NTC lookup cleaned up and shrunk + linear interpolate

This commit is contained in:
Ben V. Brown
2021-04-28 21:06:29 +10:00
parent 7c54b24209
commit fe2469fdb5

View File

@@ -3,225 +3,195 @@
#include "BSP.h" #include "BSP.h"
#include "I2C_Wrapper.hpp" #include "I2C_Wrapper.hpp"
#include "Model_Config.h" #include "Model_Config.h"
#include "Utils.h"
#include "Pins.h" #include "Pins.h"
#include "Setup.h" #include "Setup.h"
#include "history.hpp" #include "history.hpp"
#include "main.hpp" #include "main.hpp"
#include <IRQ.h> #include <IRQ.h>
volatile uint16_t PWMSafetyTimer = 0; volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0; volatile uint8_t pendingPWM = 0;
uint16_t totalPWM = 255; uint16_t totalPWM = 255;
const uint16_t powerPWM = 255; const uint16_t powerPWM = 255;
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0}; history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } void resetWatchdog() {
HAL_IWDG_Refresh(&hiwdg);
}
#ifdef TEMP_NTC #ifdef TEMP_NTC
// Lookup table for the NTC // Lookup table for the NTC
// Stored as ADCReading,Temp in degC // Stored as ADCReading,Temp in degC
static const uint16_t NTCHandleLookup[] = { static const uint16_t NTCHandleLookup[] = {
// ADC Reading , Temp in C // ADC Reading , Temp in C
29189, 0, // 11292, 600, //
29014, 1, // 12782, 550, //
28832, 2, // 14380, 500, //
28644, 3, // 16061, 450, //
28450, 4, // 17793, 400, //
28249, 5, // 19541, 350, //
28042, 6, // 21261, 300, //
27828, 7, // 22915, 250, //
27607, 8, // 24465, 200, //
27380, 9, // 25882, 150, //
27146, 10, // 27146, 100, //
26906, 11, // 28249, 50, //
26660, 12, // 29189, 0, //
26407, 13, // };
26147, 14, // const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t));
25882, 15, //
25610, 16, //
25332, 17, //
25049, 18, //
24759, 19, //
24465, 20, //
24164, 21, //
23859, 22, //
23549, 23, //
23234, 24, //
22915, 25, //
22591, 26, //
22264, 27, //
21933, 28, //
21599, 29, //
21261, 30, //
20921, 31, //
20579, 32, //
20234, 33, //
19888, 34, //
19541, 35, //
19192, 36, //
18843, 37, //
18493, 38, //
18143, 39, //
17793, 40, //
17444, 41, //
17096, 42, //
16750, 43, //
16404, 44, //
16061, 45, //
// 15719, 46, //
// 15380, 47, //
// 15044, 48, //
// 14710, 49, //
// 14380, 50, //
// 14053, 51, //
// 13729, 52, //
// 13410, 53, //
// 13094, 54, //
// 12782, 55, //
// 12475, 56, //
// 12172, 57, //
// 11874, 58, //
// 11580, 59, //
// 11292, 60, //
};
#endif #endif
// These are called by the HAL after the corresponding events from the system // These are called by the HAL after the corresponding events from the system
// timers. // timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed // Period has elapsed
if (htim->Instance == TIM1) { if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts // STM uses this for internal functions as a counter for timeouts
HAL_IncTick(); HAL_IncTick();
} }
} }
uint16_t getHandleTemperature() { uint16_t getHandleTemperature() {
return 250; // TODO int32_t result = getADC(0);
return Utils::InterpolateLookupTable(NTCHandleLookup,NTCHandleLookupItems, result);
} }
uint16_t getTipInstantTemperature() { return getADC(2); } uint16_t getTipInstantTemperature() {
return getADC(2);
}
uint16_t getTipRawTemp(uint8_t refresh) { uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) { if (refresh) {
uint16_t lastSample = getTipInstantTemperature(); uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample); rawTempFilter.update(lastSample);
return lastSample; return lastSample;
} else { } else {
return rawTempFilter.average(); return rawTempFilter.average();
} }
} }
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there // Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options, // Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467 // ideal term is 467
static uint8_t preFillneeded = 10; static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH]; static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0; static uint8_t index = 0;
if (preFillneeded) { if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1); samples[i] = getADC(1);
preFillneeded--; preFillneeded--;
} }
if (sample) { if (sample) {
samples[index] = getADC(1); samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH; index = (index + 1) % BATTFILTERDEPTH;
} }
uint32_t sum = 0; uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i]; sum += samples[i];
sum /= BATTFILTERDEPTH; sum /= BATTFILTERDEPTH;
if (divisor == 0) { if (divisor == 0) {
divisor = 1; divisor = 1;
} }
return sum * 4 / divisor; return sum * 4 / divisor;
} }
bool tryBetterPWM(uint8_t pwm) { bool tryBetterPWM(uint8_t pwm) {
// We dont need this for the MHP30 // We dont need this for the MHP30
return false; return false;
} }
void setTipPWM(uint8_t pulse) { void setTipPWM(uint8_t pulse) {
// We can just set the timer directly // We can just set the timer directly
htim3.Instance->CCR1 = pulse; htim3.Instance->CCR1 = pulse;
} }
void unstick_I2C() { void unstick_I2C() {
GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100; int timeout = 100;
int timeout_cnt = 0; int timeout_cnt = 0;
// 1. Clear PE bit. // 1. Clear PE bit.
hi2c1.Instance->CR1 &= ~(0x0001); hi2c1.Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration /**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA PB7 ------> I2C1_SDA
*/ */
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin; GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin; GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
// Move clock to release I2C // Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++; timeout_cnt++;
if (timeout_cnt > timeout) if (timeout_cnt > timeout)
return; return;
} }
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin; GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin; GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register. // 13. Set SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 |= 0x8000; hi2c1.Instance->CR1 |= 0x8000;
asm("nop"); asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register. // 14. Clear SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 &= ~0x8000; hi2c1.Instance->CR1 &= ~0x8000;
asm("nop"); asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
hi2c1.Instance->CR1 |= 0x0001; hi2c1.Instance->CR1 |= 0x0001;
// Call initialization function. // Call initialization function.
HAL_I2C_Init(&hi2c1); HAL_I2C_Init(&hi2c1);
} }
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } uint8_t getButtonA() {
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
1 : 0;
}
uint8_t getButtonB() {
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
1 : 0;
}
void BSPInit(void) {} void BSPInit(void) {
}
void reboot() { NVIC_SystemReset(); } void reboot() {
NVIC_SystemReset();
}
void delay_ms(uint16_t count) { HAL_Delay(count); } void delay_ms(uint16_t count) {
HAL_Delay(count);
}