Files
IronOS/source/Core/BSP/Pinecilv2/ble_handlers.cpp
Thomas White 8e7e58018a expand bulk data to match individual value data (#1555)
* track and return Operating mode with BLE

* move global variable to fix build on other platforms

* formatting

* expand bulk data to match individual value data

* formatting

* fix accidental single line if

---------

Co-authored-by: Ben V. Brown <5425387+Ralim@users.noreply.github.com>
2023-02-05 00:04:51 +11:00

280 lines
8.2 KiB
C++

#include <FreeRTOS.h>
#include <errno.h>
#include <stdbool.h>
#include <stdlib.h>
#include <task.h>
#include "types.h"
#include "BSP.h"
#include "TipThermoModel.h"
#include "ble_peripheral.h"
#include "bluetooth.h"
#include "configuration.h"
#include "conn.h"
#include "gatt.h"
#include "hal_clock.h"
#include "hci_core.h"
#include "log.h"
#include "uuid.h"
#include "OperatingModes.h"
#include "USBPD.h"
#include "ble_characteristics.h"
#include "ble_handlers.h"
#include "pd.h"
#include "power.hpp"
#if POW_PD
#include "USBPD.h"
#include "pd.h"
#endif
extern TickType_t lastMovementTime;
extern OperatingMode currentMode;
int ble_char_read_status_callback(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf, u16_t len, u16_t offset) {
if (attr == NULL || attr->uuid == NULL) {
return 0;
}
uint16_t uuid_value = ((struct bt_uuid_16 *)attr->uuid)->val;
uint32_t temp = 0;
switch (uuid_value) {
case 1: // Live temp
{
temp = TipThermoModel::getTipInC();
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
} break;
case 2: // Setpoint temp
temp = getSettingValue(SettingsOptions::SolderingTemp);
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 3: // DC Input
temp = getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0);
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 4: // Handle temp
temp = getHandleTemperature(0);
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 5: // power level
// return current PWM level
temp = X10WattsToPWM(x10WattHistory.average());
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 6: // power src
// Todo return enum for current power source
temp = getPowerSrc();
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 7:
// Tip resistance
temp = getTipResistanceX10();
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 8:
// uptime
temp = xTaskGetTickCount() / TICKS_100MS;
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 9:
// movement
temp = lastMovementTime / TICKS_100MS;
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 10:
// max temp
temp = TipThermoModel::getTipMaxInC();
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 11:
// raw tip
temp = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true);
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 12:
// hall sensor
{
int16_t hallEffectStrength = getRawHallEffect();
if (hallEffectStrength < 0)
hallEffectStrength = -hallEffectStrength;
temp = hallEffectStrength;
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
}
break;
case 13:
// Operating mode
temp = currentMode;
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
case 14:
// Estimated watts
temp = x10WattHistory.average();
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
break;
}
MSG("Unhandled attr read %d | %d\n", (uint32_t)attr->uuid, uuid_value);
return 0;
}
int ble_char_read_bulk_value_callback(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf, u16_t len, u16_t offset) {
if (attr == NULL || attr->uuid == NULL) {
return 0;
}
uint16_t uuid_value = ((struct bt_uuid_16 *)attr->uuid)->val;
// Bulk is the non-const size service
switch (uuid_value) {
case 1:
// Bulk data
{
uint32_t bulkData[] = {
TipThermoModel::getTipInC(), // 0 - Current temp
getSettingValue(SettingsOptions::SolderingTemp), // 1 - Setpoint
getInputVoltageX10(getSettingValue(SettingsOptions::VoltageDiv), 0), // 2 - Input voltage
getHandleTemperature(0), // 3 - Handle X10 Temp in C
X10WattsToPWM(x10WattHistory.average()), // 4 - Power as PWM level
getPowerSrc(), // 5 - power src
getTipResistanceX10(), // 6 - Tip resistance
xTaskGetTickCount() / TICKS_100MS, // 7 - uptime in deciseconds
lastMovementTime / TICKS_100MS, // 8 - last movement time (deciseconds)
TipThermoModel::getTipMaxInC(), // 9 - max temp
TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true), // 10 - Raw tip in μV
abs(getRawHallEffect()), // 11 - hall sensor
currentMode, // 12 - Operating mode
x10WattHistory.average(), // 13 - Estimated Wattage *10
};
int lenToCopy = sizeof(bulkData) - offset;
if (lenToCopy > len) {
lenToCopy = len;
}
if (lenToCopy < 0) {
lenToCopy = 0;
}
memcpy(buf, ((uint8_t *)bulkData) + offset, lenToCopy);
return lenToCopy;
}
break;
case 2:
// Accelerometer name
// TODO: Need to store non-encoded version
break;
case 3:
// Build
// TODO: Need to store non-encoded version
break;
case 4:
// Device unique id
{
uint64_t id = getDeviceID();
memcpy(buf, &id, sizeof(id));
return sizeof(id);
}
break;
}
return 0;
}
int ble_char_read_setting_value_callback(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf, u16_t len, u16_t offset) {
if (attr == NULL || attr->uuid == NULL) {
return 0;
}
uint16_t uuid_value = ((struct bt_uuid_16 *)attr->uuid)->val;
uint16_t temp = 0;
if (uuid_value == 0) {
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
} else if (uuid_value <= SettingsOptions::SettingsOptionsLength) {
temp = getSettingValue((SettingsOptions)(uuid_value - 1));
memcpy(buf, &temp, sizeof(temp));
return sizeof(temp);
}
MSG("Unhandled attr read %d | %d\n", (uint32_t)attr->uuid, uuid_value);
return 0;
}
int ble_char_write_setting_value_callback(struct bt_conn *conn, const struct bt_gatt_attr *attr, const void *buf, u16_t len, u16_t offset, u8_t flags) {
if (flags & BT_GATT_WRITE_FLAG_PREPARE) {
// Don't use prepare write data, execute write will upload data again.
BT_WARN("recv prepare write request\n");
return 0;
}
if (attr == NULL || attr->uuid == NULL) {
return 0;
}
if (flags & BT_GATT_WRITE_FLAG_CMD) {
// Use write command data.
BT_WARN("recv write command\n");
} else {
// Use write request / execute write data.
BT_WARN("recv write request / exce write\n");
}
uint16_t uuid_value = ((struct bt_uuid_16 *)attr->uuid)->val;
if (len == 2) {
uint16_t new_value = 0;
memcpy(&new_value, buf, sizeof(new_value));
if (uuid_value == 0) {
if (new_value == 1) {
saveSettings();
return len;
}
} else if (uuid_value < SettingsOptions::SettingsOptionsLength) {
setSettingValue((SettingsOptions)(uuid_value - 1), new_value);
return len;
}
}
MSG("Unhandled attr write %d | %d\n", (uint32_t)attr->uuid, uuid_value);
return 0;
}
uint32_t getPowerSrc() {
int sourceNumber = 0;
if (getIsPoweredByDCIN()) {
sourceNumber = 0;
} else {
// We are not powered via DC, so want to display the appropriate state for PD or QC
bool poweredbyPD = false;
bool pdHasVBUSConnected = false;
#if POW_PD
if (USBPowerDelivery::fusbPresent()) {
// We are PD capable
if (USBPowerDelivery::negotiationComplete()) {
// We are powered via PD
poweredbyPD = true;
#ifdef VBUS_MOD_TEST
pdHasVBUSConnected = USBPowerDelivery::isVBUSConnected();
#endif
}
}
#endif
if (poweredbyPD) {
if (pdHasVBUSConnected) {
sourceNumber = 2;
} else {
sourceNumber = 3;
}
} else {
sourceNumber = 1;
}
}
return sourceNumber;
}