mirror of
https://github.com/Ralim/IronOS.git
synced 2025-02-26 07:53:55 +00:00
Currently, IronOS increases the tip resistance by 0.5 ohms for the purposes of USB-PD negotiation. On the Pinecil V2, this can cause issues with power supplies that only supply 60W, such as the Framework 60W supply. At 6.2 ohms, 20V will produce 3.2A, but at 6.7 ohms it will produce 2.985 ohms. This 0.5 ohms increase will cause the V2 to negotiate 20V, draw more than 3A, and trip the overcurrent protection, causing it to reboot. Removing this increase will therefore cause it to fall back to the next highest voltage it can achieve.
375 lines
15 KiB
C++
375 lines
15 KiB
C++
#include "USBPD.h"
|
|
#include "configuration.h"
|
|
#ifdef POW_PD
|
|
|
|
#include "BSP_PD.h"
|
|
#include "FreeRTOS.h"
|
|
#include "fusb302b.h"
|
|
#include "main.hpp"
|
|
#include "pd.h"
|
|
#include "policy_engine.h"
|
|
|
|
#ifndef USB_PD_VMAX
|
|
#error Max PD Voltage must be defined
|
|
#endif
|
|
|
|
void ms_delay(uint32_t delayms) {
|
|
// Convert ms -> ticks
|
|
TickType_t ticks = delayms / portTICK_PERIOD_MS;
|
|
|
|
vTaskDelay(ticks ? ticks : 1); /* Minimum delay = 1 tick */
|
|
}
|
|
uint32_t get_ms_timestamp() {
|
|
// Convert ticks -> ms
|
|
return xTaskGetTickCount() * portTICK_PERIOD_MS;
|
|
}
|
|
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request);
|
|
void pdbs_dpm_get_sink_capability(pd_msg *cap, const bool isPD3);
|
|
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request);
|
|
FUSB302 fusb((0x22 << 1), fusb_read_buf, fusb_write_buf, ms_delay); // Create FUSB driver
|
|
PolicyEngine pe(fusb, get_ms_timestamp, ms_delay, pdbs_dpm_get_sink_capability, pdbs_dpm_evaluate_capability, EPREvaluateCapabilityFunc, 140);
|
|
int USBPowerDelivery::detectionState = 0;
|
|
uint16_t requested_voltage_mv = 0;
|
|
|
|
/* The current draw when the output is disabled */
|
|
#define DPM_MIN_CURRENT PD_MA2PDI(100)
|
|
|
|
// Start processing
|
|
bool USBPowerDelivery::start() {
|
|
if (fusbPresent() && fusb.fusb_setup()) {
|
|
setupFUSBIRQ();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
void USBPowerDelivery::IRQOccured() { pe.IRQOccured(); }
|
|
bool USBPowerDelivery::negotiationHasWorked() { return pe.pdHasNegotiated(); }
|
|
uint8_t USBPowerDelivery::getStateNumber() { return pe.currentStateCode(true); }
|
|
void USBPowerDelivery::step() {
|
|
while (pe.thread()) {}
|
|
}
|
|
|
|
void USBPowerDelivery::PPSTimerCallback() { pe.TimersCallback(); }
|
|
bool USBPowerDelivery::negotiationComplete() {
|
|
if (!fusbPresent()) {
|
|
return true;
|
|
}
|
|
return pe.setupCompleteOrTimedOut(getSettingValue(SettingsOptions::PDNegTimeout));
|
|
}
|
|
bool USBPowerDelivery::fusbPresent() {
|
|
if (detectionState == 0) {
|
|
if (fusb.fusb_read_id()) {
|
|
detectionState = 1;
|
|
}
|
|
}
|
|
return detectionState == 1;
|
|
}
|
|
|
|
bool USBPowerDelivery::isVBUSConnected() {
|
|
#if NEEDS_VBUS_PROBE == 1
|
|
static uint8_t state = 0;
|
|
if (state) {
|
|
return state == 1;
|
|
}
|
|
// Dont run if we havent negotiated
|
|
if (!negotiationComplete()) {
|
|
return true;
|
|
}
|
|
if (fusb.isVBUSConnected()) {
|
|
state = 1;
|
|
return true;
|
|
} else {
|
|
state = 2;
|
|
return false;
|
|
}
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
uint32_t lastCapabilities[11];
|
|
uint32_t *USBPowerDelivery::getLastSeenCapabilities() { return lastCapabilities; }
|
|
|
|
#ifdef POW_EPR
|
|
static unsigned int sqrtI(unsigned long sqrtArg) {
|
|
unsigned int answer, x;
|
|
unsigned long temp;
|
|
if (sqrtArg == 0)
|
|
return 0; // undefined result
|
|
if (sqrtArg == 1)
|
|
return 1; // identity
|
|
answer = 0; // integer square root
|
|
for (x = 0x8000; x > 0; x = x >> 1) { // 16 bit shift
|
|
answer |= x; // possible bit in root
|
|
temp = answer * answer; //
|
|
if (temp == sqrtArg)
|
|
break; // exact, found it
|
|
if (temp > sqrtArg)
|
|
answer ^= x; // too large, reverse bit
|
|
}
|
|
return answer; // approximate root
|
|
}
|
|
#endif
|
|
|
|
// parseCapabilitiesArray returns true if a valid capability was found
|
|
// caps is the array of capabilities objects
|
|
// best* are output references
|
|
bool parseCapabilitiesArray(const uint8_t numCaps, uint8_t *bestIndex, uint16_t *bestVoltage, uint16_t *bestCurrent, bool *bestIsPPS, bool *bestIsAVS) {
|
|
// Walk the given capabilities array; and select the best option
|
|
// Given assumption of fixed tip resistance; this can be simplified to highest voltage selection
|
|
*bestIndex = 0xFF; // Mark unselected
|
|
*bestVoltage = 5000; // Default 5V
|
|
|
|
uint8_t tipResistance = getTipResistanceX10();
|
|
#ifdef MODEL_HAS_DCDC
|
|
// If this device has step down DC/DC inductor to smooth out current spikes
|
|
// We can instead ignore resistance and go for max voltage we can accept; and rely on the DC/DC regulation to keep under current limit
|
|
tipResistance = 255; // (Push to 25.5 ohms to effectively disable this check)
|
|
#endif
|
|
|
|
for (uint8_t i = 0; i < numCaps; i++) {
|
|
if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
|
|
// This is a fixed PDO entry
|
|
// Evaluate if it can produve sufficient current based on the TIP_RESISTANCE (ohms*10)
|
|
// V=I*R -> V/I => minimum resistance, if our tip resistance is >= this then we can use this supply
|
|
|
|
int voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCapabilities[i])); // voltage in mV units
|
|
int current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCapabilities[i]); // current in 10mA units
|
|
int min_resistance_ohmsx10 = voltage_mv / current_a_x100;
|
|
if (voltage_mv > 0) {
|
|
if (voltage_mv <= (USB_PD_VMAX * 1000)) {
|
|
if (min_resistance_ohmsx10 <= tipResistance) {
|
|
// This is a valid power source we can select as
|
|
if (voltage_mv > *bestVoltage) {
|
|
|
|
// Higher voltage and valid, select this instead
|
|
*bestIndex = i;
|
|
*bestVoltage = voltage_mv;
|
|
*bestCurrent = current_a_x100;
|
|
*bestIsPPS = false;
|
|
*bestIsAVS = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && (((lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS)) && getSettingValue(SettingsOptions::PDVpdo)) {
|
|
// If this is a PPS slot, calculate the max voltage in the PPS range that can we be used and maintain
|
|
uint16_t max_voltage = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCapabilities[i]));
|
|
// uint16_t min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCapabilities[i]));
|
|
uint16_t max_current = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCapabilities[i])); // max current in 10mA units
|
|
// Using the current and tip resistance, calculate the ideal max voltage
|
|
// if this is range, then we will work with this voltage
|
|
// if this is not in range; then max_voltage can be safely selected
|
|
int ideal_voltage_mv = (tipResistance * max_current);
|
|
if (ideal_voltage_mv > max_voltage) {
|
|
ideal_voltage_mv = max_voltage; // constrain to what this PDO offers
|
|
}
|
|
if (ideal_voltage_mv > 20000) {
|
|
ideal_voltage_mv = 20000; // Limit to 20V as some advertise 21 but are not stable at 21
|
|
}
|
|
if (ideal_voltage_mv > (USB_PD_VMAX * 1000)) {
|
|
ideal_voltage_mv = (USB_PD_VMAX * 1000); // constrain to model max voltage safe to select
|
|
}
|
|
if (ideal_voltage_mv > *bestVoltage) {
|
|
*bestIndex = i;
|
|
*bestVoltage = ideal_voltage_mv;
|
|
*bestCurrent = max_current;
|
|
*bestIsPPS = true;
|
|
*bestIsAVS = false;
|
|
}
|
|
}
|
|
#ifdef POW_EPR
|
|
else if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && (((lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS)) && getSettingValue(SettingsOptions::PDVpdo)) {
|
|
uint16_t max_voltage = PD_PAV2MV(PD_APDO_AVS_MAX_VOLTAGE_GET(lastCapabilities[i]));
|
|
uint8_t max_wattage = PD_APDO_AVS_MAX_POWER_GET(lastCapabilities[i]);
|
|
|
|
// W = v^2/tip_resistance => Wattage*tip_resistance == Max_voltage^2
|
|
auto ideal_max_voltage = sqrtI((max_wattage * tipResistance) / 10) * 1000;
|
|
if (ideal_max_voltage > (USB_PD_VMAX * 1000)) {
|
|
ideal_max_voltage = (USB_PD_VMAX * 1000); // constrain to model max voltage safe to select
|
|
}
|
|
if (ideal_max_voltage > (max_voltage)) {
|
|
ideal_max_voltage = (max_voltage); // constrain to model max voltage safe to select
|
|
}
|
|
auto operating_current = (ideal_max_voltage / tipResistance); // Current in centiamps
|
|
|
|
if (ideal_max_voltage > *bestVoltage) {
|
|
*bestIndex = i;
|
|
*bestVoltage = ideal_max_voltage;
|
|
*bestCurrent = operating_current;
|
|
*bestIsAVS = true;
|
|
*bestIsPPS = false;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
// Now that the best index is known, set the current values
|
|
return *bestIndex != 0xFF; // have we selected one
|
|
}
|
|
|
|
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request) {
|
|
#ifdef POW_EPR
|
|
// Select any EPR slots up to USB_PD_VMAX
|
|
memset(lastCapabilities, 0, sizeof(lastCapabilities));
|
|
memcpy(lastCapabilities, capabilities->obj, sizeof(lastCapabilities));
|
|
// PDO slots 1-7 shall be the standard PDO's
|
|
// PDO slots 8-11 shall be the >20V slots
|
|
uint8_t numobj = 11;
|
|
uint8_t bestIndex = 0xFF;
|
|
uint16_t bestIndexVoltage = 0;
|
|
uint16_t bestIndexCurrent = 0;
|
|
bool bestIsPPS = false;
|
|
bool bestIsAVS = false;
|
|
|
|
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVS)) {
|
|
/* We got what we wanted, so build a request for that */
|
|
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
|
|
request->obj[1] = lastCapabilities[bestIndex]; // Copy PDO into slot 2
|
|
|
|
|
|
if (bestIsAVS) {
|
|
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2APS(bestIndexVoltage));
|
|
} else if (bestIsPPS) {
|
|
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2PRV(bestIndexVoltage));
|
|
} else {
|
|
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(bestIndexCurrent) | PD_RDO_FV_CURRENT_SET(bestIndexCurrent);
|
|
}
|
|
request->obj[0] |= PD_RDO_EPR_CAPABLE;
|
|
request->obj[0] |= PD_RDO_NO_USB_SUSPEND;
|
|
request->obj[0] |= PD_RDO_OBJPOS_SET(bestIndex + 1);
|
|
|
|
// We dont do usb
|
|
// request->obj[0] |= PD_RDO_USB_COMMS;
|
|
|
|
/* Update requested voltage */
|
|
requested_voltage_mv = bestIndexVoltage;
|
|
powerSupplyWattageLimit = bestIndexVoltage * bestIndexCurrent / 100 / 1000; // Set watts for limit from PSU limit
|
|
|
|
} else {
|
|
/* Nothing matched (or no configuration), so get 5 V at low current */
|
|
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
|
|
request->obj[1] = lastCapabilities[0];
|
|
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(100) | PD_RDO_FV_CURRENT_SET(100) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(1);
|
|
// We dont do usb
|
|
// request->obj[0] |= PD_RDO_USB_COMMS;
|
|
|
|
/* Update requested voltage */
|
|
requested_voltage_mv = 5000;
|
|
}
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request) {
|
|
memset(lastCapabilities, 0, sizeof(lastCapabilities));
|
|
memcpy(lastCapabilities, capabilities->obj, sizeof(uint32_t) * 7);
|
|
/* Get the number of PDOs */
|
|
uint8_t numobj = PD_NUMOBJ_GET(capabilities);
|
|
|
|
/* Make sure we have configuration */
|
|
/* Look at the PDOs to see if one matches our desires */
|
|
// Look against USB_PD_Desired_Levels to select in order of preference
|
|
uint8_t bestIndex = 0xFF;
|
|
uint16_t bestIndexVoltage = 0;
|
|
uint16_t bestIndexCurrent = 0;
|
|
bool bestIsPPS = false;
|
|
bool bestIsAVS = false;
|
|
|
|
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVS)) {
|
|
/* We got what we wanted, so build a request for that */
|
|
request->hdr = PD_MSGTYPE_REQUEST | PD_NUMOBJ(1);
|
|
if (bestIsPPS) {
|
|
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2PRV(bestIndexVoltage)) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
|
|
} else {
|
|
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(bestIndexCurrent) | PD_RDO_FV_CURRENT_SET(bestIndexCurrent) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
|
|
}
|
|
// We dont do usb
|
|
// request->obj[0] |= PD_RDO_USB_COMMS;
|
|
#ifdef POW_EPR
|
|
request->obj[0] |= PD_RDO_EPR_CAPABLE;
|
|
#endif
|
|
|
|
/* Update requested voltage */
|
|
requested_voltage_mv = bestIndexVoltage;
|
|
powerSupplyWattageLimit = bestIndexVoltage * bestIndexCurrent / 100 / 1000; // Set watts for limit from PSU limit
|
|
|
|
} else {
|
|
/* Nothing matched (or no configuration), so get 5 V at low current */
|
|
request->hdr = PD_MSGTYPE_REQUEST | PD_NUMOBJ(1);
|
|
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(100) | PD_RDO_FV_CURRENT_SET(100) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(1);
|
|
// We dont do usb
|
|
// request->obj[0] |= PD_RDO_USB_COMMS;
|
|
|
|
/* Update requested voltage */
|
|
requested_voltage_mv = 5000;
|
|
}
|
|
// Even if we didnt match, we return true as we would still like to handshake on 5V at the minimum
|
|
return true;
|
|
}
|
|
|
|
void pdbs_dpm_get_sink_capability(pd_msg *cap, const bool isPD3) {
|
|
/* Keep track of how many PDOs we've added */
|
|
// int numobj = 0;
|
|
|
|
// /* If we have no configuration or want something other than 5 V, add a PDO
|
|
// * for vSafe5V */
|
|
// /* Minimum current, 5 V, and higher capability. */
|
|
// cap->obj[numobj++] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_MV2PDV(5000)) | PD_PDO_SNK_FIXED_CURRENT_SET(DPM_MIN_CURRENT);
|
|
|
|
// /* Get the current we want */
|
|
// uint16_t voltage = USB_PD_VMAX * 1000; // in mv
|
|
// if (requested_voltage_mv != 5000) {
|
|
// voltage = requested_voltage_mv;
|
|
// }
|
|
// uint16_t current = (voltage) / getTipResistanceX10(); // In centi-amps
|
|
|
|
// /* Add a PDO for the desired power. */
|
|
// cap->obj[numobj++] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_MV2PDV(voltage)) | PD_PDO_SNK_FIXED_CURRENT_SET(current);
|
|
|
|
// /* Get the PDO from the voltage range */
|
|
// int8_t i = dpm_get_range_fixed_pdo_index(cap);
|
|
|
|
// /* If it's vSafe5V, set our vSafe5V's current to what we want */
|
|
// if (i == 0) {
|
|
// cap->obj[0] &= ~PD_PDO_SNK_FIXED_CURRENT;
|
|
// cap->obj[0] |= PD_PDO_SNK_FIXED_CURRENT_SET(current);
|
|
// } else {
|
|
// /* If we want more than 5 V, set the Higher Capability flag */
|
|
// if (PD_MV2PDV(voltage) != PD_MV2PDV(5000)) {
|
|
// cap->obj[0] |= PD_PDO_SNK_FIXED_HIGHER_CAP;
|
|
// }
|
|
|
|
// /* If the range PDO is a different voltage than the preferred
|
|
// * voltage, add it to the array. */
|
|
// if (i > 0 && PD_PDO_SRC_FIXED_VOLTAGE_GET(cap->obj[i]) != PD_MV2PDV(voltage)) {
|
|
// cap->obj[numobj++] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_PDO_SRC_FIXED_VOLTAGE_GET(cap->obj[i])) | PD_PDO_SNK_FIXED_CURRENT_SET(PD_PDO_SRC_FIXED_CURRENT_GET(cap->obj[i]));
|
|
// }
|
|
|
|
// /* If we have three PDOs at this point, make sure the last two are
|
|
// * sorted by voltage. */
|
|
// if (numobj == 3 && (cap->obj[1] & PD_PDO_SNK_FIXED_VOLTAGE) > (cap->obj[2] & PD_PDO_SNK_FIXED_VOLTAGE)) {
|
|
// cap->obj[1] ^= cap->obj[2];
|
|
// cap->obj[2] ^= cap->obj[1];
|
|
// cap->obj[1] ^= cap->obj[2];
|
|
// }
|
|
// /* If we're using PD 3.0, add a PPS APDO for our desired voltage */
|
|
// if ((hdr_template & PD_HDR_SPECREV) >= PD_SPECREV_3_0) {
|
|
// cap->obj[numobj++]
|
|
// = PD_PDO_TYPE_AUGMENTED | PD_APDO_TYPE_PPS | PD_APDO_PPS_MAX_VOLTAGE_SET(PD_MV2PAV(voltage)) | PD_APDO_PPS_MIN_VOLTAGE_SET(PD_MV2PAV(voltage)) |
|
|
// PD_APDO_PPS_CURRENT_SET(PD_CA2PAI(current));
|
|
// }
|
|
// }
|
|
|
|
// /* Set the unconstrained power flag. */
|
|
// if (_unconstrained_power) {
|
|
// cap->obj[0] |= PD_PDO_SNK_FIXED_UNCONSTRAINED;
|
|
// }
|
|
// /* Set the USB communications capable flag. */
|
|
// cap->obj[0] |= PD_PDO_SNK_FIXED_USB_COMMS;
|
|
|
|
// /* Set the Sink_Capabilities message header */
|
|
// cap->hdr = hdr_template | PD_MSGTYPE_SINK_CAPABILITIES | PD_NUMOBJ(numobj);
|
|
}
|
|
|
|
#endif
|