1
0
forked from me/IronOS
This commit is contained in:
Ben V. Brown
2020-11-01 12:27:46 +11:00
parent 7c5c689d44
commit 1b579febcd
3 changed files with 802 additions and 788 deletions

View File

@@ -11,19 +11,19 @@
#include <IRQ.h> #include <IRQ.h>
const uint16_t powerPWM = 255; const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 13; // delay of 7 ms const uint8_t holdoffTicks = 25; // delay of 7 ms
const uint8_t tempMeasureTicks = 17; const uint8_t tempMeasureTicks = 25;
uint16_t totalPWM; //htim2.Init.Period, the full PWM cycle uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
//2 second filter (ADC is PID_TIM_HZ Hz) // 2 second filter (ADC is PID_TIM_HZ Hz)
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 }; history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() { void resetWatchdog() {
//TODO // TODO
} }
uint16_t getTipInstantTemperature() { uint16_t getTipInstantTemperature() {
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits volatile uint16_t sum = 0; // 12 bit readings * 8*2 -> 16 bits
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
sum += adc_inserted_data_read(ADC0, i); sum += adc_inserted_data_read(ADC0, i);
@@ -91,22 +91,24 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
void unstick_I2C() { void unstick_I2C() {
/* configure SDA/SCL for GPIO */ /* configure SDA/SCL for GPIO */
GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin; GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ,
asm ("nop"); SDA_Pin | SCL_Pin);
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm("nop");
GPIO_BOP(GPIOB) |= SCL_Pin; GPIO_BOP(GPIOB) |= SCL_Pin;
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
asm ("nop"); asm("nop");
GPIO_BOP(GPIOB) |= SDA_Pin; GPIO_BOP(GPIOB) |= SDA_Pin;
/* connect PB6 to I2C0_SCL */ /* connect PB6 to I2C0_SCL */
/* connect PB7 to I2C0_SDA */ /* connect PB7 to I2C0_SDA */
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ,
SDA_Pin | SCL_Pin);
} }
uint8_t getButtonA() { uint8_t getButtonA() {
@@ -122,8 +124,4 @@ void reboot() {
} }
} }
void delay_ms(uint16_t count) { void delay_ms(uint16_t count) { delay_1ms(count); }
delay_1ms(count);
}

View File

@@ -12,7 +12,7 @@ SemaphoreHandle_t FRToSI2C::I2CSemaphore = nullptr;
StaticSemaphore_t FRToSI2C::xSemaphoreBuffer; StaticSemaphore_t FRToSI2C::xSemaphoreBuffer;
#define I2C_TIME_OUT (uint16_t)(5000) #define I2C_TIME_OUT (uint16_t)(5000)
void FRToSI2C::CpltCallback() { void FRToSI2C::CpltCallback() {
//TODO // TODO
} }
bool FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) { bool FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) {
@@ -25,7 +25,8 @@ uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) {
return temp; return temp;
} }
bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_buffer, uint16_t number_of_byte) { bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock()) if (!lock())
return false; return false;
i2c_interrupt_disable(I2C0, I2C_INT_ERR); i2c_interrupt_disable(I2C0, I2C_INT_ERR);
@@ -45,7 +46,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
if (tries > 64) { if (tries > 64) {
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
unlock(); unlock();
@@ -60,7 +61,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
/* enable acknowledge */ /* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE); i2c_ack_config(I2C0, I2C_ACK_ENABLE);
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -81,7 +83,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -101,16 +104,17 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
break; break;
case I2C_CLEAR_ADDRESS_FLAG: case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */ /* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
//Address NACK'd // Address NACK'd
unlock(); unlock();
return false; return false;
} }
@@ -122,10 +126,10 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
} else { } else {
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
//Address NACK'd // Address NACK'd
unlock(); unlock();
return false; return false;
} }
@@ -133,11 +137,12 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
case I2C_TRANSMIT_DATA: case I2C_TRANSMIT_DATA:
if (0 == in_rx_cycle) { if (0 == in_rx_cycle) {
/* wait until the transmit data buffer is empty */ /* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
//Write out the 8 byte address // Write out the 8 byte address
i2c_data_transmit(I2C0, read_address); i2c_data_transmit(I2C0, read_address);
timeout = 0; timeout = 0;
} else { } else {
@@ -146,7 +151,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
in_rx_cycle = 0; in_rx_cycle = 0;
} }
/* wait until BTC bit is set */ /* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -163,7 +169,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
if (number_of_byte < 2) { if (number_of_byte < 2) {
/* disable acknowledge */ /* disable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_DISABLE); i2c_ack_config(I2C0, I2C_ACK_DISABLE);
/* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register (I2C_STAT0 has already been read) */ /* clear ADDSEND register by reading I2C_STAT0 then I2C_STAT1 register
* (I2C_STAT0 has already been read) */
i2c_flag_get(I2C0, I2C_FLAG_ADDSEND); i2c_flag_get(I2C0, I2C_FLAG_ADDSEND);
/* send a stop condition to I2C bus*/ /* send a stop condition to I2C bus*/
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
@@ -178,11 +185,11 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
} else { /* more than one byte master reception procedure (DMA) */ } else { /* more than one byte master reception procedure (DMA) */
dma_deinit(DMA0, DMA_CH6); dma_deinit(DMA0, DMA_CH6);
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY; dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_addr = (uint32_t) p_buffer; dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT; dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte; dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0); dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT; dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH; dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
@@ -206,7 +213,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
break; break;
case I2C_STOP: case I2C_STOP:
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -231,7 +238,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address, uint8_t *p_b
return true; return true;
} }
bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_buffer, uint16_t number_of_byte) { bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
uint8_t *p_buffer, uint16_t number_of_byte) {
if (!lock()) if (!lock())
return false; return false;
@@ -248,7 +256,7 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
switch (state) { switch (state) {
case I2C_START: case I2C_START:
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -263,7 +271,8 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -279,16 +288,17 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
break; break;
case I2C_CLEAR_ADDRESS_FLAG: case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */ /* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
//Address NACK'd // Address NACK'd
unlock(); unlock();
return false; return false;
} }
@@ -298,10 +308,10 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND); i2c_flag_clear(I2C0, I2C_FLAG_ADDSEND);
state = I2C_TRANSMIT_DATA; state = I2C_TRANSMIT_DATA;
} else { } else {
//Dont retry as this means a NAK // Dont retry as this means a NAK
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
unlock(); unlock();
@@ -310,11 +320,12 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
break; break;
case I2C_TRANSMIT_DATA: case I2C_TRANSMIT_DATA:
/* wait until the transmit data buffer is empty */ /* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
/* send the EEPROM's internal address to write to : only one byte address */ /* send the EEPROM's internal address to write to : only one byte
* address */
i2c_data_transmit(I2C0, MemAddress); i2c_data_transmit(I2C0, MemAddress);
timeout = 0; timeout = 0;
} else { } else {
@@ -327,11 +338,11 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
; ;
dma_deinit(DMA0, DMA_CH5); dma_deinit(DMA0, DMA_CH5);
dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL; dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init_struct.memory_addr = (uint32_t) p_buffer; dma_init_struct.memory_addr = (uint32_t)p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT; dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte; dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0); dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT; dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH; dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
@@ -353,7 +364,7 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *p_bu
/* send a stop condition to I2C bus */ /* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -386,9 +397,7 @@ bool FRToSI2C::probe(uint16_t DevAddress) {
return Mem_Read(DevAddress, 0x00, temp, sizeof(temp)); return Mem_Read(DevAddress, 0x00, temp, sizeof(temp));
} }
void FRToSI2C::I2C_Unstick() { void FRToSI2C::I2C_Unstick() { unstick_I2C(); }
unstick_I2C();
}
bool FRToSI2C::lock() { bool FRToSI2C::lock() {
if (I2CSemaphore == nullptr) { if (I2CSemaphore == nullptr) {
@@ -397,13 +406,14 @@ bool FRToSI2C::lock() {
return xSemaphoreTake(I2CSemaphore, 1000) == pdTRUE; return xSemaphoreTake(I2CSemaphore, 1000) == pdTRUE;
} }
void FRToSI2C::unlock() { void FRToSI2C::unlock() { xSemaphoreGive(I2CSemaphore); }
xSemaphoreGive(I2CSemaphore);
}
bool FRToSI2C::writeRegistersBulk(const uint8_t address, const I2C_REG *registers, const uint8_t registersLength) { bool FRToSI2C::writeRegistersBulk(const uint8_t address,
const I2C_REG *registers,
const uint8_t registersLength) {
for (int index = 0; index < registersLength; index++) { for (int index = 0; index < registersLength; index++) {
if (!I2C_RegisterWrite(address, registers[index].reg, registers[index].val)) { if (!I2C_RegisterWrite(address, registers[index].reg,
registers[index].val)) {
return false; return false;
} }
if (registers[index].pause_ms) { if (registers[index].pause_ms) {
@@ -414,14 +424,13 @@ bool FRToSI2C::writeRegistersBulk(const uint8_t address, const I2C_REG *register
} }
bool FRToSI2C::wakePart(uint16_t DevAddress) { bool FRToSI2C::wakePart(uint16_t DevAddress) {
//wakepart is a special case where only the device address is sent // wakepart is a special case where only the device address is sent
if (!lock()) if (!lock())
return false; return false;
i2c_interrupt_disable(I2C0, I2C_INT_ERR); i2c_interrupt_disable(I2C0, I2C_INT_ERR);
i2c_interrupt_disable(I2C0, I2C_INT_EV); i2c_interrupt_disable(I2C0, I2C_INT_EV);
i2c_interrupt_disable(I2C0, I2C_INT_BUF); i2c_interrupt_disable(I2C0, I2C_INT_BUF);
dma_parameter_struct dma_init_struct;
uint8_t state = I2C_START; uint8_t state = I2C_START;
uint16_t timeout = 0; uint16_t timeout = 0;
@@ -431,7 +440,7 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
switch (state) { switch (state) {
case I2C_START: case I2C_START:
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT )) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -446,7 +455,8 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -462,16 +472,17 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
break; break;
case I2C_CLEAR_ADDRESS_FLAG: case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */ /* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && (timeout < I2C_TIME_OUT )) { while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) &&
(timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
//Address NACK'd // Address NACK'd
unlock(); unlock();
return false; return false;
} }
@@ -481,10 +492,10 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
timeout = 0; timeout = 0;
state = I2C_STOP; state = I2C_STOP;
} else { } else {
//Dont retry as this means a NAK // Dont retry as this means a NAK
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
unlock(); unlock();
@@ -496,7 +507,7 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
/* send a stop condition to I2C bus */ /* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {

View File

@@ -8,11 +8,13 @@
#include "BSP.h" #include "BSP.h"
#include "Pins.h" #include "Pins.h"
#include "gd32vf103.h" #include "gd32vf103.h"
#include <string.h>
#include "systick.h" #include "systick.h"
#include <string.h>
#define ADC_NORM_CHANNELS 2 #define ADC_NORM_CHANNELS 2
#define ADC_NORM_SAMPLES 32 #define ADC_NORM_SAMPLES 32
uint16_t ADCReadings[ADC_NORM_SAMPLES * ADC_NORM_CHANNELS]; // room for 32 lots of the pair of readings uint16_t
ADCReadings[ADC_NORM_SAMPLES *
ADC_NORM_CHANNELS]; // room for 32 lots of the pair of readings
// Functions // Functions
void setup_gpio(); void setup_gpio();
@@ -23,18 +25,17 @@ void setup_timers();
void setup_iwdg(); void setup_iwdg();
void hardware_init() { void hardware_init() {
// GPIO
//GPIO
setup_gpio(); setup_gpio();
//DMA // DMA
setup_dma(); setup_dma();
//I2C // I2C
setup_i2c(); setup_i2c();
//ADC's // ADC's
setup_adc(); setup_adc();
//Timers // Timers
setup_timers(); setup_timers();
//Watchdog // Watchdog
setup_iwdg(); setup_iwdg();
/* enable TIMER1 - PWM control timing*/ /* enable TIMER1 - PWM control timing*/
@@ -56,33 +57,32 @@ void setup_gpio() {
rcu_periph_clock_enable(RCU_GPIOA); rcu_periph_clock_enable(RCU_GPIOA);
/* enable GPIOB clock */ /* enable GPIOB clock */
rcu_periph_clock_enable(RCU_GPIOB); rcu_periph_clock_enable(RCU_GPIOB);
//Alternate function clock enable // Alternate function clock enable
rcu_periph_clock_enable(RCU_AF); rcu_periph_clock_enable(RCU_AF);
//Buttons as input // Buttons as input
gpio_init(KEY_A_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_A_Pin); gpio_init(KEY_A_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_A_Pin);
gpio_init(KEY_B_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_B_Pin); gpio_init(KEY_B_GPIO_Port, GPIO_MODE_IPD, GPIO_OSPEED_2MHZ, KEY_B_Pin);
//OLED reset as output // OLED reset as output
gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ,
OLED_RESET_Pin); OLED_RESET_Pin);
//I2C as AF Open Drain // I2C as AF Open Drain
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ,
//PWM output as AF Push Pull SDA_Pin | SCL_Pin);
gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, // PWM output as AF Push Pull
PWM_Out_Pin); gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, PWM_Out_Pin);
//Analog Inputs ... as analog inputs // Analog Inputs ... as analog inputs
gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ,
TMP36_INPUT_Pin); TMP36_INPUT_Pin);
gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, TIP_TEMP_Pin);
TIP_TEMP_Pin);
gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, VIN_Pin); gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, VIN_Pin);
//Remap PB4 away from JTAG NJRST // Remap PB4 away from JTAG NJRST
gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE); gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE);
//TODO - rest of pins as floating // TODO - rest of pins as floating
} }
void setup_dma() { void setup_dma() {
//Setup DMA for ADC0 // Setup DMA for ADC0
{ {
/* enable DMA0 clock */ /* enable DMA0 clock */
rcu_periph_clock_enable(RCU_DMA0); rcu_periph_clock_enable(RCU_DMA0);
@@ -94,9 +94,9 @@ void setup_dma() {
dma_deinit(DMA0, DMA_CH0); dma_deinit(DMA0, DMA_CH0);
/* initialize DMA data mode */ /* initialize DMA data mode */
dma_data_parameter.periph_addr = (uint32_t) (&ADC_RDATA(ADC0)); dma_data_parameter.periph_addr = (uint32_t)(&ADC_RDATA(ADC0));
dma_data_parameter.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_data_parameter.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_data_parameter.memory_addr = (uint32_t) (ADCReadings); dma_data_parameter.memory_addr = (uint32_t)(ADCReadings);
dma_data_parameter.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_data_parameter.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_data_parameter.periph_width = DMA_PERIPHERAL_WIDTH_16BIT; dma_data_parameter.periph_width = DMA_PERIPHERAL_WIDTH_16BIT;
dma_data_parameter.memory_width = DMA_MEMORY_WIDTH_16BIT; dma_data_parameter.memory_width = DMA_MEMORY_WIDTH_16BIT;
@@ -114,7 +114,7 @@ void setup_dma() {
void setup_i2c() { void setup_i2c() {
/* enable I2C0 clock */ /* enable I2C0 clock */
rcu_periph_clock_enable(RCU_I2C0); rcu_periph_clock_enable(RCU_I2C0);
//Setup I20 at 400kHz // Setup I20 at 400kHz
i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_16_9); i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_16_9);
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x00); i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x00);
i2c_enable(I2C0); i2c_enable(I2C0);
@@ -125,9 +125,9 @@ void setup_i2c() {
} }
void setup_adc() { void setup_adc() {
//Setup ADC in normal + injected mode // Setup ADC in normal + injected mode
//Want it to sample handle temp and input voltage normally via dma // Want it to sample handle temp and input voltage normally via dma
//Then injected trigger to sample tip temp // Then injected trigger to sample tip temp
memset(ADCReadings, 0, sizeof(ADCReadings)); memset(ADCReadings, 0, sizeof(ADCReadings));
rcu_periph_clock_enable(RCU_ADC0); rcu_periph_clock_enable(RCU_ADC0);
rcu_periph_clock_enable(RCU_ADC1); rcu_periph_clock_enable(RCU_ADC1);
@@ -135,36 +135,46 @@ void setup_adc() {
adc_deinit(ADC1); adc_deinit(ADC1);
/* config ADC clock */ /* config ADC clock */
rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16); rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16);
//Run in normal parallel + inserted parallel // Run in normal parallel + inserted parallel
adc_mode_config(ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL); adc_mode_config(ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL);
adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE); adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE); adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE); adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_SCAN_MODE, ENABLE); adc_special_function_config(ADC1, ADC_SCAN_MODE, ENABLE);
//Align right // Align right
adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT); adc_data_alignment_config(ADC0, ADC_DATAALIGN_RIGHT);
adc_data_alignment_config(ADC1, ADC_DATAALIGN_RIGHT); adc_data_alignment_config(ADC1, ADC_DATAALIGN_RIGHT);
//Setup reading 2 channels on regular mode (Handle Temp + dc in) // Setup reading 2 channels on regular mode (Handle Temp + dc in)
adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS); adc_channel_length_config(ADC0, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS); adc_channel_length_config(ADC1, ADC_REGULAR_CHANNEL, ADC_NORM_CHANNELS);
//Setup the two channels // Setup the two channels
adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL, ADC_SAMPLETIME_71POINT5); //temp sensor adc_regular_channel_config(ADC0, 0, TMP36_ADC0_CHANNEL,
adc_regular_channel_config(ADC1, 0, TMP36_ADC1_CHANNEL, ADC_SAMPLETIME_71POINT5); //temp sensor ADC_SAMPLETIME_71POINT5); // temp sensor
adc_regular_channel_config(ADC0, 1, VIN_ADC0_CHANNEL, ADC_SAMPLETIME_71POINT5); //DC Input voltage adc_regular_channel_config(ADC1, 0, TMP36_ADC1_CHANNEL,
adc_regular_channel_config(ADC1, 1, VIN_ADC1_CHANNEL, ADC_SAMPLETIME_71POINT5); //DC Input voltage ADC_SAMPLETIME_71POINT5); // temp sensor
//Setup that we want all 4 inserted readings to be the tip temp adc_regular_channel_config(ADC0, 1, VIN_ADC0_CHANNEL,
ADC_SAMPLETIME_71POINT5); // DC Input voltage
adc_regular_channel_config(ADC1, 1, VIN_ADC1_CHANNEL,
ADC_SAMPLETIME_71POINT5); // DC Input voltage
// Setup that we want all 4 inserted readings to be the tip temp
adc_channel_length_config(ADC0, ADC_INSERTED_CHANNEL, 4); adc_channel_length_config(ADC0, ADC_INSERTED_CHANNEL, 4);
adc_channel_length_config(ADC1, ADC_INSERTED_CHANNEL, 4); adc_channel_length_config(ADC1, ADC_INSERTED_CHANNEL, 4);
for (int rank = 0; rank < 4; rank++) { for (int rank = 0; rank < 4; rank++) {
adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL, ADC_SAMPLETIME_1POINT5); adc_inserted_channel_config(ADC0, rank, TIP_TEMP_ADC0_CHANNEL,
adc_inserted_channel_config(ADC1, rank, TIP_TEMP_ADC1_CHANNEL, ADC_SAMPLETIME_1POINT5); ADC_SAMPLETIME_1POINT5);
adc_inserted_channel_config(ADC1, rank, TIP_TEMP_ADC1_CHANNEL,
ADC_SAMPLETIME_1POINT5);
} }
//Setup timer 1 channel 0 to trigger injected measurements // Setup timer 1 channel 0 to trigger injected measurements
adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0); adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL,
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL, ADC0_1_EXTTRIG_INSERTED_T1_CH0); ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC1, ADC_INSERTED_CHANNEL,
ADC0_1_EXTTRIG_INSERTED_T1_CH0);
adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE); adc_external_trigger_source_config(ADC0, ADC_REGULAR_CHANNEL,
adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL, ADC0_1_EXTTRIG_REGULAR_NONE); ADC0_1_EXTTRIG_REGULAR_NONE);
adc_external_trigger_source_config(ADC1, ADC_REGULAR_CHANNEL,
ADC0_1_EXTTRIG_REGULAR_NONE);
// Enable triggers for the ADC // Enable triggers for the ADC
adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE); adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE);
adc_external_trigger_config(ADC1, ADC_INSERTED_CHANNEL, ENABLE); adc_external_trigger_config(ADC1, ADC_INSERTED_CHANNEL, ENABLE);
@@ -179,14 +189,11 @@ void setup_adc() {
adc_oversample_mode_disable(ADC0); adc_oversample_mode_disable(ADC0);
adc_oversample_mode_disable(ADC1); adc_oversample_mode_disable(ADC1);
adc_enable(ADC0); adc_enable(ADC0);
delay_1ms(1);
adc_calibration_enable(ADC0); adc_calibration_enable(ADC0);
adc_enable(ADC1); adc_enable(ADC1);
delay_1ms(1);
adc_calibration_enable(ADC1); adc_calibration_enable(ADC1);
delay_1ms(1);
adc_dma_mode_enable(ADC0); adc_dma_mode_enable(ADC0);
//Enable interrupt on end of injected readings // Enable interrupt on end of injected readings
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOC); adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOC);
adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOIC); adc_interrupt_flag_clear(ADC0, ADC_INT_FLAG_EOIC);
adc_interrupt_enable(ADC0, ADC_INT_EOIC); adc_interrupt_enable(ADC0, ADC_INT_EOIC);
@@ -196,14 +203,14 @@ void setup_adc() {
adc_tempsensor_vrefint_disable(); adc_tempsensor_vrefint_disable();
} }
void setup_timers() { void setup_timers() {
//Setup timer 1 to run the actual PWM level // Setup timer 1 to run the actual PWM level
/* enable timer1 clock */ /* enable timer1 clock */
rcu_periph_clock_enable(RCU_TIMER1); rcu_periph_clock_enable(RCU_TIMER1);
rcu_periph_clock_enable(RCU_TIMER2); rcu_periph_clock_enable(RCU_TIMER2);
timer_oc_parameter_struct timer_ocintpara; timer_oc_parameter_struct timer_ocintpara;
timer_parameter_struct timer_initpara; timer_parameter_struct timer_initpara;
{ {
//deinit to reset the timer // deinit to reset the timer
timer_deinit(TIMER1); timer_deinit(TIMER1);
/* initialize TIMER init parameter struct */ /* initialize TIMER init parameter struct */
timer_struct_para_init(&timer_initpara); timer_struct_para_init(&timer_initpara);
@@ -222,9 +229,9 @@ void setup_timers() {
timer_ocintpara.outputstate = TIMER_CCX_ENABLE; timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara); timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0, powerPWM + holdoffTicks); timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0,
timer_channel_output_mode_config(TIMER1, TIMER_CH_0, powerPWM + holdoffTicks);
TIMER_OC_MODE_PWM1); timer_channel_output_mode_config(TIMER1, TIMER_CH_0, TIMER_OC_MODE_PWM1);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_0, timer_channel_output_shadow_config(TIMER1, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE); TIMER_OC_SHADOW_DISABLE);
/* CH1 used for irq */ /* CH1 used for irq */
@@ -234,18 +241,16 @@ void setup_timers() {
timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara); timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0); timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0);
timer_channel_output_mode_config(TIMER1, TIMER_CH_1, timer_channel_output_mode_config(TIMER1, TIMER_CH_1, TIMER_OC_MODE_PWM0);
TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_1, timer_channel_output_shadow_config(TIMER1, TIMER_CH_1,
TIMER_OC_SHADOW_DISABLE); TIMER_OC_SHADOW_DISABLE);
//IRQ // IRQ
timer_interrupt_enable(TIMER1, TIMER_INT_UP); timer_interrupt_enable(TIMER1, TIMER_INT_UP);
timer_interrupt_enable(TIMER1, TIMER_INT_CH1); timer_interrupt_enable(TIMER1, TIMER_INT_CH1);
} }
eclic_irq_enable(TIMER1_IRQn, 2, 5); eclic_irq_enable(TIMER1_IRQn, 2, 5);
//Setup timer 2 to control the output signal // Setup timer 2 to control the output signal
{ {
timer_deinit(TIMER2); timer_deinit(TIMER2);
/* initialize TIMER init parameter struct */ /* initialize TIMER init parameter struct */
@@ -269,8 +274,7 @@ void setup_timers() {
timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW; timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara); timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 50); timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 50);
timer_channel_output_mode_config(TIMER2, TIMER_CH_0, timer_channel_output_mode_config(TIMER2, TIMER_CH_0, TIMER_OC_MODE_PWM0);
TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER2, TIMER_CH_0, timer_channel_output_shadow_config(TIMER2, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE); TIMER_OC_SHADOW_DISABLE);
timer_auto_reload_shadow_enable(TIMER2); timer_auto_reload_shadow_enable(TIMER2);
@@ -278,12 +282,13 @@ void setup_timers() {
} }
} }
void setup_iwdg() { void setup_iwdg() {
//TODO // TODO
} }
void setupFUSBIRQ() { void setupFUSBIRQ() {
//Setup IRQ for USB-PD // Setup IRQ for USB-PD
gpio_init(FUSB302_IRQ_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_2MHZ, FUSB302_IRQ_Pin); gpio_init(FUSB302_IRQ_GPIO_Port, GPIO_MODE_IPU, GPIO_OSPEED_2MHZ,
FUSB302_IRQ_Pin);
eclic_irq_enable(EXTI5_9_IRQn, 1, 1); eclic_irq_enable(EXTI5_9_IRQn, 1, 1);
/* connect key EXTI line to key GPIO pin */ /* connect key EXTI line to key GPIO pin */
gpio_exti_source_select(GPIO_PORT_SOURCE_GPIOB, GPIO_PIN_SOURCE_5); gpio_exti_source_select(GPIO_PORT_SOURCE_GPIOB, GPIO_PIN_SOURCE_5);