Files
IronOS/source/Core/BSP/Magic/BSP.cpp
Ben V. Brown e174dba676 Update BSP.cpp
2022-06-28 09:57:03 +10:00

351 lines
9.5 KiB
C++

// BSP mapping functions
#include "BSP.h"
#include "I2C_Wrapper.hpp"
#include "IRQ.h"
#include "Pins.h"
#include "Setup.h"
#include "TipThermoModel.h"
#include "USBPD.h"
#include "configuration.h"
#include "crc32.h"
#include "history.hpp"
#include "main.hpp"
// These control the period's of time used for the PWM
const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 25; // This is the tick delay
const uint8_t tempMeasureTicks = 25;
uint16_t totalPWM = 255; // Total length of the cycle's ticks
void resetWatchdog() {
//#TODO
}
#ifdef TEMP_NTC
// Lookup table for the NTC
// Stored as ADCReading,Temp in degC
static const int32_t NTCHandleLookup[] = {
// ADC Reading , Temp in C x10
// 64179, -400, //
// 64001, -390, //
// 63813, -380, //
// 63618, -370, //
// 63415, -360, //
// 63204, -350, //
// 62983, -340, //
// 62757, -330, //
// 62518, -320, //
// 62271, -310, //
// 62012, -300, //
// 61748, -290, //
// 61473, -280, //
// 61186, -270, //
// 60891, -260, //
// 60585, -250, //
// 60268, -240, //
// 59941, -230, //
// 59604, -220, //
// 59255, -210, //
58896, -200, //
58526, -190, //
58145, -180, //
57752, -170, //
57349, -160, //
56934, -150, //
56510, -140, //
56073, -130, //
55626, -120, //
55167, -110, //
54699, -100, //
54220, -90, //
53729, -80, //
53229, -70, //
52717, -60, //
52200, -50, //
51667, -40, //
51128, -30, //
50582, -20, //
50025, -10, //
49455, 0, //
48883, 10, //
48302, 20, //
47712, 30, //
47116, 40, //
46510, 50, //
45902, 60, //
45286, 70, //
44666, 80, //
44044, 90, //
43412, 100, //
42783, 110, //
42148, 120, //
41500, 130, //
40860, 140, //
40222, 150, //
39576, 160, //
38935, 170, //
38289, 180, //
37640, 190, //
36989, 200, //
36353, 210, //
35705, 220, //
35060, 230, //
34422, 240, //
33792, 250, //
33160, 260, //
32534, 270, //
31910, 280, //
31291, 290, //
30677, 300, //
30069, 310, //
29466, 320, //
28867, 330, //
28277, 340, //
27693, 350, //
27115, 360, //
26544, 370, //
25981, 380, //
25426, 390, //
24880, 400, //
24339, 410, //
23806, 420, //
23281, 430, //
22767, 440, //
22259, 450, //
// 21761, 460, //
// 21268, 470, //
// 20787, 480, //
// 20313, 490, //
// 19848, 500, //
// 19392, 510, //
// 18945, 520, //
// 18507, 530, //
// 18076, 540, //
// 17655, 550, //
// 17242, 560, //
// 16838, 570, //
// 16442, 580, //
// 16052, 590, //
// 15672, 600, //
};
#endif
uint16_t getHandleTemperature(uint8_t sample) {
int32_t result = getADCHandleTemp(sample);
// Tip is wired up with an NTC thermistor
// 10K NTC balanced with a 10K pulldown
// NTCG163JF103FTDS
#ifdef TEMP_NTC
// vout =
// For now not doing interpolation
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
if (result > NTCHandleLookup[(i * 2) + 0]) {
return NTCHandleLookup[(i * 2) + 1];
}
}
return 45 * 10;
#endif
#ifdef TEMP_TMP36
#warn This is not shipped in production
result -= 10240; // remove 0.5V offset
// 10mV per C
// 204.7 counts per Deg C above 0C
result *= 10;
result /= 205;
if (result < 0) {
result = 0;
}
return result;
#endif
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
uint32_t res = getADCVin(sample);
res *= 4;
res /= divisor;
return res;
}
void unstick_I2C() {
/* configure SDA/SCL for GPIO */
// GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin;
// gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
// for (int i = 0; i < 8; i++) {
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// GPIO_BOP(GPIOB) |= SCL_Pin;
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// asm("nop");
// GPIO_BOP(GPIOB) &= SCL_Pin;
// }
// /* connect PB6 to I2C0_SCL */
// /* connect PB7 to I2C0_SDA */
// gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin);
}
uint8_t getButtonA() {
uint8_t val = gpio_read(KEY_A_Pin);
return val;
}
uint8_t getButtonB() {
uint8_t val = gpio_read(KEY_B_Pin);
return val;
}
void reboot() {
// Spin for watchdog
for (;;) {}
}
void delay_ms(uint16_t count) {
// delay_1ms(count);
BL702_Delay_MS(count);
}
uint32_t __get_IPSR(void) {
return 0; // To shut-up CMSIS
}
bool isTipDisconnected() {
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
uint32_t tipTemp = TipThermoModel::getTipInC();
return tipTemp > tipDisconnectedThres;
}
void setStatusLED(const enum StatusLED state) {
// Dont have one
}
uint8_t lastTipResistance = 85; // default safe
uint32_t lastTipReadinguV = 0;
uint8_t getTipResitanceX10() {
// Return tip resistance in x10 ohms
// We can measure this using the op-amp
return lastTipResistance;
}
void startMeasureTipResistance() {
// We want to calculate lastTipResistance
// If tip is connected, and the tip is cold and the tip is not being heated
// We can use the GPIO to inject a small current into the tip and measure this
// The gpio is 5.1k -> diode -> tip -> gnd
// Source is 3.3V-0.5V
// Which is around 0.54mA this will induce:
// 6 ohm tip -> 3.24mV (Real world ~= 3320)
// 8 ohm tip -> 4.32mV (Real world ~= 4500)
// Which is definitely measureable
// Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips
// These are reported as 60 and 75 respectively
lastTipReadinguV = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0));
gpio_write(TIP_RESISTANCE_SENSE, 1);
}
void FinishMeasureTipResistance() {
gpio_write(TIP_RESISTANCE_SENSE, 0);
// read the tip uV with the current source on
uint32_t newReading = (TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0)));
if (newReading < lastTipReadinguV) {
return;
}
// newReading -= lastTipReadinguV;
// MSG("Tip Delta %lu, %lu %lu \r\n", newReading - lastTipReadinguV, newReading, lastTipReadinguV);
newReading -= lastTipReadinguV;
// As we are only detecting two resistances; we can split the difference for now
uint8_t newRes = 0;
if (newReading > 5000) {
return; // Change nothing as probably disconnected tip
} else if (newReading < 4000) {
newRes = 60;
} else {
newRes = 80;
}
lastTipResistance = newRes;
}
volatile bool tipMeasurementOccuring = false;
volatile uint8_t tipSenseResistancex10Ohms = 0;
void performTipMeasurementStep(bool start) {
static TickType_t lastMeas = 0;
// Inter state that performs the steps to measure the resistor on the tip
// Return 1 if a measurement is ongoing
// We want to perform our startup measurements of the tip resistance until we detect one fitted
// Step 1; if not setup, we turn on pullup and then wait
if (tipMeasurementOccuring == false && (start || tipSenseResistancex10Ohms == 0 || lastMeas == 0)) {
// Block starting if tip removed
if (isTipDisconnected()) {
return;
}
tipMeasurementOccuring = true;
tipSenseResistancex10Ohms = 0;
lastMeas = xTaskGetTickCount();
startMeasureTipResistance();
return;
}
// Wait 100ms for settle time
if ((xTaskGetTickCount() - lastMeas) < (TICKS_100MS)) {
return;
}
lastMeas = xTaskGetTickCount();
// We are sensing the resistance
FinishMeasureTipResistance();
tipMeasurementOccuring = false;
}
uint8_t preStartChecks() {
performTipMeasurementStep(false);
return tipMeasurementOccuring ? 1 : 0;
}
// Return hardware unique ID if possible
uint64_t getDeviceID() {
// uint32_t tmp = 0;
// uint32_t tmp2 = 0;
// EF_Ctrl_Read_Sw_Usage(0, &tmp);
// EF_Ctrl_Read_Sw_Usage(1, &tmp2);
// return tmp | (((uint64_t)tmp2) << 32);
uint64_t tmp = 0;
EF_Ctrl_Read_Chip_ID((uint8_t *)&tmp);
return __builtin_bswap64(tmp);
}
auto crc32Table = CRC32Table<>();
uint32_t gethash() {
static uint32_t computedHash = 0;
if (computedHash != 0) {
return computedHash;
}
uint32_t deviceKey = EF_Ctrl_Get_Key_Slot_w0();
const uint32_t crcInitialVector = 0xCAFEF00D;
uint8_t crcPayload[] = {(uint8_t)(deviceKey), (uint8_t)(deviceKey >> 8), (uint8_t)(deviceKey >> 16), (uint8_t)(deviceKey >> 24), 0, 0, 0, 0, 0, 0, 0, 0};
EF_Ctrl_Read_Chip_ID(crcPayload + sizeof(deviceKey)); // Load device key into second half
computedHash = crc32Table.computeCRC32(crcInitialVector, crcPayload, sizeof(crcPayload));
return computedHash;
}
uint32_t getDeviceValidation() {
// 4 byte user data burned in at factory
return EF_Ctrl_Get_Key_Slot_w1();
}
uint8_t getDeviceValidationStatus() {
uint32_t programmedHash = EF_Ctrl_Get_Key_Slot_w1();
uint32_t computedHash = gethash();
return programmedHash == computedHash ? 0 : 1;
}