forked from me/IronOS-Meta
Scratching out an idea for an animated boot
This commit is contained in:
@@ -2,6 +2,7 @@
|
|||||||
# coding=utf-8
|
# coding=utf-8
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
import argparse
|
import argparse
|
||||||
|
import copy
|
||||||
import os, sys
|
import os, sys
|
||||||
|
|
||||||
from output_hex import HexOutput
|
from output_hex import HexOutput
|
||||||
@@ -40,6 +41,137 @@ class PinecilSettings:
|
|||||||
DFU_PINECIL_PRODUCT = 0x0189
|
DFU_PINECIL_PRODUCT = 0x0189
|
||||||
|
|
||||||
|
|
||||||
|
def still_image_to_bytes(
|
||||||
|
image: Image, negative: bool, dither: bool, threshold: int, preview_filename
|
||||||
|
):
|
||||||
|
# convert to luminance
|
||||||
|
# do even if already black/white because PIL can't invert 1-bit so
|
||||||
|
# can't just pass thru in case --negative flag
|
||||||
|
# also resizing works better in luminance than black/white
|
||||||
|
# also no information loss converting black/white to grayscale
|
||||||
|
if image.mode != "L":
|
||||||
|
image = image.convert("L")
|
||||||
|
# Resize to lcd size using bicubic sampling
|
||||||
|
if image.size != (LCD_WIDTH, LCD_HEIGHT):
|
||||||
|
image = image.resize((LCD_WIDTH, LCD_HEIGHT), Image.BICUBIC)
|
||||||
|
|
||||||
|
if negative:
|
||||||
|
image = ImageOps.invert(image)
|
||||||
|
threshold = 255 - threshold # have to invert threshold as well
|
||||||
|
|
||||||
|
if dither:
|
||||||
|
image = image.convert("1")
|
||||||
|
else:
|
||||||
|
image = image.point(lambda pixel: 0 if pixel < threshold else 1, "1")
|
||||||
|
|
||||||
|
if preview_filename:
|
||||||
|
image.save(preview_filename)
|
||||||
|
# pad to this size (also will be repeated in output Intel hex file)
|
||||||
|
data = [0] * LCD_PAGE_SIZE
|
||||||
|
|
||||||
|
# magic/required header in endian-reverse byte order
|
||||||
|
data[0] = 0x55
|
||||||
|
data[1] = 0xAA
|
||||||
|
data[2] = 0x0D
|
||||||
|
data[3] = 0xF0
|
||||||
|
|
||||||
|
# convert to LCD format
|
||||||
|
for ndx in range(LCD_WIDTH * 16 // 8):
|
||||||
|
bottom_half_offset = 0 if ndx < LCD_WIDTH else 8
|
||||||
|
byte = 0
|
||||||
|
for y in range(8):
|
||||||
|
if image.getpixel((ndx % LCD_WIDTH, y + bottom_half_offset)):
|
||||||
|
byte |= 1 << y
|
||||||
|
# store in endian-reversed byte order
|
||||||
|
data[4 + ndx + (1 if ndx % 2 == 0 else -1)] = byte
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
def animated_image_to_bytes(
|
||||||
|
imageIn: Image, negative: bool, dither: bool, threshold: int
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Convert the gif into our best effort startup animation
|
||||||
|
We are delta-encoding on a byte by byte basis
|
||||||
|
|
||||||
|
So we convert every frame into its binary representation
|
||||||
|
The compare these to figure out the encoding
|
||||||
|
|
||||||
|
The naïve implementation would save the frame 5 times
|
||||||
|
But if we delta encode; we can make far more frames of animation for _some_ types of animations.
|
||||||
|
This means reveals are better than moves.
|
||||||
|
Data is stored in the byte blobs, so if you change one pixel in upper or lower row, changing another pixel in that column on that row is "free"
|
||||||
|
"""
|
||||||
|
frameData = []
|
||||||
|
frameTimings = []
|
||||||
|
for framenum in range(0, imageIn.n_frames):
|
||||||
|
print(f"Frame {framenum}")
|
||||||
|
imageIn.seek(framenum)
|
||||||
|
image = imageIn
|
||||||
|
if image.mode != "L":
|
||||||
|
image = image.convert("L")
|
||||||
|
# Resize to lcd size using bicubic sampling
|
||||||
|
if image.size != (LCD_WIDTH, LCD_HEIGHT):
|
||||||
|
image = image.resize((LCD_WIDTH, LCD_HEIGHT), Image.BICUBIC)
|
||||||
|
|
||||||
|
if negative:
|
||||||
|
image = ImageOps.invert(image)
|
||||||
|
threshold = 255 - threshold # have to invert threshold as well
|
||||||
|
|
||||||
|
if dither:
|
||||||
|
image = image.convert("1")
|
||||||
|
else:
|
||||||
|
image = image.point(lambda pixel: 0 if pixel < threshold else 1, "1")
|
||||||
|
|
||||||
|
frameb = [0] * LCD_WIDTH * (LCD_HEIGHT // 8)
|
||||||
|
for ndx in range(LCD_WIDTH * 16 // 8):
|
||||||
|
bottom_half_offset = 0 if ndx < LCD_WIDTH else 8
|
||||||
|
byte = 0
|
||||||
|
for y in range(8):
|
||||||
|
if image.getpixel((ndx % LCD_WIDTH, y + bottom_half_offset)):
|
||||||
|
byte |= 1 << y
|
||||||
|
# store in endian-reversed byte order
|
||||||
|
frameb[ndx] = byte
|
||||||
|
frameData.append(frameb)
|
||||||
|
frameDuration_ms = image.info["duration"]
|
||||||
|
if frameDuration_ms > 255:
|
||||||
|
frameDuration_ms = 255
|
||||||
|
frameTimings.append(frameDuration_ms)
|
||||||
|
print(f"Found {len(frameTimings)} frames")
|
||||||
|
# We have no mangled the image into our frambuffers
|
||||||
|
# Now create the "deltas" for each frame
|
||||||
|
frameDeltas = [[]]
|
||||||
|
for frame in range(1, len(frameData)):
|
||||||
|
damage = []
|
||||||
|
for i in range(0, len(frameData[frame])):
|
||||||
|
if frameData[frame][i] != frameData[frame - 1][i]:
|
||||||
|
damage.append(i)
|
||||||
|
damage.append(frameData[frame][i])
|
||||||
|
frameDeltas.append(damage)
|
||||||
|
print(damage)
|
||||||
|
# Now we can build our output data blob
|
||||||
|
# First we always start with a full first frame; future optimisation to check if we should or not
|
||||||
|
outputData = [0xAA, 0xBB, frameTimings[0]]
|
||||||
|
outputData.extend(frameData[0])
|
||||||
|
# Now we delta encode all following frames
|
||||||
|
|
||||||
|
"""
|
||||||
|
Format for each frame block is:
|
||||||
|
[duration in ms, max of 255][length][ [delta block][delta block][delta block][delta block] ]
|
||||||
|
Where [delta block] is just [index,new value]
|
||||||
|
"""
|
||||||
|
for frame in range(1, len(frameData)):
|
||||||
|
outputData.append(frameTimings[frame])
|
||||||
|
outputData.append(len(frameDeltas[frame]))
|
||||||
|
outputData.extend(frameDeltas[frame])
|
||||||
|
|
||||||
|
if len(outputData) > 1024:
|
||||||
|
raise Exception(
|
||||||
|
f"Too many frames, required too much space. You used {len(outputData)} of 1024 bytes"
|
||||||
|
)
|
||||||
|
return outputData
|
||||||
|
|
||||||
|
|
||||||
def img2hex(
|
def img2hex(
|
||||||
input_filename,
|
input_filename,
|
||||||
preview_filename=None,
|
preview_filename=None,
|
||||||
@@ -69,29 +201,6 @@ def img2hex(
|
|||||||
except BaseException as e:
|
except BaseException as e:
|
||||||
raise IOError('error reading image file "{}": {}'.format(input_filename, e))
|
raise IOError('error reading image file "{}": {}'.format(input_filename, e))
|
||||||
|
|
||||||
# convert to luminance
|
|
||||||
# do even if already black/white because PIL can't invert 1-bit so
|
|
||||||
# can't just pass thru in case --negative flag
|
|
||||||
# also resizing works better in luminance than black/white
|
|
||||||
# also no information loss converting black/white to grayscale
|
|
||||||
if image.mode != "L":
|
|
||||||
image = image.convert("L")
|
|
||||||
# Resize to lcd size using bicubic sampling
|
|
||||||
if image.size != (LCD_WIDTH, LCD_HEIGHT):
|
|
||||||
image = image.resize((LCD_WIDTH, LCD_HEIGHT), Image.BICUBIC)
|
|
||||||
|
|
||||||
if negative:
|
|
||||||
image = ImageOps.invert(image)
|
|
||||||
threshold = 255 - threshold # have to invert threshold as well
|
|
||||||
|
|
||||||
if dither:
|
|
||||||
image = image.convert("1")
|
|
||||||
else:
|
|
||||||
image = image.point(lambda pixel: 0 if pixel < threshold else 1, "1")
|
|
||||||
|
|
||||||
if preview_filename:
|
|
||||||
image.save(preview_filename)
|
|
||||||
|
|
||||||
""" DEBUG
|
""" DEBUG
|
||||||
for row in range(LCD_HEIGHT):
|
for row in range(LCD_HEIGHT):
|
||||||
for column in range(LCD_WIDTH):
|
for column in range(LCD_WIDTH):
|
||||||
@@ -99,25 +208,13 @@ def img2hex(
|
|||||||
else: sys.stderr.write('0')
|
else: sys.stderr.write('0')
|
||||||
sys.stderr.write('\n')
|
sys.stderr.write('\n')
|
||||||
"""
|
"""
|
||||||
|
if getattr(image, "is_animated", False):
|
||||||
|
data = animated_image_to_bytes(image, negative, dither, threshold)
|
||||||
|
else:
|
||||||
|
data = still_image_to_bytes(
|
||||||
|
image, negative, dither, threshold, preview_filename
|
||||||
|
)
|
||||||
|
|
||||||
# pad to this size (also will be repeated in output Intel hex file)
|
|
||||||
data = [0] * LCD_PAGE_SIZE
|
|
||||||
|
|
||||||
# magic/required header in endian-reverse byte order
|
|
||||||
data[0] = 0x55
|
|
||||||
data[1] = 0xAA
|
|
||||||
data[2] = 0x0D
|
|
||||||
data[3] = 0xF0
|
|
||||||
|
|
||||||
# convert to LCD format
|
|
||||||
for ndx in range(LCD_WIDTH * 16 // 8):
|
|
||||||
bottom_half_offset = 0 if ndx < LCD_WIDTH else 8
|
|
||||||
byte = 0
|
|
||||||
for y in range(8):
|
|
||||||
if image.getpixel((ndx % LCD_WIDTH, y + bottom_half_offset)):
|
|
||||||
byte |= 1 << y
|
|
||||||
# store in endian-reversed byte order
|
|
||||||
data[4 + ndx + (1 if ndx % 2 == 0 else -1)] = byte
|
|
||||||
deviceSettings = MiniwareSettings
|
deviceSettings = MiniwareSettings
|
||||||
if isPinecil:
|
if isPinecil:
|
||||||
deviceSettings = PinecilSettings
|
deviceSettings = PinecilSettings
|
||||||
@@ -218,16 +315,12 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
try:
|
img2hex(
|
||||||
img2hex(
|
args.input_filename,
|
||||||
args.input_filename,
|
args.preview,
|
||||||
args.preview,
|
args.threshold,
|
||||||
args.threshold,
|
args.dither,
|
||||||
args.dither,
|
args.negative,
|
||||||
args.negative,
|
output_filename_base=args.output_filename,
|
||||||
output_filename_base=args.output_filename,
|
isPinecil=args.pinecil,
|
||||||
isPinecil=args.pinecil,
|
)
|
||||||
)
|
|
||||||
except BaseException as error:
|
|
||||||
sys.stderr.write("Error converting file: {}\n".format(error))
|
|
||||||
sys.exit(1)
|
|
||||||
|
|||||||
Reference in New Issue
Block a user