Cleanup timings in I2C Driver

This commit is contained in:
Ben V. Brown
2020-12-13 16:08:59 +11:00
parent d509a3df87
commit cdeb972593
4 changed files with 512 additions and 494 deletions

View File

@@ -46,7 +46,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
if (tries > 64) { if (tries > 64) {
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
unlock(); unlock();
@@ -61,8 +61,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
/* enable acknowledge */ /* enable acknowledge */
i2c_ack_config(I2C0, I2C_ACK_ENABLE); i2c_ack_config(I2C0, I2C_ACK_ENABLE);
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY)
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -83,8 +83,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -104,14 +104,15 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
break; break;
case I2C_CLEAR_ADDRESS_FLAG: case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */ /* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200)
&& (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
// Address NACK'd // Address NACK'd
@@ -126,7 +127,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
} else { } else {
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
// Address NACK'd // Address NACK'd
@@ -137,8 +138,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
case I2C_TRANSMIT_DATA: case I2C_TRANSMIT_DATA:
if (0 == in_rx_cycle) { if (0 == in_rx_cycle) {
/* wait until the transmit data buffer is empty */ /* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -151,8 +152,8 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
in_rx_cycle = 0; in_rx_cycle = 0;
} }
/* wait until BTC bit is set */ /* wait until BTC bit is set */
while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_BTC))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -185,11 +186,11 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
} else { /* more than one byte master reception procedure (DMA) */ } else { /* more than one byte master reception procedure (DMA) */
dma_deinit(DMA0, DMA_CH6); dma_deinit(DMA0, DMA_CH6);
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY; dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_addr = (uint32_t)p_buffer; dma_init_struct.memory_addr = (uint32_t) p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT; dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte; dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0); dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT; dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH; dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
@@ -202,7 +203,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
dma_channel_enable(DMA0, DMA_CH6); dma_channel_enable(DMA0, DMA_CH6);
/* wait until BTC bit is set */ /* wait until BTC bit is set */
while (!dma_flag_get(DMA0, DMA_CH6, DMA_FLAG_FTF)) { while (!dma_flag_get(DMA0, DMA_CH6, DMA_FLAG_FTF)) {
osDelay(1);
} }
/* send a stop condition to I2C bus*/ /* send a stop condition to I2C bus*/
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
@@ -213,7 +214,7 @@ bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t read_address,
break; break;
case I2C_STOP: case I2C_STOP:
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -256,7 +257,8 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
switch (state) { switch (state) {
case I2C_START: case I2C_START:
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY)
&& (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -271,8 +273,8 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -288,14 +290,15 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
break; break;
case I2C_CLEAR_ADDRESS_FLAG: case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */ /* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200)
&& (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
// Address NACK'd // Address NACK'd
@@ -311,7 +314,7 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
// Dont retry as this means a NAK // Dont retry as this means a NAK
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
unlock(); unlock();
@@ -320,7 +323,8 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
break; break;
case I2C_TRANSMIT_DATA: case I2C_TRANSMIT_DATA:
/* wait until the transmit data buffer is empty */ /* wait until the transmit data buffer is empty */
while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE)) && (timeout < I2C_TIME_OUT)) { while ((!i2c_flag_get(I2C0, I2C_FLAG_TBE))
&& (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -338,11 +342,11 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
; ;
dma_deinit(DMA0, DMA_CH5); dma_deinit(DMA0, DMA_CH5);
dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL; dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init_struct.memory_addr = (uint32_t)p_buffer; dma_init_struct.memory_addr = (uint32_t) p_buffer;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT; dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = number_of_byte; dma_init_struct.number = number_of_byte;
dma_init_struct.periph_addr = (uint32_t)&I2C_DATA(I2C0); dma_init_struct.periph_addr = (uint32_t) &I2C_DATA(I2C0);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT; dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH; dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
@@ -353,18 +357,18 @@ bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress,
dma_channel_enable(DMA0, DMA_CH5); dma_channel_enable(DMA0, DMA_CH5);
/* wait until BTC bit is set */ /* wait until BTC bit is set */
while (!dma_flag_get(DMA0, DMA_CH5, DMA_FLAG_FTF)) { while (!dma_flag_get(DMA0, DMA_CH5, DMA_FLAG_FTF)) {
osDelay(2);
} }
/* wait until BTC bit is set */ /* wait until BTC bit is set */
while (!i2c_flag_get(I2C0, I2C_FLAG_BTC)) while (!i2c_flag_get(I2C0, I2C_FLAG_BTC)) {
; }
state = I2C_STOP; state = I2C_STOP;
break; break;
case I2C_STOP: case I2C_STOP:
/* send a stop condition to I2C bus */ /* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -397,20 +401,23 @@ bool FRToSI2C::probe(uint16_t DevAddress) {
return Mem_Read(DevAddress, 0x00, temp, sizeof(temp)); return Mem_Read(DevAddress, 0x00, temp, sizeof(temp));
} }
void FRToSI2C::I2C_Unstick() { unstick_I2C(); } void FRToSI2C::I2C_Unstick() {
unstick_I2C();
}
bool FRToSI2C::lock() { bool FRToSI2C::lock() {
if (I2CSemaphore == nullptr) { if (I2CSemaphore == nullptr) {
return false; return false;
} }
return xSemaphoreTake(I2CSemaphore, 1000) == pdTRUE; return xSemaphoreTake(I2CSemaphore, TICKS_SECOND) == pdTRUE;
} }
void FRToSI2C::unlock() { xSemaphoreGive(I2CSemaphore); } void FRToSI2C::unlock() {
xSemaphoreGive(I2CSemaphore);
}
bool FRToSI2C::writeRegistersBulk(const uint8_t address, bool FRToSI2C::writeRegistersBulk(const uint8_t address,
const I2C_REG *registers, const I2C_REG *registers, const uint8_t registersLength) {
const uint8_t registersLength) {
for (int index = 0; index < registersLength; index++) { for (int index = 0; index < registersLength; index++) {
if (!I2C_RegisterWrite(address, registers[index].reg, if (!I2C_RegisterWrite(address, registers[index].reg,
registers[index].val)) { registers[index].val)) {
@@ -440,7 +447,8 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
switch (state) { switch (state) {
case I2C_START: case I2C_START:
/* i2c master sends start signal only when the bus is idle */ /* i2c master sends start signal only when the bus is idle */
while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY) && (timeout < I2C_TIME_OUT)) { while (i2c_flag_get(I2C0, I2C_FLAG_I2CBSY)
&& (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -455,8 +463,8 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
break; break;
case I2C_SEND_ADDRESS: case I2C_SEND_ADDRESS:
/* i2c master sends START signal successfully */ /* i2c master sends START signal successfully */
while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_SBSEND))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {
@@ -472,14 +480,15 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
break; break;
case I2C_CLEAR_ADDRESS_FLAG: case I2C_CLEAR_ADDRESS_FLAG:
/* address flag set means i2c slave sends ACK */ /* address flag set means i2c slave sends ACK */
while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND)) && while ((!i2c_flag_get(I2C0, I2C_FLAG_ADDSEND))
(timeout < I2C_TIME_OUT)) { && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) { if (i2c_flag_get(I2C0, I2C_FLAG_AERR)) {
i2c_flag_clear(I2C0, I2C_FLAG_AERR); i2c_flag_clear(I2C0, I2C_FLAG_AERR);
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200)
&& (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
// Address NACK'd // Address NACK'd
@@ -495,7 +504,7 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
// Dont retry as this means a NAK // Dont retry as this means a NAK
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
unlock(); unlock();
@@ -507,7 +516,7 @@ bool FRToSI2C::wakePart(uint16_t DevAddress) {
/* send a stop condition to I2C bus */ /* send a stop condition to I2C bus */
i2c_stop_on_bus(I2C0); i2c_stop_on_bus(I2C0);
/* i2c master sends STOP signal successfully */ /* i2c master sends STOP signal successfully */
while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT)) { while ((I2C_CTL0(I2C0) & 0x0200) && (timeout < I2C_TIME_OUT )) {
timeout++; timeout++;
} }
if (timeout < I2C_TIME_OUT) { if (timeout < I2C_TIME_OUT) {

View File

@@ -61,16 +61,20 @@ void setup_gpio() {
// OLED reset as output // OLED reset as output
gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, gpio_init(OLED_RESET_GPIO_Port, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ,
OLED_RESET_Pin); OLED_RESET_Pin);
gpio_bit_set(SDA_GPIO_Port, SDA_Pin);
gpio_bit_set(SDA_GPIO_Port, SCL_Pin);
// I2C as AF Open Drain // I2C as AF Open Drain
gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_2MHZ,
SDA_Pin | SCL_Pin); SDA_Pin | SCL_Pin);
// PWM output as AF Push Pull // PWM output as AF Push Pull
gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, PWM_Out_Pin); gpio_init(PWM_Out_GPIO_Port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ,
PWM_Out_Pin);
// Analog Inputs ... as analog inputs // Analog Inputs ... as analog inputs
gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, gpio_init(TMP36_INPUT_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_2MHZ,
TMP36_INPUT_Pin); TMP36_INPUT_Pin);
gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, TIP_TEMP_Pin); gpio_init(TIP_TEMP_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_2MHZ,
gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ, VIN_Pin); TIP_TEMP_Pin);
gpio_init(VIN_GPIO_Port, GPIO_MODE_AIN, GPIO_OSPEED_2MHZ, VIN_Pin);
// Remap PB4 away from JTAG NJRST // Remap PB4 away from JTAG NJRST
gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE); gpio_pin_remap_config(GPIO_SWJ_NONJTRST_REMAP, ENABLE);
@@ -111,7 +115,7 @@ void setup_i2c() {
/* enable I2C0 clock */ /* enable I2C0 clock */
rcu_periph_clock_enable(RCU_I2C0); rcu_periph_clock_enable(RCU_I2C0);
// Setup I20 at 400kHz // Setup I20 at 400kHz
i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_16_9); i2c_clock_config(I2C0, 400 * 1000, I2C_DTCY_2);
i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x00); i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x00);
i2c_enable(I2C0); i2c_enable(I2C0);
/* enable acknowledge */ /* enable acknowledge */
@@ -132,7 +136,7 @@ void setup_adc() {
/* config ADC clock */ /* config ADC clock */
rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16); rcu_adc_clock_config(RCU_CKADC_CKAPB2_DIV16);
// Run in normal parallel + inserted parallel // Run in normal parallel + inserted parallel
adc_mode_config(ADC0,ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL); adc_mode_config(ADC0, ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL);
adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE); adc_special_function_config(ADC0, ADC_CONTINUOUS_MODE, ENABLE);
adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE); adc_special_function_config(ADC0, ADC_SCAN_MODE, ENABLE);
adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE); adc_special_function_config(ADC1, ADC_CONTINUOUS_MODE, ENABLE);
@@ -225,8 +229,10 @@ void setup_timers() {
timer_ocintpara.outputstate = TIMER_CCX_ENABLE; timer_ocintpara.outputstate = TIMER_CCX_ENABLE;
timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara); timer_channel_output_config(TIMER1, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0, powerPWM + holdoffTicks); timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_0,
timer_channel_output_mode_config(TIMER1, TIMER_CH_0, TIMER_OC_MODE_PWM1); powerPWM + holdoffTicks);
timer_channel_output_mode_config(TIMER1, TIMER_CH_0,
TIMER_OC_MODE_PWM1);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_0, timer_channel_output_shadow_config(TIMER1, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE); TIMER_OC_SHADOW_DISABLE);
/* CH1 used for irq */ /* CH1 used for irq */
@@ -236,7 +242,8 @@ void setup_timers() {
timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara); timer_channel_output_config(TIMER1, TIMER_CH_1, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0); timer_channel_output_pulse_value_config(TIMER1, TIMER_CH_1, 0);
timer_channel_output_mode_config(TIMER1, TIMER_CH_1, TIMER_OC_MODE_PWM0); timer_channel_output_mode_config(TIMER1, TIMER_CH_1,
TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER1, TIMER_CH_1, timer_channel_output_shadow_config(TIMER1, TIMER_CH_1,
TIMER_OC_SHADOW_DISABLE); TIMER_OC_SHADOW_DISABLE);
// IRQ // IRQ
@@ -269,7 +276,8 @@ void setup_timers() {
timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW; timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara); timer_channel_output_config(TIMER2, TIMER_CH_0, &timer_ocintpara);
timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 0); timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_0, 0);
timer_channel_output_mode_config(TIMER2, TIMER_CH_0, TIMER_OC_MODE_PWM0); timer_channel_output_mode_config(TIMER2, TIMER_CH_0,
TIMER_OC_MODE_PWM0);
timer_channel_output_shadow_config(TIMER2, TIMER_CH_0, timer_channel_output_shadow_config(TIMER2, TIMER_CH_0,
TIMER_OC_SHADOW_DISABLE); TIMER_OC_SHADOW_DISABLE);
timer_auto_reload_shadow_enable(TIMER2); timer_auto_reload_shadow_enable(TIMER2);

View File

@@ -14,8 +14,9 @@ void preRToSInit() {
//Normal system bringup -- GPIO etc //Normal system bringup -- GPIO etc
hardware_init(); hardware_init();
delay_ms(5);
gpio_bit_reset(OLED_RESET_GPIO_Port, OLED_RESET_Pin); gpio_bit_reset(OLED_RESET_GPIO_Port, OLED_RESET_Pin);
FRToSI2C::FRToSInit();
delay_ms(50); delay_ms(50);
gpio_bit_set(OLED_RESET_GPIO_Port, OLED_RESET_Pin); gpio_bit_set(OLED_RESET_GPIO_Port, OLED_RESET_Pin);
FRToSI2C::FRToSInit();
} }

View File

@@ -96,12 +96,12 @@ void OLED::initialize() {
// Set the display to be ON once the settings block is sent and send the // Set the display to be ON once the settings block is sent and send the
// initialisation data to the OLED. // initialisation data to the OLED.
setDisplayState(DisplayState::ON);
for (int tries = 0; tries < 10; tries++) { for (int tries = 0; tries < 10; tries++) {
if (FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) { if (FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) {
return; return;
} }
} }
setDisplayState(DisplayState::ON);
} }
void OLED::setFramebuffer(uint8_t *buffer) { void OLED::setFramebuffer(uint8_t *buffer) {
if (buffer == NULL) { if (buffer == NULL) {
@@ -171,7 +171,7 @@ void OLED::transitionSecondaryFramebuffer(bool forwardNavigation) {
while (duration <= totalDuration) { while (duration <= totalDuration) {
duration = xTaskGetTickCount() - start; duration = xTaskGetTickCount() - start;
uint8_t progress = duration * 1000 / totalDuration; uint8_t progress = duration * TICKS_SECOND / totalDuration;
progress = easeInOutTiming(progress); progress = easeInOutTiming(progress);
progress = lerp(0, OLED_WIDTH, progress); progress = lerp(0, OLED_WIDTH, progress);
if (progress > OLED_WIDTH) { if (progress > OLED_WIDTH) {