 */ /* enable I2C0 */
i2c_enable(I2C0); i2c_enable(I2C0);
/* enable acknowledge */ /* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE); i2c_ack_config(I2C0, I2C_ACK_ENABLE);
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) &&
timeout++; (timeout < I2C_TIME_OUT)) {
} timeout++;
if (timeout < I2C_TIME_OUT) { }
/* send the start signal */ if (timeout < I2C_TIME_OUT) {
i2c_start_on_bus(I2C0); /* send the start signal */
timeout = 0; i2c_start_on_bus(I2C0);
state = I2C_SEND_ADDRESS; timeout = 0;
} else { state = I2C_SEND_ADDRESS;
I2C_Unstick(); } else {
timeout = 0; I2C_Unstick();
state = I2C_START; timeout = 0;
} state = I2C_START;
} else { }
i2c_start_on_bus(I2C0); } else {
timeout = 0; i2c_start_on_bus(I2C0);
state = I2C_SEND_ADDRESS; timeout = 0;
} state = I2C_SEND_ADDRESS;
break; }
case I2C_SEND_ADDRESS: break;
/* i2c master sends START signal successfully */ case I2C_SEND_ADDRESS:
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) { /* i2c master sends START signal successfully */
timeout++; while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
} (timeout < I2C_TIME_OUT)) {
if (timeout < I2C_TIME_OUT) { timeout++;
if (RESET == in_rx_cycle) { }
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER); if (timeout < I2C_TIME_OUT) {
state = I2C_CLEAR_ADDRESS_FLAG; if (RESET == in_rx_cycle) {
} else { i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
i2c_master_addressing(I2C0, DevAddress, I2C_RECEIVER); state = I2C_CLEAR_ADDRESS_FLAG;
state = I2C_CLEAR_ADDRESS_FLAG; } else {
} i2c_master_addressing(I2C0, DevAddress, I2C_RECEIVER);
timeout = 0; state = I2C_CLEAR_ADDRESS_FLAG;
} else { }
timeout = 0; timeout = 0;
state = I2C_START; } else {
in_rx_cycle = 0; timeout = 0;
} state = I2C_START;
break; in_rx_cycle = 0;
case I2C_CLEAR_ADDRESS_FLAG: }
/* address flag set means i2c slave sends ACK */ break;
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) { case I2C_CLEAR_ADDRESS_FLAG:
timeout++; /* address flag set means i2c slave sends ACK */
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
i2c_flag_clear(I2C0, I2C_FLAG_AERR); (timeout < I2C_TIME_OUT)) {
i2c_stop_on_bus(I2C0); timeout++;
/* i2c master sends STOP signal successfully */ if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { i2c_flag_clear(I2C0, I2C_FLAG_AERR);
timeout++; i2c_stop_on_bus(I2C0);
} /* i2c master sends STOP signal successfully */
//Address NACK'd while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
unlock(); timeout++;
return false; }
} // Address NACK'd
} unlock();
if (timeout < I2C_TIME_OUT) { return false;
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); }
timeout = 0; }
state = I2C_TRANSMIT_DATA; if (timeout < I2C_TIME_OUT) {
} else { i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
i2c_stop_on_bus(I2C0); timeout = 0;
/* i2c master sends STOP signal successfully */ state = I2C_TRANSMIT_DATA;
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { } else {
timeout++; i2c_stop_on_bus(I2C0);
} /* i2c master sends STOP signal successfully */
//Address NACK'd while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
unlock(); timeout++;
return false; }
} // Address NACK'd
break; unlock();
case I2C_TRANSMIT_DATA: return false;
if (0 == in_rx_cycle) { }
/* wait until the transmit data buffer is empty */ break;
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT )) { case I2C_TRANSMIT_DATA:
timeout++; if (0 == in_rx_cycle) {
} /* wait until the transmit data buffer is empty */
if (timeout < I2C_TIME_OUT) { while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) &&
//Write out the 8 byte address (timeout < I2C_TIME_OUT)) {
i2c_data_transmit(I2C0, read_address); timeout++;
timeout = 0; }
} else { if (timeout < I2C_TIME_OUT) {
timeout = 0; // Write out the 8 byte address
state = I2C_START; i2c_data_transmit(I2C0, read_address);
in_rx_cycle = 0; timeout = 0;
} } else {
/* wait until BTC bit is set */ timeout = 0;
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT )) { state = I2C_START;
timeout++; in_rx_cycle = 0;
} }
if (timeout < I2C_TIME_OUT) { /* wait until BTC bit is set */
timeout = 0; while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) &&
state = I2C_START; (timeout < I2C_TIME_OUT)) {
in_rx_cycle = 1; timeout++;
} else { }
timeout = 0; if (timeout < I2C_TIME_OUT) {
state = I2C_START; timeout = 0;
in_rx_cycle = 0; state = I2C_START;
} in_rx_cycle = 1;
} else { } else {
/* one byte master reception procedure (polling) */ timeout = 0;
if (number_of_byte < 2) { state = I2C_START;
/* disable acknowledge */ in_rx_cycle = 0;
i2c_ack_config(I2C0, I2C_ACK_DISABLE); }
/* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register (I2C_STAT0 has already been read) */ } else {
i2c_flag_get(I2C0, I2C_FLAG_ADDSEND); /* one byte master reception procedure (polling) */
/* send a stop condition to I2C bus*/ if (number_of_byte < 2) {
i2c_stop_on_bus(I2C0); /* disable acknowledge */
/* wait for the byte to be received */ i2c_ack_config(I2C0, I2C_ACK_DISABLE);
while (!i2c_flag_get(I2C0, I2C_FLAG_RBNE)) /* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register
; * (I2C_STAT0 has already been read) */
/* read the byte received from the EEPROM */ i2c_flag_get(I2C0, I2C_FLAG_ADDSEND);
*p_buffer = i2c_data_receive(I2C0); /* send a stop condition to I2C bus*/
/* decrement the read bytes counter */ i2c_stop_on_bus(I2C0);
number_of_byte--; /* wait for the byte to be received */
timeout = 0; while (!i2c_flag_get(I2C0, I2C_FLAG_RBNE))
} else { /* more than one byte master reception procedure (DMA) */ ;
dma_deinit(DMA0, DMA_CH6); /* read the byte received from the EEPROM */
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY; *p_buffer = i2c_data_receive(I2C0);
dma_init_struct.memory_addr = (uint32_t) p_buffer; /* decrement the read bytes counter */
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; number_of_byte--;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT; timeout = 0;
dma_init_struct.number = number_of_byte; } else { /* more than one byte master reception procedure (DMA) */
dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0); dma_deinit(DMA0, DMA_CH6);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT; dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH; dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init(DMA0, DMA_CH6, &dma_init_struct); dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_init(DMA0, DMA_CH6, &dma_init_struct);
i2c_dma_last_transfer_config(I2C0, I2C_DMALST_ON); i2c_dma_last_transfer_config(I2C0, I2C_DMALST_ON);
/* enable I2C0 DMA */ /* enable I2C0 DMA */
i2c_dma_enable(I2C0, I2C_DMA_ON); i2c_dma_enable(I2C0, I2C_DMA_ON);
/* enable DMA0 channel5 */ /* enable DMA0 channel5 */
dma_channel_enable(DMA0, DMA_CH6); dma_channel_enable(DMA0, DMA_CH6);
/* wait until BTC bit is set */ /* wait until BTC bit is set */
while (!dma_flag_get(DMA0, DMA_CH6, DMA_FLAG_FTF)) { while (!dma_flag_get(DMA0, DMA_CH6, DMA_FLAG_FTF)) {
osDelay(1); osDelay(1);
} }
/* send a stop condition to I2C bus*/ /* send a stop condition to I2C bus*/
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
} }
timeout = 0; timeout = 0;
state = I2C_STOP; state = I2C_STOP;
} }
break; break;
case I2C_STOP: case I2C_STOP:
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
timeout = 0; timeout = 0;
state = I2C_END; state = I2C_END;
i2c_timeout_flag = I2C_OK; i2c_timeout_flag = I2C_OK;
} else { } else {
timeout = 0; timeout = 0;
state = I2C_START; state = I2C_START;
in_rx_cycle = 0; in_rx_cycle = 0;
} }
break; break;
default: default:
state = I2C_START; state = I2C_START;
in_rx_cycle = 0; in_rx_cycle = 0;
i2c_timeout_flag = I2C_OK; i2c_timeout_flag = I2C_OK;
timeout = 0; timeout = 0;
break; break;
} }
} }
unlock(); unlock();
return true; return true;
} }
bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_buffer, uint16_t number_of_byte) { bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
if (!lock()) uint8_t *p_buffer, uint16_t number_of_byte) {
return false; if (!lock())
return false;
i2c_interrupt_disable(I2C0, I2C_INT_ERR); i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_EV); i2c_interrupt_disable(I2C0, I2C_INT_EV);
i2c_interrupt_disable(I2C0, I2C_INT_BUF); i2c_interrupt_disable(I2C0, I2C_INT_BUF);
dma_parameter_struct dma_init_struct; dma_parameter_struct dma_init_struct;
uint8_t state = I2C_START; uint8_t state = I2C_START;
uint16_t timeout = 0; uint16_t timeout = 0;
bool done = false; bool done = false;
bool timedout = false; bool timedout = false;
while (!(done || timedout)) { while (!(done || timedout)) {
switch (state) { switch (state) {
case I2C_START: case I2C_START:
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
i2c_start_on_bus(I2C0); i2c_start_on_bus(I2C0);
timeout = 0; timeout = 0;
state = I2C_SEND_ADDRESS; state = I2C_SEND_ADDRESS;
} else { } else {
I2C_Unstick(); I2C_Unstick();
timeout = 0; timeout = 0;
state = I2C_START; state = I2C_START;
} }
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
timeout++; (timeout < I2C_TIME_OUT)) {
} timeout++;
if (timeout < I2C_TIME_OUT) { }
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER); if (timeout < I2C_TIME_OUT) {
timeout = 0; i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
state = I2C_CLEAR_ADDRESS_FLAG; timeout = 0;
} else { state = I2C_CLEAR_ADDRESS_FLAG;
timedout = true; } else {
done = true; timedout = true;
timeout = 0; done = true;
state = I2C_START; timeout = 0;
} state = I2C_START;
break; }
case I2C_CLEAR_ADDRESS_FLAG: break;
/* address flag set means i2c slave sends ACK */ case I2C_CLEAR_ADDRESS_FLAG:
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) { /* address flag set means i2c slave sends ACK */
timeout++; while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { (timeout < I2C_TIME_OUT)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); timeout++;
i2c_stop_on_bus(I2C0); if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
/* i2c master sends STOP signal successfully */ i2c_flag_clear(I2C0, I2C_FLAG_AERR);
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { i2c_stop_on_bus(I2C0);
timeout++; /* i2c master sends STOP signal successfully */
} while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
//Address NACK'd timeout++;
unlock(); }
return false; // Address NACK'd
} unlock();
} return false;
timeout = 0; }
if (timeout < I2C_TIME_OUT) { }
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); timeout = 0;
state = I2C_TRANSMIT_DATA; if (timeout < I2C_TIME_OUT) {
} else { i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
//Dont retry as this means a NAK state = I2C_TRANSMIT_DATA;
i2c_stop_on_bus(I2C0); } else {
/* i2c master sends STOP signal successfully */ // Dont retry as this means a NAK
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { i2c_stop_on_bus(I2C0);
timeout++; /* i2c master sends STOP signal successfully */
} while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
unlock(); timeout++;
return false; }
} unlock();
break; return false;
case I2C_TRANSMIT_DATA: }
/* wait until the transmit data buffer is empty */ break;
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT )) { case I2C_TRANSMIT_DATA:
timeout++; /* wait until the transmit data buffer is empty */
} while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
if (timeout < I2C_TIME_OUT) { timeout++;
/* send the EEPROM's internal address to write to : only one byte address */ }
i2c_data_transmit(I2C0, MemAddress); if (timeout < I2C_TIME_OUT) {
timeout = 0; /* send the EEPROM's internal address to write to : only one byte
} else { * address */
timedout = true; i2c_data_transmit(I2C0, MemAddress);
timeout = 0; timeout = 0;
state = I2C_START; } else {
} timedout = true;
/* wait until BTC bit is set */ timeout = 0;
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC)) state = I2C_START;
; }
dma_deinit(DMA0, DMA_CH5); /* wait until BTC bit is set */
dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL; while (!i2c_flag_get(I2C0, I2C_FLAG_BTC))
dma_init_struct.memory_addr = (uint32_t) p_buffer; ;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_deinit(DMA0, DMA_CH5);
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT; dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init_struct.number = number_of_byte; dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0); dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT; dma_init_struct.number = number_of_byte;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH; dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init(DMA0, DMA_CH5, &dma_init_struct); dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
/* enable I2C0 DMA */ dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
i2c_dma_enable(I2C0, I2C_DMA_ON); dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
/* enable DMA0 channel5 */ dma_init(DMA0, DMA_CH5, &dma_init_struct);
dma_channel_enable(DMA0, DMA_CH5); /* enable I2C0 DMA */
/* wait until BTC bit is set */ i2c_dma_enable(I2C0, I2C_DMA_ON);
while (!dma_flag_get(DMA0, DMA_CH5, DMA_FLAG_FTF)) { /* enable DMA0 channel5 */
osDelay(1); dma_channel_enable(DMA0, DMA_CH5);
} /* wait until BTC bit is set */
/* wait until BTC bit is set */ while (!dma_flag_get(DMA0, DMA_CH5, DMA_FLAG_FTF)) {
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC)) osDelay(1);
; }
state = I2C_STOP; /* wait until BTC bit is set */
break; while (!i2c_flag_get(I2C0, I2C_FLAG_BTC))
case I2C_STOP: ;
/* send a stop condition to I2C bus */ state = I2C_STOP;
i2c_stop_on_bus(I2C0); break;
/* i2c master sends STOP signal successfully */ case I2C_STOP:
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { /* send a stop condition to I2C bus */
timeout++; i2c_stop_on_bus(I2C0);
} /* i2c master sends STOP signal successfully */
if (timeout < I2C_TIME_OUT) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout = 0; timeout++;
state = I2C_END; }
done = true; if (timeout < I2C_TIME_OUT) {
} else { timeout = 0;
timedout = true; state = I2C_END;
done = true; done = true;
timeout = 0; } else {
state = I2C_START; timedout = true;
} done = true;
break; timeout = 0;
default: state = I2C_START;
state = I2C_START; }
timeout = 0; break;
break; default:
} state = I2C_START;
} timeout = 0;
unlock(); break;
return timedout == false; }
}
unlock();
return timedout == false;
} }
bool FRToSI2C::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) { bool FRToSI2C::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
return Mem_Write(DevAddress, pData[0], pData + 1, Size - 1); return Mem_Write(DevAddress, pData[0], pData + 1, Size - 1);
} }
bool FRToSI2C::probe(uint16_t DevAddress) { bool FRToSI2C::probe(uint16_t DevAddress) {
uint8_t temp[1]; uint8_t temp[1];
return Mem_Read(DevAddress, 0x00, temp, sizeof(temp)); return Mem_Read(DevAddress, 0x00, temp, sizeof(temp));
} }
void FRToSI2C::I2C_Unstick() { void FRToSI2C::I2C_Unstick() { unstick_I2C(); }
unstick_I2C();
}
bool FRToSI2C::lock() { bool FRToSI2C::lock() {
if (I2CSemaphore == nullptr) { if (I2CSemaphore == nullptr) {
return false; return false;
} }
return xSemaphoreTake(I2CSemaphore, 1000) == pdTRUE; return xSemaphoreTake(I2CSemaphore, 1000) == pdTRUE;
} }
void FRToSI2C::unlock() { void FRToSI2C::unlock() { xSemaphoreGive(I2CSemaphore); }
xSemaphoreGive(I2CSemaphore);
}
bool FRToSI2C::writeRegistersBulk(const uint8_t address, const I2C_REG *registers, const uint8_t registersLength) { bool FRToSI2C::writeRegistersBulk(const uint8_t address,
for (int index = 0; index < registersLength; index++) { const I2C_REG *registers,
if (!I2C_RegisterWrite(address, registers[index].reg, registers[index].val)) { const uint8_t registersLength) {
return false; for (int index = 0; index < registersLength; index++) {
} if (!I2C_RegisterWrite(address, registers[index].reg,
if (registers[index].pause_ms) { registers[index].val)) {
delay_ms(registers[index].pause_ms); return false;
} }
} if (registers[index].pause_ms) {
return true; delay_ms(registers[index].pause_ms);
}
}
return true;
} }
bool FRToSI2C::wakePart(uint16_t DevAddress) { bool FRToSI2C::wakePart(uint16_t DevAddress) {
//wakepart is a special case where only the device address is sent // wakepart is a special case where only the device address is sent
if (!lock()) if (!lock())
return false; return false;
i2c_interrupt_disable(I2C0, I2C_INT_ERR); i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_EV); i2c_interrupt_disable(I2C0, I2C_INT_EV);
i2c_interrupt_disable(I2C0, I2C_INT_BUF); i2c_interrupt_disable(I2C0, I2C_INT_BUF);
dma_parameter_struct dma_init_struct;
uint8_t state = I2C_START; uint8_t state = I2C_START;
uint16_t timeout = 0; uint16_t timeout = 0;
bool done = false; bool done = false;
bool timedout = false; bool timedout = false;
while (!(done || timedout)) { while (!(done || timedout)) {
switch (state) { switch (state) {
case I2C_START: case I2C_START:
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
i2c_start_on_bus(I2C0); i2c_start_on_bus(I2C0);
timeout = 0; timeout = 0;
state = I2C_SEND_ADDRESS; state = I2C_SEND_ADDRESS;
} else { } else {
I2C_Unstick(); I2C_Unstick();
timeout = 0; timeout = 0;
state = I2C_START; state = I2C_START;
} }
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
timeout++; (timeout < I2C_TIME_OUT)) {
} timeout++;
if (timeout < I2C_TIME_OUT) { }
i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER); if (timeout < I2C_TIME_OUT) {
timeout = 0; i2c_master_addressing(I2C0, DevAddress, I2C_TRANSMITTER);
state = I2C_CLEAR_ADDRESS_FLAG; timeout = 0;
} else { state = I2C_CLEAR_ADDRESS_FLAG;
timedout = true; } else {
done = true; timedout = true;
timeout = 0; done = true;
state = I2C_START; timeout = 0;
} state = I2C_START;
break; }
case I2C_CLEAR_ADDRESS_FLAG: break;
/* address flag set means i2c slave sends ACK */ case I2C_CLEAR_ADDRESS_FLAG:
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) { /* address flag set means i2c slave sends ACK */
timeout++; while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { (timeout < I2C_TIME_OUT)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); timeout++;
i2c_stop_on_bus(I2C0); if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
/* i2c master sends STOP signal successfully */ i2c_flag_clear(I2C0, I2C_FLAG_AERR);
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { i2c_stop_on_bus(I2C0);
timeout++; /* i2c master sends STOP signal successfully */
} while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
//Address NACK'd timeout++;
unlock(); }
return false; // Address NACK'd
} unlock();
} return false;
if (timeout < I2C_TIME_OUT) { }
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); }
timeout = 0; if (timeout < I2C_TIME_OUT) {
state = I2C_STOP; i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
} else { timeout = 0;
//Dont retry as this means a NAK state = I2C_STOP;
i2c_stop_on_bus(I2C0); } else {
/* i2c master sends STOP signal successfully */ // Dont retry as this means a NAK
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { i2c_stop_on_bus(I2C0);
timeout++; /* i2c master sends STOP signal successfully */
} while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
unlock(); timeout++;
return false; }
} unlock();
break; return false;
}
break;
case I2C_STOP: case I2C_STOP:
/* send a stop condition to I2C bus */ /* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
timeout = 0; timeout = 0;
state = I2C_END; state = I2C_END;
done = true; done = true;
} else { } else {
timedout = true; timedout = true;
done = true; done = true;
timeout = 0; timeout = 0;
state = I2C_START; state = I2C_START;
} }
break; break;
default: default:
state = I2C_START; state = I2C_START;
timeout = 0; timeout = 0;
break; break;
} }
} }
unlock(); unlock();
return timedout == false; return timedout == false;
} }

View File

@@ -8,11 +8,13 @@
#include "BSP.h" #include "BSP.h"
#include "Pins.h" #include "Pins.h"
#include "gd32vf103.h" #include "gd32vf103.h"
#include <string.h>
#include "systick.h" #include "systick.h"
#include <string.h>
#define ADC_NORM_CHANNELS 2 #define ADC_NORM_CHANNELS 2
#define ADC_NORM_SAMPLES 32 #define ADC_NORM_SAMPLES 32
uint16_t ADCReadings[ADC_NORM_SAMPLES * ADC_NORM_CHANNELS]; // room for 32 lots of the pair of readings uint16_t
ADCReadings[ADC_NORM_SAMPLES *
ADC_NORM_CHANNELS]; // room for 32 lots of the pair of readings
// Functions // Functions
void setup_gpio(); void setup_gpio();
@@ -23,272 +25,275 @@ void setup_timers();
void setup_iwdg(); void setup_iwdg();
void hardware_init() { void hardware_init() {
// GPIO
setup_gpio();
// DMA
setup_dma();
// I2C
setup_i2c();
// ADC's
setup_adc();
// Timers
setup_timers();
// Watchdog
setup_iwdg();
//GPIO /* enable TIMER1 - PWM control timing*/
setup_gpio(); timer_enable(TIMER1);
//DMA timer_enable(TIMER2);
setup_dma(); eclic_priority_group_set(ECLIC_PRIGROUP_LEVEL4_PRIO0);
//I2C eclic_global_interrupt_enable();
setup_i2c();
//ADC's
setup_adc();
//Timers
setup_timers();
//Watchdog
setup_iwdg();
/* enable TIMER1 - PWM control timing*/
timer_enable(TIMER1);
timer_enable(TIMER2);
eclic_priority_group_set(ECLIC_PRIGROUP_LEVEL4_PRIO0);
eclic_global_interrupt_enable();
} }
// channel 0 -> temperature sensor, 1-> VIN // channel 0 -> temperature sensor, 1-> VIN
uint16_t getADC(uint8_t channel) { uint16_t getADC(uint8_t channel) {
uint32_t sum = 0; uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_NORM_SAMPLES; i++) for (uint8_t i = 0; i < ADC_NORM_SAMPLES; i++)
sum += ADCReadings[channel + (i * ADC_NORM_CHANNELS)]; sum += ADCReadings[channel + (i * ADC_NORM_CHANNELS)];
return sum >> 2; return sum >> 2;
} }
void setup_gpio() { void setup_gpio() {
/* enable GPIOB clock */ /* enable GPIOB clock */
rcu_periph_clock_enable(RCU_GPIOA); rcu_periph_clock_enable(RCU_GPIOA);
/* enable GPIOB clock */ /* enable GPIOB clock */
rcu_periph_clock_enable(RCU_GPIOB); rcu_periph_clock_enable(RCU_GPIOB);
//Alternate function clock enable // Alternate function clock enable
rcu_periph_clock_enable(RCU_AF); rcu_periph_clock_enable(RCU_AF);
//Buttons as input // Buttons as input
gpio_init(KEY_A_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_A_Pin); gpio_init(KEY_A_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_A_Pin);
gpio_init(KEY_B_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_B_Pin); gpio_init(KEY_B_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_B_Pin);
//OLED reset as output // OLED reset as output
gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ,
OLED_RESET_Pin); OLED_RESET_Pin);
//I2C as AF Open Drain // I2C as AF Open Drain
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ,
//PWM output as AF Push Pull SDA_Pin | SCL_Pin);
gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, // PWM output as AF Push Pull
PWM_Out_Pin); gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, PWM_Out_Pin);
//Analog Inputs ... as analog inputs // Analog Inputs ... as analog inputs
gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ,
TMP36_INPUT_Pin); TMP36_INPUT_Pin);
gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, TIP_TEMP_Pin);
TIP_TEMP_Pin); gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, VIN_Pin);
gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, VIN_Pin);
//Remap PB4 away from JTAG NJRST // Remap PB4 away from JTAG NJRST
gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE); gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE);
//TODO - rest of pins as floating // TODO - rest of pins as floating
} }
void setup_dma() { void setup_dma() {
//Setup DMA for ADC0 // Setup DMA for ADC0
{ {
/* enable DMA0 clock */ /* enable DMA0 clock */
rcu_periph_clock_enable(RCU_DMA0); rcu_periph_clock_enable(RCU_DMA0);
rcu_periph_clock_enable(RCU_DMA1); rcu_periph_clock_enable(RCU_DMA1);
/* ADC_DMA_channel configuration */ /* ADC_DMA_channel configuration */
dma_parameter_struct dma_data_parameter; dma_parameter_struct dma_data_parameter;
/* ADC DMA_channel configuration */ /* ADC DMA_channel configuration */
dma_deinit(DMA0, DMA_CH0); dma_deinit(DMA0, DMA_CH0);
/* initialize DMA data mode */ /* initialize DMA data mode */
dma_data_parameter.periph_addr = (uint32_t) (&ADC_RDATA(ADC0)); dma_data_parameter.periph_addr = (uint32_t)(&ADC_RDATA(ADC0));
dma_data_parameter.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_data_parameter.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_data_parameter.memory_addr = (uint32_t) (ADCReadings); dma_data_parameter.memory_addr = (uint32_t)(ADCReadings);
dma_data_parameter.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_data_parameter.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_data_parameter.periph_width = DMA_PERIPHERAL_WIDTH_16BIT; dma_data_parameter.periph_width = DMA_PERIPHERAL_WIDTH_16BIT;
dma_data_parameter.memory_width = DMA_MEMORY_WIDTH_16BIT; dma_data_parameter.memory_width = DMA_MEMORY_WIDTH_16BIT;
dma_data_parameter.direction = DMA_PERIPHERAL_TO_MEMORY; dma_data_parameter.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_data_parameter.number = ADC_NORM_SAMPLES * ADC_NORM_CHANNELS; dma_data_parameter.number = ADC_NORM_SAMPLES * ADC_NORM_CHANNELS;
dma_data_parameter.priority = DMA_PRIORITY_HIGH; dma_data_parameter.priority = DMA_PRIORITY_HIGH;
dma_init(DMA0, DMA_CH0, &dma_data_parameter); dma_init(DMA0, DMA_CH0, &dma_data_parameter);
dma_circulation_enable(DMA0, DMA_CH0); dma_circulation_enable(DMA0, DMA_CH0);
/* enable DMA channel */ /* enable DMA channel */
dma_channel_enable(DMA0, DMA_CH0); dma_channel_enable(DMA0, DMA_CH0);
} }
} }
void setup_i2c() { void setup_i2c() {
/* enable I2C0 clock */ /* enable I2C0 clock */
rcu_periph_clock_enable(RCU_I2C0); rcu_periph_clock_enable(RCU_I2C0);
//Setup I20 at 400kHz // Setup I20 at 400kHz
i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_16_9); i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_16_9);
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x00); i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x00);
i2c_enable(I2C0); i2c_enable(I2C0);
/* enable acknowledge */ /* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE); i2c_ack_config(I2C0, I2C_ACK_ENABLE);
eclic_irq_enable(I2C0_EV_IRQn, 1, 0); eclic_irq_enable(I2C0_EV_IRQn, 1, 0);
eclic_irq_enable(I2C0_ER_IRQn, 2, 0); eclic_irq_enable(I2C0_ER_IRQn, 2, 0);
} }
void setup_adc() { void setup_adc() {
//Setup ADC in normal + injected mode // Setup ADC in normal + injected mode
//Want it to sample handle temp and input voltage normally via dma // Want it to sample handle temp and input voltage normally via dma
//Then injected trigger to sample tip temp // Then injected trigger to sample tip temp
memset(ADCReadings, 0, sizeof(ADCReadings)); memset(ADCReadings, 0, sizeof(ADCReadings));
rcu_periph_clock_enable(RCU_ADC0); rcu_periph_clock_enable(RCU_ADC0);
rcu_periph_clock_enable(RCU_ADC1); rcu_periph_clock_enable(RCU_ADC1);
adc_deinit(ADC0); adc_deinit(ADC0);
adc_deinit(ADC1); adc_deinit(ADC1);
/* config ADC clock */ /* config ADC clock */
rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16); rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16);
//Run in normal parallel + inserted parallel // Run in normal parallel + inserted parallel
adc_mode_config(ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL); adc_mode_config(ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL);
adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE); adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE); adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE); adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_SCAN_MODE, ENABLE); adc_special_function_config(ADC1, ADC_SCAN_MODE, ENABLE);
//Align right // Align right
adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT); adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT);
adc_data_alignment_config(ADC1, ADC_DATAALIGN_RIGHT); adc_data_alignment_config(ADC1, ADC_DATAALIGN_RIGHT);
//Setup reading 2 channels on regular mode (Handle Temp + dc in) // Setup reading 2 channels on regular mode (Handle Temp + dc in)
adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS); adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS); adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
//Setup the two channels // Setup the two channels
adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL, ADC_SAMPLETIME_71POINT5); //temp sensor adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL,
adc_regular_channel_config(ADC1, 0, TMP36_ADC1_CHANNEL, ADC_SAMPLETIME_71POINT5); //temp sensor ADC_SAMPLETIME_71POINT5); // temp sensor
adc_regular_channel_config(ADC0, 1, VIN_ADC0_CHANNEL, ADC_SAMPLETIME_71POINT5); //DC Input voltage adc_regular_channel_config(ADC1, 0, TMP36_ADC1_CHANNEL,
adc_regular_channel_config(ADC1, 1, VIN_ADC1_CHANNEL, ADC_SAMPLETIME_71POINT5); //DC Input voltage ADC_SAMPLETIME_71POINT5); // temp sensor
//Setup that we want all 4 inserted readings to be the tip temp adc_regular_channel_config(ADC0, 1, VIN_ADC0_CHANNEL,
adc_channel_length_config(ADC0, ADC_INSERTED_CHANNEL, 4); ADC_SAMPLETIME_71POINT5); // DC Input voltage
adc_channel_length_config(ADC1, ADC_INSERTED_CHANNEL, 4); adc_regular_channel_config(ADC1, 1, VIN_ADC1_CHANNEL,
for (int rank = 0; rank < 4; rank++) { ADC_SAMPLETIME_71POINT5); // DC Input voltage
adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL, ADC_SAMPLETIME_1POINT5); // Setup that we want all 4 inserted readings to be the tip temp
adc_inserted_channel_config(ADC1, rank, TIP_TEMP_ADC1_CHANNEL, ADC_SAMPLETIME_1POINT5); adc_channel_length_config(ADC0, ADC_INSERTED_CHANNEL, 4);
} adc_channel_length_config(ADC1, ADC_INSERTED_CHANNEL, 4);
//Setup timer 1 channel 0 to trigger injected measurements for (int rank = 0; rank < 4; rank++) {
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0); adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL,
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0); ADC_SAMPLETIME_1POINT5);
adc_inserted_channel_config(ADC1, rank, TIP_TEMP_ADC1_CHANNEL,
ADC_SAMPLETIME_1POINT5);
}
// Setup timer 1 channel 0 to trigger injected measurements
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL,
ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL,
ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE); adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL,
adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE); ADC0_1_EXTTRIG_REGULAR_NONE);
// Enable triggers for the ADC adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL,
adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE); ADC0_1_EXTTRIG_REGULAR_NONE);
adc_external_trigger_config(ADC1, ADC_INSERTED_CHANNEL, ENABLE); // Enable triggers for the ADC
adc_external_trigger_config(ADC0, ADC_REGULAR_CHANNEL, ENABLE); adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE);
adc_external_trigger_config(ADC1, ADC_REGULAR_CHANNEL, ENABLE); adc_external_trigger_config(ADC1, ADC_INSERTED_CHANNEL, ENABLE);
adc_external_trigger_config(ADC0, ADC_REGULAR_CHANNEL, ENABLE);
adc_external_trigger_config(ADC1, ADC_REGULAR_CHANNEL, ENABLE);
adc_watchdog_disable(ADC0); adc_watchdog_disable(ADC0);
adc_watchdog_disable(ADC1); adc_watchdog_disable(ADC1);
adc_resolution_config(ADC0, ADC_RESOLUTION_12B); adc_resolution_config(ADC0, ADC_RESOLUTION_12B);
adc_resolution_config(ADC1, ADC_RESOLUTION_12B); adc_resolution_config(ADC1, ADC_RESOLUTION_12B);
/* clear the ADC flag */ /* clear the ADC flag */
adc_oversample_mode_disable(ADC0); adc_oversample_mode_disable(ADC0);
adc_oversample_mode_disable(ADC1); adc_oversample_mode_disable(ADC1);
adc_enable(ADC0); adc_enable(ADC0);
delay_1ms(1); adc_calibration_enable(ADC0);
adc_calibration_enable(ADC0); adc_enable(ADC1);
adc_enable(ADC1); adc_calibration_enable(ADC1);
delay_1ms(1); adc_dma_mode_enable(ADC0);
adc_calibration_enable(ADC1); // Enable interrupt on end of injected readings
delay_1ms(1); adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOC);
adc_dma_mode_enable(ADC0); adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOIC);
//Enable interrupt on end of injected readings adc_interrupt_enable(ADC0, ADC_INT_EOIC);
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOC); eclic_irq_enable(ADC0_1_IRQn, 2, 0);
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOIC); adc_software_trigger_enable(ADC0, ADC_REGULAR_CHANNEL);
adc_interrupt_enable(ADC0, ADC_INT_EOIC); adc_software_trigger_enable(ADC1, ADC_REGULAR_CHANNEL);
eclic_irq_enable(ADC0_1_IRQn, 2, 0); adc_tempsensor_vrefint_disable();
adc_software_trigger_enable(ADC0, ADC_REGULAR_CHANNEL);
adc_software_trigger_enable(ADC1, ADC_REGULAR_CHANNEL);
adc_tempsensor_vrefint_disable();
} }
void setup_timers() { void setup_timers() {
//Setup timer 1 to run the actual PWM level // Setup timer 1 to run the actual PWM level
/* enable timer1 clock */ /* enable timer1 clock */
rcu_periph_clock_enable(RCU_TIMER1); rcu_periph_clock_enable(RCU_TIMER1);
rcu_periph_clock_enable(RCU_TIMER2); rcu_periph_clock_enable(RCU_TIMER2);
timer_oc_parameter_struct timer_ocintpara; timer_oc_parameter_struct timer_ocintpara;
timer_parameter_struct timer_initpara; timer_parameter_struct timer_initpara;
{ {
//deinit to reset the timer // deinit to reset the timer
timer_deinit(TIMER1); timer_deinit(TIMER1);
/* initialize TIMER init parameter struct */ /* initialize TIMER init parameter struct */
timer_struct_para_init(&timer_initpara); timer_struct_para_init(&timer_initpara);
/* TIMER1 configuration */ /* TIMER1 configuration */
timer_initpara.prescaler = 24000; timer_initpara.prescaler = 24000;
timer_initpara.alignedmode = TIMER_COUNTER_EDGE; timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
timer_initpara.counterdirection = TIMER_COUNTER_UP; timer_initpara.counterdirection = TIMER_COUNTER_UP;
timer_initpara.period = powerPWM + tempMeasureTicks; timer_initpara.period = powerPWM + tempMeasureTicks;
timer_initpara.clockdivision = TIMER_CKDIV_DIV4; timer_initpara.clockdivision = TIMER_CKDIV_DIV4;
timer_initpara.repetitioncounter = 0; timer_initpara.repetitioncounter = 0;
timer_init(TIMER1, &timer_initpara); timer_init(TIMER1, &timer_initpara);
/* CH0 configured to implement the PWM irq's for the output control*/ /* CH0 configured to implement the PWM irq's for the output control*/
timer_channel_output_struct_para_init(&timer_ocintpara); timer_channel_output_struct_para_init(&timer_ocintpara);
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH; timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_ocintpara.outputstate = TIMER_CCX_ENABLE; timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara); timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0, powerPWM + holdoffTicks); timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0,
timer_channel_output_mode_config(TIMER1, TIMER_CH_0, powerPWM + holdoffTicks);
TIMER_OC_MODE_PWM1); timer_channel_output_mode_config(TIMER1, TIMER_CH_0, TIMER_OC_MODE_PWM1);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_0, timer_channel_output_shadow_config(TIMER1, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE); TIMER_OC_SHADOW_DISABLE);
/* CH1 used for irq */ /* CH1 used for irq */
timer_channel_output_struct_para_init(&timer_ocintpara); timer_channel_output_struct_para_init(&timer_ocintpara);
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH; timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_ocintpara.outputstate = TIMER_CCX_ENABLE; timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara); timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0); timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0);
timer_channel_output_mode_config(TIMER1, TIMER_CH_1, timer_channel_output_mode_config(TIMER1, TIMER_CH_1, TIMER_OC_MODE_PWM0);
TIMER_OC_MODE_PWM0); timer_channel_output_shadow_config(TIMER1, TIMER_CH_1,
timer_channel_output_shadow_config(TIMER1, TIMER_CH_1, TIMER_OC_SHADOW_DISABLE);
TIMER_OC_SHADOW_DISABLE); // IRQ
//IRQ timer_interrupt_enable(TIMER1, TIMER_INT_UP);
timer_interrupt_enable(TIMER1, TIMER_INT_UP); timer_interrupt_enable(TIMER1, TIMER_INT_CH1);
timer_interrupt_enable(TIMER1, TIMER_INT_CH1); }
} eclic_irq_enable(TIMER1_IRQn, 2, 5);
// Setup timer 2 to control the output signal
{
timer_deinit(TIMER2);
/* initialize TIMER init parameter struct */
timer_struct_para_init(&timer_initpara);
/* TIMER1 configuration */
timer_initpara.prescaler = 200;
timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
timer_initpara.counterdirection = TIMER_COUNTER_UP;
timer_initpara.period = 100;
timer_initpara.clockdivision = TIMER_CKDIV_DIV4;
timer_initpara.repetitioncounter = 0;
timer_init(TIMER2, &timer_initpara);
eclic_irq_enable(TIMER1_IRQn, 2, 5); /* CH0 configuration in PWM mode0 */
//Setup timer 2 to control the output signal timer_channel_output_struct_para_init(&timer_ocintpara);
{ timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_deinit(TIMER2); timer_ocintpara.outputnstate = TIMER_CCXN_DISABLE;
/* initialize TIMER init parameter struct */ timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_struct_para_init(&timer_initpara); timer_ocintpara.ocnpolarity = TIMER_OCN_POLARITY_HIGH;
/* TIMER1 configuration */ timer_ocintpara.ocidlestate = TIMER_OC_IDLE_STATE_LOW;
timer_initpara.prescaler = 200; timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
timer_initpara.alignedmode = TIMER_COUNTER_EDGE; timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara);
timer_initpara.counterdirection = TIMER_COUNTER_UP; timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 50);
timer_initpara.period = 100; timer_channel_output_mode_config(TIMER2, TIMER_CH_0, TIMER_OC_MODE_PWM0);
timer_initpara.clockdivision = TIMER_CKDIV_DIV4; timer_channel_output_shadow_config(TIMER2, TIMER_CH_0,
timer_initpara.repetitioncounter = 0; TIMER_OC_SHADOW_DISABLE);
timer_init(TIMER2, &timer_initpara); timer_auto_reload_shadow_enable(TIMER2);
timer_enable(TIMER2);
/* CH0 configuration in PWM mode0 */ }
timer_channel_output_struct_para_init(&timer_ocintpara);
timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_ocintpara.outputnstate = TIMER_CCXN_DISABLE;
timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
timer_ocintpara.ocnpolarity = TIMER_OCN_POLARITY_HIGH;
timer_ocintpara.ocidlestate = TIMER_OC_IDLE_STATE_LOW;
timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 50);
timer_channel_output_mode_config(TIMER2, TIMER_CH_0,
TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER2, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE);
timer_auto_reload_shadow_enable(TIMER2);
timer_enable(TIMER2);
}
} }
void setup_iwdg() { void setup_iwdg() {
//TODO // TODO
} }
void setupFUSBIRQ() { void setupFUSBIRQ() {
//Setup IRQ for USB-PD // Setup IRQ for USB-PD
gpio_init(FUSB302_IRQ_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_2MHZ, FUSB302_IRQ_Pin); gpio_init(FUSB302_IRQ_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_2MHZ,
eclic_irq_enable(EXTI5_9_IRQn, 1, 1); FUSB302_IRQ_Pin);
/* connect key EXTI line to key GPIO pin */ eclic_irq_enable(EXTI5_9_IRQn, 1, 1);
gpio_exti_source_select(GPIO_PORT_SOURCE_GPIOB, GPIO_PIN_SOURCE_5); /* connect key EXTI line to key GPIO pin */
gpio_exti_source_select(GPIO_PORT_SOURCE_GPIOB, GPIO_PIN_SOURCE_5);
/* configure key EXTI line */ /* configure key EXTI line */
exti_init(EXTI_5, EXTI_INTERRUPT, EXTI_TRIG_FALLING); exti_init(EXTI_5, EXTI_INTERRUPT, EXTI_TRIG_FALLING);
exti_interrupt_flag_clear(EXTI_5); exti_interrupt_flag_clear(EXTI_5);
} }