// BSP mapping functions #include "BSP.h" #include "BootLogo.h" #include "FS2711.hpp" #include "HUB238.hpp" #include "I2C_Wrapper.hpp" #include "Pins.h" #include "Settings.h" #include "Setup.h" #include "TipThermoModel.h" #include "configuration.h" #include "history.hpp" #include "main.hpp" #include volatile uint16_t PWMSafetyTimer = 0; volatile uint8_t pendingPWM = 0; const uint16_t powerPWM = 255; static const uint8_t holdoffTicks = 15; // delay of 8 ish ms static const uint8_t tempMeasureTicks = 15; uint16_t totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; // htim2.Init.Period, the full PWM cycle void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } // Lookup table for the NTC // We dont know exact specs, but it loooks to be roughly a 10K B=4000 NTC // Stored as ADCReading,Temp in degC static const uint16_t NTCHandleLookup[] = { // ADC Reading , Temp in C 23931, 0, // 23210, 2, // 22466, 4, // 21703, 6, // 20924, 8, // 20135, 10, // 19338, 12, // 18538, 14, // 17738, 16, // 16943, 18, // 16156, 20, // 15381, 22, // 14621, 24, // 13878, 26, // 13155, 28, // 12455, 30, // 11778, 32, // 11126, 34, // 10501, 36, // 9902, 38, // 9330, 40, // 8786, 42, // 8269, 44, // }; uint16_t getHandleTemperature(uint8_t sample) { #ifdef TMP36_ADC1_CHANNEL int32_t result = getADCHandleTemp(sample); // S60 uses 10k NTC resistor // For now not doing interpolation for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) { if (result > NTCHandleLookup[(i * 2) + 0]) { return NTCHandleLookup[(i * 2) + 1] * 10; } } return 45 * 10; #else return 0; // Not implemented #endif } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // Therefore we can divide down from there // Multiplying ADC max by 4 for additional calibration options, // ideal term is 467 uint32_t res = getADCVin(sample); res *= 4; res /= divisor; return res; } static void switchToFastPWM(void) { // 20Hz totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; htim2.Instance->ARR = totalPWM; htim2.Instance->CCR1 = powerPWM + holdoffTicks; htim2.Instance->CCR4 = powerPWM; htim2.Instance->PSC = 1500; } void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) { PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is // disabled if the PID task is not scheduled often enough. pendingPWM = pulse; } // These are called by the HAL after the corresponding events from the system // timers. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { // Period has elapsed if (htim->Instance == TIM2) { // we want to turn on the output again PWMSafetyTimer--; // We decrement this safety value so that lockups in the // scheduler will not cause the PWM to become locked in an // active driving state. // While we could assume this could never happen, its a small price for // increased safety if (PWMSafetyTimer == 0) { htim4.Instance->CCR3 = 0; } else { htim4.Instance->CCR3 = pendingPWM / 4; } } else if (htim->Instance == TIM1) { // STM uses this for internal functions as a counter for timeouts HAL_IncTick(); } } void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) { // This was a when the PWM for the output has timed out if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) { // HAL_TIM_PWM_Stop(&htim4, TIM_CHANNEL_3); htim4.Instance->CCR3 = 0; } } void unstick_I2C() { #ifdef SCL_Pin GPIO_InitTypeDef GPIO_InitStruct; int timeout = 100; int timeout_cnt = 0; // 1. Clear PE bit. hi2c1.Instance->CR1 &= ~(0x0001); /**I2C1 GPIO Configuration PB6 ------> I2C1_SCL PB7 ------> I2C1_SDA */ // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { // Move clock to release I2C HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); asm("nop"); asm("nop"); asm("nop"); asm("nop"); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); timeout_cnt++; if (timeout_cnt > timeout) { return; } } // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); // 13. Set SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 |= 0x8000; asm("nop"); // 14. Clear SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 &= ~0x8000; asm("nop"); // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register hi2c1.Instance->CR1 |= 0x0001; // Call initialization function. HAL_I2C_Init(&hi2c1); #endif } uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } void BSPInit(void) { switchToFastPWM(); } void reboot() { NVIC_SystemReset(); } void delay_ms(uint16_t count) { HAL_Delay(count); } bool isTipDisconnected() { uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; uint32_t tipTemp = TipThermoModel::getTipInC(); return tipTemp > tipDisconnectedThres; } void setStatusLED(const enum StatusLED state) {} uint8_t preStartChecks() { #if POW_PD_EXT == 1 if (!hub238_has_run_selection() && (xTaskGetTickCount() < TICKS_SECOND * 5)) { return 0; } // We check if we are in a "Limited" mode; where we have to run the PWM really fast // Where as if we are on 9V for example, the tip resistance is enough uint16_t voltage = hub238_source_voltage(); uint16_t currentx100 = hub238_source_currentX100(); #endif #if POW_PD_EXT == 2 if (!FS2711::has_run_selection() && (xTaskGetTickCount() < TICKS_SECOND * 5)) { return 0; } uint16_t voltage = FS2711::source_voltage(); uint16_t currentx100 = FS2711::source_currentx100(); #endif uint16_t thresholdResistancex10 = ((voltage * 1000) / currentx100) + 5; if (getTipResistanceX10() <= thresholdResistancex10) { // We are limited by resistance, not our current limiting, we can slow down PWM to avoid audible noise htim4.Instance->PSC = 50; // 10 -> 500 removes audible noise } return 1; // We are done now } uint64_t getDeviceID() { // return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32); } uint8_t getTipResistanceX10() { #ifdef COPPER_HEATER_COIL // TODO //! Warning, must never return 0. TemperatureType_t measuredTemperature = TipThermoModel::getTipInC(false); if (measuredTemperature < 25) { return 50; // Start assuming under spec to soft-start } // Assuming a temperature rise of 0.00393 per deg c over 20C uint32_t scaler = 393 * (measuredTemperature - 20); return TIP_RESISTANCE + ((TIP_RESISTANCE * scaler) / 100000); #else uint8_t user_selected_tip = getUserSelectedTipResistance(); if (user_selected_tip == 0) { return TIP_RESISTANCE; // Auto mode } return user_selected_tip; #endif } bool isTipShorted() { return false; } uint8_t preStartChecksDone() { return 1; } uint16_t getTipThermalMass() { return TIP_THERMAL_MASS; } uint16_t getTipInertia() { return TIP_THERMAL_INERTIA; } void setBuzzer(bool on) {} void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); } #ifdef CUSTOM_MAX_TEMP_C TemperatureType_t getCustomTipMaxInC() { return MAX_TEMP_C; } #endif