Basic OLED working

* OLED
* Buttons
This commit is contained in:
Ben V. Brown
2021-04-26 22:22:32 +10:00
parent 8b65fa5d10
commit e84717765a
11 changed files with 533 additions and 572 deletions

View File

@@ -10,23 +10,19 @@
#include <IRQ.h>
volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0;
uint16_t totalPWM = 255;
const uint16_t powerPWM = 255;
static const uint8_t holdoffTicks = 14; // delay of 8 ms
static const uint8_t tempMeasureTicks = 14;
uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
void resetWatchdog() {
HAL_IWDG_Refresh(&hiwdg);
}
static bool fastPWM;
// 2 second filter (ADC is PID_TIM_HZ Hz)
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
#ifdef TEMP_NTC
// Lookup table for the NTC
// Stored as ADCReading,Temp in degC
static const uint16_t NTCHandleLookup[] = {
// ADC Reading , Temp in C
// ADC Reading , Temp in C
29189, 0, //
29014, 1, //
28832, 2, //
@@ -88,59 +84,25 @@ static const uint16_t NTCHandleLookup[] = {
// 11874, 58, //
// 11580, 59, //
// 11292, 60, //
};
};
#endif
// These are called by the HAL after the corresponding events from the system
// timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts
HAL_IncTick();
}
}
uint16_t getHandleTemperature() {
#ifdef TEMP_NTC
// TS80P uses 100k NTC resistors instead
// NTCG104EF104FT1X from TDK
// For now not doing interpolation
int32_t result = getADC(0);
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
if (result > NTCHandleLookup[(i * 2) + 0]) {
return NTCHandleLookup[(i * 2) + 1] * 10;
}
}
return 45 * 10;
#endif
#ifdef TEMP_TMP36
// We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
int32_t result = getADC(0);
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
result *= 100;
result /= 994;
return result;
#endif
return 250; //TODO
}
uint16_t getTipInstantTemperature() {
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
uint16_t readings[8];
// Looking to reject the highest outlier readings.
// As on some hardware these samples can run into the op-amp recovery time
// Once this time is up the signal stabilises quickly, so no need to reject minimums
readings[0] = hadc1.Instance->JDR1;
readings[1] = hadc1.Instance->JDR2;
readings[2] = hadc1.Instance->JDR3;
readings[3] = hadc1.Instance->JDR4;
readings[4] = hadc2.Instance->JDR1;
readings[5] = hadc2.Instance->JDR2;
readings[6] = hadc2.Instance->JDR3;
readings[7] = hadc2.Instance->JDR4;
for (int i = 0; i < 8; i++) {
sum += readings[i];
}
return sum; // 8x over sample
return 0; //TODO
}
uint16_t getTipRawTemp(uint8_t refresh) {
@@ -181,80 +143,15 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
}
return sum * 4 / divisor;
}
void setTipPWM(uint8_t pulse) {
PWMSafetyTimer = 10; // This is decremented in the handler for PWM so that the tip pwm is
// disabled if the PID task is not scheduled often enough.
pendingPWM = pulse;
}
static void switchToFastPWM(void) {
fastPWM = true;
totalPWM = powerPWM + tempMeasureTicks * 2 + holdoffTicks;
htim2.Instance->ARR = totalPWM;
// ~3.5 Hz rate
htim2.Instance->CCR1 = powerPWM + holdoffTicks * 2;
// 2 MHz timer clock/2000 = 1 kHz tick rate
htim2.Instance->PSC = 2000;
}
static void switchToSlowPWM(void) {
fastPWM = false;
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
htim2.Instance->ARR = totalPWM;
// ~1.84 Hz rate
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
// 2 MHz timer clock/4000 = 500 Hz tick rate
htim2.Instance->PSC = 4000;
}
bool tryBetterPWM(uint8_t pwm) {
if (fastPWM && pwm == powerPWM) {
// maximum power for fast PWM reached, need to go slower to get more
switchToSlowPWM();
return true;
} else if (!fastPWM && pwm < 230) {
// 254 in fast PWM mode gives the same power as 239 in slow
// allow for some reasonable hysteresis by switching only when it goes
// below 230 (equivalent to 245 in fast mode)
switchToFastPWM();
return true;
}
//We dont need this for the MHP30
return false;
}
// These are called by the HAL after the corresponding events from the system
// timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == TIM2) {
// we want to turn on the output again
PWMSafetyTimer--;
// We decrement this safety value so that lockups in the
// scheduler will not cause the PWM to become locked in an
// active driving state.
// While we could assume this could never happen, its a small price for
// increased safety
htim2.Instance->CCR4 = pendingPWM;
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
} else {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
}
} else if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts
HAL_IncTick();
}
void setTipPWM(uint8_t pulse) {
//We can just set the timer directly
htim3.Instance->CCR1 = pulse;
}
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
// This was a when the PWM for the output has timed out
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
}
}
void unstick_I2C() {
GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100;
@@ -324,11 +221,22 @@ void unstick_I2C() {
HAL_I2C_Init(&hi2c1);
}
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
uint8_t getButtonA() {
return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
1 : 0;
}
uint8_t getButtonB() {
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
1 : 0;
}
void BSPInit(void) { switchToFastPWM(); }
void BSPInit(void) {
}
void reboot() { NVIC_SystemReset(); }
void reboot() {
NVIC_SystemReset();
}
void delay_ms(uint16_t count) { HAL_Delay(count); }
void delay_ms(uint16_t count) {
HAL_Delay(count);
}

View File

@@ -23,8 +23,8 @@
#define TEMP_NTC
#define I2C_SOFT
#define LIS_ORI_FLIP
#define OLED_FLIP
#define BATTFILTERDEPTH 8
#define OLED_I2CBB
#endif
#endif /* BSP_MINIWARE_MODEL_CONFIG_H_ */

View File

@@ -300,14 +300,14 @@ static void MX_TIM2_Init(void) {
TIM_OC_InitTypeDef sConfigOC;
htim2.Instance = TIM2;
htim2.Init.Prescaler = 2000; // 2 MHz timer clock/2000 = 1 kHz tick rate
htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
// dummy value, will be reconfigured by BSPInit()
htim2.Init.Period = 10;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 8 MHz (x2 APB1) before divide
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
htim2.Init.RepetitionCounter = 0;
HAL_TIM_Base_Init(&htim2);
@@ -324,13 +324,12 @@ static void MX_TIM2_Init(void) {
sConfigOC.OCMode = TIM_OCMODE_PWM1;
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp
sConfigOC.Pulse = 5; // 13 -> Delay of 7 ms
sConfigOC.Pulse = 5;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
sConfigOC.Pulse = 0; // default to entirely off
HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
HAL_TIM_Base_Start_IT(&htim2);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
}

View File

@@ -13,14 +13,16 @@
static uint16_t settings_page[512] __attribute__((section(".settings_page")));
uint8_t flash_save_buffer(const uint8_t *buffer, const uint16_t length) {
return; //TODO
FLASH_EraseInitTypeDef pEraseInit;
pEraseInit.TypeErase = FLASH_TYPEERASE_PAGES;
pEraseInit.Banks = FLASH_BANK_1;
pEraseInit.NbPages = 1;
pEraseInit.PageAddress = (uint32_t)settings_page;
pEraseInit.PageAddress = (uint32_t) settings_page;
uint32_t failingAddress = 0;
resetWatchdog();
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY);
__HAL_FLASH_CLEAR_FLAG(
FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY);
HAL_FLASH_Unlock();
HAL_Delay(1);
resetWatchdog();
@@ -28,14 +30,20 @@ uint8_t flash_save_buffer(const uint8_t *buffer, const uint16_t length) {
//^ Erase the page of flash (1024 bytes on this stm32)
// erased the chunk
// now we program it
uint16_t *data = (uint16_t *)buffer;
uint16_t *data = (uint16_t*) buffer;
HAL_FLASH_Unlock();
for (uint16_t i = 0; i < (length / 2); i++) {
resetWatchdog();
HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, (uint32_t)&settings_page[i], data[i]);
HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD,
(uint32_t) &settings_page[i], data[i]);
}
HAL_FLASH_Lock();
return 1;
}
void flash_read_buffer(uint8_t *buffer, const uint16_t length) { memcpy(buffer, settings_page, length); }
void flash_read_buffer(uint8_t *buffer, const uint16_t length) {
memset(buffer, 0, length);
return; // TODO
memcpy(buffer, settings_page, length);
}

View File

@@ -5,6 +5,7 @@
#include "Setup.h"
#include "fusb302b.h"
#include "fusb_user.h"
#include "Pins.h"
/*
* Read a single byte from the FUSB302B
*
@@ -53,7 +54,7 @@ bool fusb_write_byte(uint8_t addr, uint8_t byte) {
* buf: The buffer to write
*/
bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf) {
return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, buf, size);
return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, (uint8_t*)buf, size);
}
uint8_t fusb302_detect() {

View File

@@ -15,6 +15,7 @@
void preRToSInit() {
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
*/
SCB->VTOR = FLASH_BASE; //Set vector table offset
HAL_Init();
Setup_HAL(); // Setup all the HAL objects
BSPInit();

View File

@@ -44,11 +44,7 @@ void ADC1_2_IRQHandler(void) { HAL_ADC_IRQHandler(&hadc1); }
// Timer 1 has overflowed, used for HAL ticks
void TIM1_UP_IRQHandler(void) { HAL_TIM_IRQHandler(&htim1); }
// Timer 3 is used for the PWM output to the tip
void TIM3_IRQHandler(void) { HAL_TIM_IRQHandler(&htim3); }
// Timer 2 is used for co-ordination of PWM & ADC
void TIM2_IRQHandler(void) { HAL_TIM_IRQHandler(&htim2); }
void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); }
void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); }

View File

@@ -40,7 +40,8 @@ bool I2CBB::probe(uint8_t address) {
return ack;
}
bool I2CBB::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size) {
bool I2CBB::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData,
uint16_t Size) {
if (!lock())
return false;
start();
@@ -76,7 +77,8 @@ bool I2CBB::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, u
return true;
}
bool I2CBB::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size) {
bool I2CBB::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
const uint8_t *pData, uint16_t Size) {
if (!lock())
return false;
start();
@@ -154,7 +156,8 @@ void I2CBB::Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
unlock();
}
void I2CBB::TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx) {
void I2CBB::TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx,
uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx) {
if (Size_tx == 0 && Size_rx == 0)
return;
if (lock() == false)
@@ -264,7 +267,9 @@ uint8_t I2CBB::read_bit() {
return b;
}
void I2CBB::unlock() { xSemaphoreGive(I2CSemaphore); }
void I2CBB::unlock() {
xSemaphoreGive(I2CSemaphore);
}
bool I2CBB::lock() {
if (I2CSemaphore == NULL) {
@@ -274,6 +279,16 @@ bool I2CBB::lock() {
return a;
}
bool I2CBB::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) {
return Mem_Write(address, reg, &data, 1);
}
uint8_t I2CBB::I2C_RegisterRead(uint8_t address, uint8_t reg) {
uint8_t temp = 0;
Mem_Read(address, reg, &temp, 1);
return temp;
}
void I2CBB::write_bit(uint8_t val) {
if (val) {
SOFT_SDA_HIGH();
@@ -287,4 +302,16 @@ void I2CBB::write_bit(uint8_t val) {
SOFT_SCL_LOW();
}
bool I2CBB::writeRegistersBulk(const uint8_t address, const I2C_REG *registers,
const uint8_t registersLength) {
for (int index = 0; index < registersLength; index++) {
if (!I2C_RegisterWrite(address, registers[index].reg,
registers[index].val)) {
return false;
}
if (registers[index].pause_ms)
delay_ms(registers[index].pause_ms);
}
return true;
}
#endif

View File

@@ -22,13 +22,24 @@ public:
// Probe if device ACK's address or not
static bool probe(uint8_t address);
// Issues a complete 8bit register read
static bool Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size);
static bool Mem_Read(uint16_t DevAddress, uint16_t MemAddress,
uint8_t *pData, uint16_t Size);
// Implements a register write
static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size);
static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
const uint8_t *pData, uint16_t Size);
static void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
static void Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx);
static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx,
uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx);
static bool I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data);
static uint8_t I2C_RegisterRead(uint8_t address, uint8_t reg);
typedef struct {
const uint8_t reg; // The register to write to
uint8_t val; // The value to write to this register
const uint8_t pause_ms; // How many ms to pause _after_ writing this reg
} I2C_REG;
static bool writeRegistersBulk(const uint8_t address,
const I2C_REG *registers, const uint8_t registersLength);
private:
static SemaphoreHandle_t I2CSemaphore;
static StaticSemaphore_t xSemaphoreBuffer;

View File

@@ -29,7 +29,7 @@ uint8_t OLED::secondFrameBuffer[OLED_WIDTH * 2];
/*http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf*/
/*All commands are prefixed with 0x80*/
/*Data packets are prefixed with 0x40*/
FRToSI2C::I2C_REG OLED_Setup_Array[] = {
I2C_CLASS::I2C_REG OLED_Setup_Array[] = {
/**/
{0x80, 0xAE, 0}, /*Display off*/
{0x80, 0xD5, 0}, /*Set display clock divide ratio / osc freq*/
@@ -89,7 +89,7 @@ void OLED::initialize() {
// initialisation data to the OLED.
for (int tries = 0; tries < 10; tries++) {
if (FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) {
if (I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) {
return;
}
}
@@ -238,7 +238,7 @@ void OLED::setRotation(bool leftHanded) {
OLED_Setup_Array[5].val = 0xC0;
OLED_Setup_Array[9].val = 0xA0;
}
FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]));
I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]));
inLeftHandedMode = leftHanded;

View File

@@ -10,8 +10,8 @@
#ifndef OLED_HPP_
#define OLED_HPP_
#include "Font.h"
#include "I2C_Wrapper.hpp"
#include <BSP.h>
#include "Model_Config.h"
#include <stdbool.h>
#include <string.h>
#ifdef __cplusplus
@@ -21,6 +21,16 @@ extern "C" {
#ifdef __cplusplus
}
#endif
#ifdef OLED_I2CBB
#include "I2CBB.hpp"
#define I2C_CLASS I2CBB
#else
#define I2C_CLASS FRToSI2C
#include "I2C_Wrapper.hpp"
#endif
#define DEVICEADDR_OLED (0x3c << 1)
#define OLED_WIDTH 96
#define OLED_HEIGHT 16
@@ -40,7 +50,7 @@ public:
static bool isInitDone();
// Draw the buffer out to the LCD using the DMA Channel
static void refresh() {
FRToSI2C::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2));
I2C_CLASS::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2));
// DMA tx time is ~ 20mS Ensure after calling this you delay for at least 25ms
// or we need to goto double buffering
}