mirror of
https://github.com/Ralim/IronOS.git
synced 2025-02-26 07:53:55 +00:00
* Refactor I2C_SOFT to new #define * Stitch in some of TS101 Update ShowStartupWarnings.cpp Update OLED.hpp Update stm32f1xx_hal_msp.c Update Setup.cpp Update Power.cpp Update Pins.h Update configuration.h Power Muxing Working dual input Voltage handler Scan mode required for differing injected channels Inject both dc readings Update configuration.h Update configuration.h Use htim4 for adc control on TS101 Refactor htim names Add ADC_TRIGGER Speed up BB I2C a lil Update configuration.h Update startup_stm32f103t8ux.S Update configuration.h Add LIS2DH clone LIS2DH gains another clone Create tooling to allow mapping accelerometers onto different buses Update startup_stm32f103t8ux.S Ensure PD IRQ is pulled up * Stitch in some of TS101 Update ShowStartupWarnings.cpp Update OLED.hpp Update stm32f1xx_hal_msp.c Update Setup.cpp Update Power.cpp Update Pins.h Update configuration.h Power Muxing Working dual input Voltage handler Scan mode required for differing injected channels Inject both dc readings Update configuration.h Update configuration.h Use htim4 for adc control on TS101 Refactor htim names Add ADC_TRIGGER Speed up BB I2C a lil Update configuration.h Update startup_stm32f103t8ux.S Update configuration.h Add LIS2DH clone LIS2DH gains another clone Create tooling to allow mapping accelerometers onto different buses Update startup_stm32f103t8ux.S Ensure PD IRQ is pulled up Allow toggle which button enters PD debug * Update Pins.h * Fix hard coded IRQ Pin Update stm32f1xx_it.c * Enable EPR * Tip resistance measurement * TS101 is a direct drive tip Update BSP.cpp * Add S60 and TS101 to builds Update push.yml * Update MOVThread.cpp * Refactor power menu handler * Correct prescaler Forgot to update since I changed the period * Tune in the timer divider for tip control to make PWM less audible --------- Co-authored-by: discip <53649486+discip@users.noreply.github.com>
398 lines
12 KiB
C++
398 lines
12 KiB
C++
// BSP mapping functions
|
|
|
|
#include "BSP.h"
|
|
#include "I2C_Wrapper.hpp"
|
|
#include "Pins.h"
|
|
#include "Setup.h"
|
|
#include "TipThermoModel.h"
|
|
#include "USBPD.h"
|
|
#include "configuration.h"
|
|
#include "history.hpp"
|
|
#include "main.hpp"
|
|
#include <IRQ.h>
|
|
|
|
volatile uint16_t PWMSafetyTimer = 0;
|
|
volatile uint8_t pendingPWM = 0;
|
|
|
|
const uint16_t powerPWM = 255;
|
|
static const uint8_t holdoffTicks = 14; // delay of 8 ms
|
|
static const uint8_t tempMeasureTicks = 14;
|
|
|
|
uint16_t totalPWM; // htimADC.Init.Period, the full PWM cycle
|
|
|
|
static bool fastPWM;
|
|
static bool infastPWM;
|
|
|
|
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
|
#ifdef TEMP_NTC
|
|
// Lookup table for the NTC
|
|
// Stored as ADCReading,Temp in degC
|
|
static const uint16_t NTCHandleLookup[] = {
|
|
// ADC Reading , Temp in C
|
|
29189, 0, //
|
|
28832, 2, //
|
|
28450, 4, //
|
|
28042, 6, //
|
|
27607, 8, //
|
|
27146, 10, //
|
|
26660, 12, //
|
|
26147, 14, //
|
|
25610, 16, //
|
|
25049, 18, //
|
|
24465, 20, //
|
|
23859, 22, //
|
|
23234, 24, //
|
|
22591, 26, //
|
|
21933, 28, //
|
|
21261, 30, //
|
|
20579, 32, //
|
|
19888, 34, //
|
|
19192, 36, //
|
|
18493, 38, //
|
|
17793, 40, //
|
|
17096, 42, //
|
|
16404, 44, //
|
|
16061, 45, //
|
|
};
|
|
#endif
|
|
|
|
uint16_t getHandleTemperature(uint8_t sample) {
|
|
int32_t result = getADCHandleTemp(sample);
|
|
#ifdef TEMP_NTC
|
|
// TS80P uses 100k NTC resistors instead
|
|
// NTCG104EF104FT1X from TDK
|
|
// For now not doing interpolation
|
|
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
|
|
if (result > NTCHandleLookup[(i * 2) + 0]) {
|
|
return NTCHandleLookup[(i * 2) + 1] * 10;
|
|
}
|
|
}
|
|
return 45 * 10;
|
|
#endif
|
|
#ifdef TEMP_TMP36
|
|
// We return the current handle temperature in X10 C
|
|
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
|
|
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
|
|
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
|
|
// mV per count So we need to subtract an offset of 0.5V to center on 0C
|
|
// (4964.8 counts)
|
|
//
|
|
result -= 4965; // remove 0.5V offset
|
|
// 10mV per C
|
|
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
|
|
result *= 100;
|
|
result /= 994;
|
|
return result;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
|
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
|
// Therefore we can divide down from there
|
|
// Multiplying ADC max by 4 for additional calibration options,
|
|
// ideal term is 467
|
|
uint32_t res = getADCVin(sample);
|
|
res *= 4;
|
|
res /= divisor;
|
|
return res;
|
|
}
|
|
|
|
static void switchToFastPWM(void) {
|
|
// 10Hz
|
|
infastPWM = true;
|
|
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
|
|
htimADC.Instance->ARR = totalPWM;
|
|
htimADC.Instance->CCR1 = powerPWM + holdoffTicks;
|
|
htimADC.Instance->PSC = 2690;
|
|
}
|
|
|
|
static void switchToSlowPWM(void) {
|
|
// 5Hz
|
|
infastPWM = false;
|
|
totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2;
|
|
htimADC.Instance->ARR = totalPWM;
|
|
htimADC.Instance->CCR1 = powerPWM + holdoffTicks / 2;
|
|
htimADC.Instance->PSC = 2690 * 2;
|
|
}
|
|
|
|
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
|
|
PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is
|
|
// disabled if the PID task is not scheduled often enough.
|
|
fastPWM = shouldUseFastModePWM;
|
|
pendingPWM = pulse;
|
|
}
|
|
// These are called by the HAL after the corresponding events from the system
|
|
// timers.
|
|
|
|
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
// Period has elapsed
|
|
if (htim->Instance == ADC_CONTROL_TIMER) {
|
|
// we want to turn on the output again
|
|
PWMSafetyTimer--;
|
|
// We decrement this safety value so that lockups in the
|
|
// scheduler will not cause the PWM to become locked in an
|
|
// active driving state.
|
|
// While we could assume this could never happen, its a small price for
|
|
// increased safety
|
|
#ifdef TIP_HAS_DIRECT_PWM
|
|
htimADC.Instance->CCR4 = powerPWM;
|
|
if (pendingPWM && PWMSafetyTimer) {
|
|
htimTip.Instance->CCR1 = pendingPWM;
|
|
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
|
|
} else {
|
|
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
|
|
}
|
|
#else
|
|
htimADC.Instance->CCR4 = pendingPWM;
|
|
if (htimADC.Instance->CCR4 && PWMSafetyTimer) {
|
|
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
|
|
} else {
|
|
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
|
|
}
|
|
#endif
|
|
if (fastPWM != infastPWM) {
|
|
if (fastPWM) {
|
|
switchToFastPWM();
|
|
} else {
|
|
switchToSlowPWM();
|
|
}
|
|
}
|
|
|
|
} else if (htim->Instance == TIM1) {
|
|
// STM uses this for internal functions as a counter for timeouts
|
|
HAL_IncTick();
|
|
}
|
|
}
|
|
|
|
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
|
// This was a when the PWM for the output has timed out
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
|
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
|
|
}
|
|
}
|
|
void unstick_I2C() {
|
|
#ifndef I2C_SOFT_BUS_1
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
int timeout = 100;
|
|
int timeout_cnt = 0;
|
|
|
|
// 1. Clear PE bit.
|
|
hi2c1.Instance->CR1 &= ~(0x0001);
|
|
/**I2C1 GPIO Configuration
|
|
PB6 ------> I2C1_SCL
|
|
PB7 ------> I2C1_SDA
|
|
*/
|
|
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
|
// Move clock to release I2C
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
timeout_cnt++;
|
|
if (timeout_cnt > timeout)
|
|
return;
|
|
}
|
|
|
|
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
// 13. Set SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 |= 0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 &= ~0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
|
hi2c1.Instance->CR1 |= 0x0001;
|
|
|
|
// Call initialization function.
|
|
HAL_I2C_Init(&hi2c1);
|
|
#endif
|
|
}
|
|
|
|
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
|
|
void BSPInit(void) { switchToFastPWM(); }
|
|
|
|
void reboot() { NVIC_SystemReset(); }
|
|
|
|
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
|
|
|
uint8_t lastTipResistance = 0; // default to unknown
|
|
const uint8_t numTipResistanceReadings = 3;
|
|
uint32_t tipResistanceReadings[3] = {0, 0, 0};
|
|
uint8_t tipResistanceReadingSlot = 0;
|
|
bool isTipDisconnected() {
|
|
|
|
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
|
|
uint32_t tipTemp = TipThermoModel::getTipInC();
|
|
return tipTemp > tipDisconnectedThres;
|
|
}
|
|
|
|
void setStatusLED(const enum StatusLED state) {}
|
|
void setBuzzer(bool on) {}
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
// We want to calculate lastTipResistance
|
|
// If tip is connected, and the tip is cold and the tip is not being heated
|
|
// We can use the GPIO to inject a small current into the tip and measure this
|
|
// The gpio is 100k -> diode -> tip -> gnd
|
|
// Source is 3.3V-0.5V
|
|
// Which is around 0.028mA this will induce:
|
|
// 6 ohm tip -> 3.24mV (Real world ~= 3320)
|
|
// 8 ohm tip -> 4.32mV (Real world ~= 4500)
|
|
// Which is definitely measureable
|
|
// Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips
|
|
// These are reported as 60 and 75 respectively
|
|
void performTipResistanceSampleReading() {
|
|
// 0 = read then turn on pullup, 1 = read then turn off pullup, 2 = read again
|
|
tipResistanceReadings[tipResistanceReadingSlot] = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(1));
|
|
|
|
HAL_GPIO_WritePin(TIP_RESISTANCE_SENSE_GPIO_Port, TIP_RESISTANCE_SENSE_Pin, (tipResistanceReadingSlot == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
|
|
|
|
tipResistanceReadingSlot++;
|
|
}
|
|
void FinishMeasureTipResistance() {
|
|
|
|
// Otherwise we now have the 4 samples;
|
|
// _^_ order, 2 delta's, combine these
|
|
|
|
int32_t calculatedSkew = tipResistanceReadings[0] - tipResistanceReadings[2]; // If positive tip is cooling
|
|
calculatedSkew /= 2; // divide by two to get offset per time constant
|
|
|
|
int32_t reading = (((tipResistanceReadings[1] - tipResistanceReadings[0]) + calculatedSkew) // jump 1 - skew
|
|
+ // +
|
|
((tipResistanceReadings[1] - tipResistanceReadings[2]) + calculatedSkew) // jump 2 - skew
|
|
) //
|
|
/ 2; // Take average
|
|
// // As we are only detecting two resistances; we can split the difference for now
|
|
uint8_t newRes = 0;
|
|
if (reading > 1200) {
|
|
// return; // Change nothing as probably disconnected tip
|
|
tipResistanceReadingSlot = lastTipResistance = 0;
|
|
return;
|
|
} else if (reading < 800) {
|
|
newRes = 62;
|
|
} else {
|
|
newRes = 80;
|
|
}
|
|
lastTipResistance = newRes;
|
|
}
|
|
volatile bool tipMeasurementOccuring = true;
|
|
volatile TickType_t nextTipMeasurement = 100;
|
|
|
|
void performTipMeasurementStep() {
|
|
|
|
// Wait 200ms for settle time
|
|
if (xTaskGetTickCount() < (nextTipMeasurement)) {
|
|
return;
|
|
}
|
|
nextTipMeasurement = xTaskGetTickCount() + (TICKS_100MS * 5);
|
|
if (tipResistanceReadingSlot < numTipResistanceReadings) {
|
|
performTipResistanceSampleReading();
|
|
return;
|
|
}
|
|
|
|
// We are sensing the resistance
|
|
FinishMeasureTipResistance();
|
|
|
|
tipMeasurementOccuring = false;
|
|
}
|
|
#endif
|
|
uint8_t preStartChecks() {
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
performTipMeasurementStep();
|
|
if (preStartChecksDone() != 1) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
#ifdef HAS_SPLIT_POWER_PATH
|
|
|
|
// We want to enable the power path that has the highest voltage
|
|
// Nominally one will be ~=0 and one will be high. Unless you jamb both in, then both _may_ be high, or device may be dead
|
|
{
|
|
uint16_t dc = getRawDCVin();
|
|
uint16_t pd = getRawPDVin();
|
|
if (dc > pd) {
|
|
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_RESET);
|
|
} else {
|
|
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_RESET);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
#ifdef POW_PD
|
|
// If we are in the middle of negotiating PD, wait until timeout
|
|
// Before turning on the heater
|
|
if (!USBPowerDelivery::negotiationComplete()) {
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
return 1;
|
|
}
|
|
uint64_t getDeviceID() {
|
|
//
|
|
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
|
|
}
|
|
|
|
uint8_t preStartChecksDone() {
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
return (lastTipResistance == 0 || tipResistanceReadingSlot < numTipResistanceReadings || tipMeasurementOccuring) ? 0 : 1;
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
uint8_t getTipResistanceX10() {
|
|
// Return tip resistance in x10 ohms
|
|
// We can measure this using the op-amp
|
|
return lastTipResistance;
|
|
}
|
|
|
|
uint8_t getTipThermalMass() {
|
|
if (lastTipResistance >= 80) {
|
|
return TIP_THERMAL_MASS;
|
|
}
|
|
return 45;
|
|
}
|
|
uint8_t getTipInertia() {
|
|
if (lastTipResistance >= 80) {
|
|
return TIP_THERMAL_MASS;
|
|
}
|
|
return 10;
|
|
} |